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Abstract

This paper considers the problem of designing a controller for an unknown plant based on input=output measurements. The new design
method we propose is direct (no model identi4cation of the plant is needed) and can be applied using a single set of data generated by
the plant, with no need for speci4c experiments nor iterations. It is shown that the method searches for the global optimum of the design
criterion and that, in the case of restricted complexity controller design, the achieved controller is a good approximation of the restricted
complexity global optimal controller. A simulation example shows the e7ectiveness of the method. ? 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

In many practical control applications, a mathematical de-
scription of the plant is not available, and the controller has
to be designed on the basis of measurements. This problem
has attracted the attention of control engineers since the for-
ties with the pioneering work by Ziegler and Nichols (1942),
which focuses on the design of industrial PID controllers.
After Ziegler and Nichols (1942), many more techniques
started to appear, partly as modi4cations and extensions of
the Ziegler and Nichols method, partly as developments in
new directions (see e.g. ?Astr@om & H@agglund, 1995; Chien,
Hrones & Reswick, 1952; Dahlin, 1968; Haalman, 1965;
McMillan, 1983). The main characteristic of these tech-
niques is that they can be easily implemented: simple exper-
iments on the plant are performed and some pre-speci4ed
rule is applied to the corresponding outcome.
This paper describes a new controller tuning method

called Virtual Reference Feedback Tuning (VRFT).
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Similarly to the above-mentioned tuning techniques, VRFT
only requires a single experiment on the plant.

1.1. Problem formulation

It is assumed that the plant is a linear SISO discrete-time
dynamical system described by the rational transfer function
P(z). Such a transfer function is unknown and a set of I=O
data, collected during an experiment on the plant, is available
for design purposes.
The control speci4cations are assigned via a reference

model M (z). This describes the desired transfer function of
the closed-loop system (see Fig. 1). Attention is restricted
to controllers which linearly depend on the parameter vec-
tor, namely the controller class {C(z; �)} takes the form
C(z; �) = �T(z)�, where �(z) = [�1(z) �2(z) · · · �n(z)]T

is a known vector of linear discrete time transfer functions,
and � = [#1 #2 · · ·#n]T is the n-dimensional vector of
parameters.
The control objective is the minimization of the following

model-reference criterion:

JMR(�) =
∥∥∥∥
(

P(z)C(z; �)
1 + P(z)C(z; �)

−M (z)
)
W (z)

∥∥∥∥
2

2
; (1)

where W (z) is a weighting function chosen by the user.
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Fig. 1. The control system.

1.2. Motivation and original contributions

VRFT builds on a general idea for controller selection
originally proposed in Guardabassi and Savaresi (2000). In
Guardabassi and Savaresi (2000) only the bare idea was set
up, with no concern for fundamental implementation and
performance issues. The aim of this paper is to develop a
complete ready-to-use technique for the controller design.
This will be done by addressing two crucial issues:

• the design of a pre-?lter of the data, in order to generate
a controller that minimizes (1);

• the treatment of data a7ected by noise.

On the other hand, the present contribution does not ad-
dress the stability issue of the designed closed-loop system.
Depending on the choice of M (z), the designed method
proposed here may as well result in a destabilizing con-
troller, so that testing the closed-loop for stability may be
necessary in certain cases. This issue is dealt with in a
separate contribution.

1.3. Comparison with other methods

By comparing VRFT with the tuning rules presented in
Ziegler and Nichols (1942), Chien et al. (1952), Haalman
(1965), Dahlin (1968), McMillan (1983) and ?Astr@om and
H@agglund (1995), it can be noted that the control prob-
lem addressed by VRFT is a model reference control prob-
lem, where the user can specify his control objectives by a
suitable selection of a reference model M (z). This is a non-
trivial advantage over existing methods for the tuning of
industrial controllers, where the control speci4cations are
given empirically, or assigned in a very simple and limited
fashion. Moreover, the range of applicability of VRFT is not
restricted to PID controllers.
It is worth noticing that VRFT has some similarities with

some iterative schemes for the controller design of unknown
plants recently developed in the literature (see e.g. Schrama,
1992; Gevers, 1993; Hjalmarsson, Gunnarson, & Gevers,
1994; Hakvoort, Schrama, & Van den Hof, 1994; Van den
Hof & Schrama, 1995; Zang, Bitmead, & Gevers, 1995;
De Callafon & Van den Hof, 1997; Hjalmarsson, Gevers,
& Gunnarson, & Lequin, 1998). Among them, the inno-
vative iterative feedback tuning (IFT) method proposed
by Hjalmarsson and coauthors (Hjalmarsson et al., 1994,

1998) shares with VRFT, the characteristic of being
direct; namely both VRFT and IFT do not make use of
any intermediate model construction step, and point di-
rectly to the controller selection. Using a very smart idea
for reconstructing the cost criterion gradient from data, IFT
performs a 4ne tuning of the controller through an iterative
procedure. In contrast, VRFT is not iterative and its main
characteristic is its ease of use. On the other hand, VRFT is
suboptimal for restricted controller classes. As we can see,
IFT and VRFT are in a sense complementary methods with
their own area of applicability.

1.4. Outline of the paper

The structure of the paper is as follows. In Section 2, the
virtual reference idea is introduced. Starting from this basic
idea, the VRFT technique is developed by addressing two
main issues: the problem of selecting a suitable pre-4lter
in order to obtain a controller that minimizes (1) (Sec-
tion 3), and the problem of dealing with noise (Section 4).
A simulation example ends the paper.

2. The virtual reference framework

In this section, the virtual reference framework, as it was
originally introduced in Guardabassi and Savaresi (2000), is
brieNy recalled. A similar idea, though in a special setting,
has also been used in the context of control with neural net-
works, see Norgaard, Ravn, Poulsen, and Hansen (2000).
The virtual reference approach has been applied in a non-
linear setting in Savaresi and Guardabassi (1997, 1998),
Nijmeijer and Savaresi (1998) and Guardabassi and
Savaresi (2001).

2.1. The basic idea

Suppose that a controller C(z; �) results in a closed-loop
system whose transfer function is M (z). Then, if the
closed-loop system is fed by any reference signal r(t), its
output equals M (z)r(t). Hence, a necessary condition for
the closed-loop system to have the same transfer function
as the reference model is that the output of the two systems
is the same for a given Or(t).
Standard model reference design methods try to impose

such a necessary condition by 4rst selecting a reference Or(t)
and then by choosing C(z; �) such that the condition is sat-
is4ed. However, for a general selection of Or(t), the above
task is diPcult to accomplish if a model of the plant is not
available. The basic idea of the virtual reference approach is
to perform a wise selection of Or(t) so that the determination
of the controller becomes easy.
Suppose that we have in our hands two 4les collected

from the plant, one containing u measurements and the
other one the corresponding output y (how these 4les have
been generated is immaterial for the discussion to come.
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Suppose, however, that the system is noise-free. This is
for ease of explanation and the noisy case will be dealt
with in Section 4 of this paper). Given the measured y(t),
consider a reference Or(t) such that M (z) Or(t) = y(t), where
M (z) is the desired reference model for the closed-loop
system we wish to design. Such a reference is called “vir-
tual” because it was not used to generate y(t). Notice
that y(t) is the desired output of the closed-loop system
when the reference signal is Or(t). Then, compute the cor-
responding tracking error e(t) = Or(t) − y(t). Even though
plant P(z) is not known, we know that when P(z) is fed
by u(t) (the actually measured input signal), it generates
y(t) as an output. Therefore, a good controller is one
that generates u(t) when fed by e(t). The idea is then to
search for such a controller. Since both signals u(t) and
e(t) are known, this task reduces to the identi?cation
problem of describing the dynamical relationship between
e(t) and u(t).
The above idea can be implemented by the follow-

ing 3-step algorithm (where a 4ltering of data through a
user-chosen 4lter L(z) is also considered). It represents the
bulk of the VRFT method.
Given a set of measured I=O data {u(t); y(t)}t=1; :::;N , do

the following:

1. calculate:
• a virtual reference Or(t) such that y(t)=M (z) Or(t), and
• the corresponding tracking error e(t)= Or(t)−y(t) (we
assume M (z) �=1, otherwise e(t) = 0);

2. 4lter the signals e(t) and u(t) with a suitable 4lter L(z):

eL(t) = L(z)e(t); uL(t) = L(z)u(t);

3. select the controller parameter vector, say �̂N , that mini-
mizes the following criterion:

JN
VR(�) =

1
N

N∑
t=1

(uL(t)− C(z; �)eL(t))2: (2)

Note that when C(z; �) = �T(z)�, criterion (2) can be
given the form

JN
VR(�) =

1
N

N∑
t=1

(uL(t)− ’TL(t)�)
2;

’L(t) = �(z)eL(t) (3)

and the parameter vector �̂N is given by

�̂N =

[
N∑
t=1

’L(t)’L(t)T
]−1 N∑

t=1

’L(t)uL(t):

In the next section we show that, by a suitable selection of
the pre-4lter L(z), the controller C(z; �̂N ) is nearly optimal
for cost criterion (1) and it is in fact optimal provided that
the selected controller class contains a controller that gives
perfect matching between the closed-loop transfer fucntion
and M (z).

3. Shaping the �lter

Consider the performance index JMR(�) of the model ref-
erence control problem Eq. (1) and the criterion of the vir-
tual reference approach Eq. (2): they look di7erent. In this
section, it will be shown that their minimum arguments can
in fact be made close to each other by a suitable selection
of the 4lter L(z). In this way, the virtual reference approach
can be used to solve the model reference control problem
stated in the introduction.
It is important to note that in the derivations below, we

do not make the assumption that a controller exists in the
controller class that leads to perfect matching. This would
be unrealistic. As for the presence of noise, in this section
we assume that u(t) and y(t) are noise-free. This is for ease
of explanation and the presence of noise will be treated in
the next section.

3.1. The choice of the ?lter

To start with, note that, using the de4nition of 2-norm
of a discrete-time linear transfer function, JMR(�) can be
written as

JMR(�) =
1
2�

∫ �

−�

∣∣∣∣ P(e j!)C(e j!; �)
1 + P(e j!)C(e j!; �)

−M (e j!)
∣∣∣∣
2

|W (e j!)|2 d!;

or, more compactly, by dropping the argument e j!:

JMR(�) =
1
2�

∫ �

−�

∣∣∣∣ PC(�)
1 + PC(�)

−M
∣∣∣∣
2

|W |2 d!: (4)

Introduce now the rational function C0(z) which exactly
solves the model-matching problem, namely C0(z) is such
that (C0(z) exists because M (z) �=1)
P(z)C0(z)

1 + P(z)C0(z)
=M (z): (5)

Note that, in general, C0(z) does not belong to the family
of parameterized controllers {C(z; �)} and, even more so, it
need not be a proper rational function. Moreover, we should
also note that there is no guarantee that C0(z) results in a
stable closed-loop system since unstable pole-zero cancel-
lation may occur in the product P(z)C0(z). Such a C0(z) is
used in the sequel only for analysis purposes.
Using C0(z), after some manipulations, performance in-

dex (4) can be rewritten as

JMR(�) =
1
2�

∫ �

−�

|P|2|W |2
|1 + PC(�)|2

|C(�)− C0|2
|1 + PC0|2 d!: (6)

Consider now the criterion JN
VR(�). It is well-known that,

if the measured signals u(t) and y(t) can be considered
realizations of stationary and ergodic stochastic processes,
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when the number of available data grows (N →∞), the
following holds:

JN
VR(�)→ JVR(�) = E[(uL(t)− C(z; �)eL(t))2]: (7)

JVR(�) is the asymptotic counterpart of JN
VR(�). Accord-

ingly, as N →∞, the minimum �̂N of JN
VR(�) will converge

to the minimum of JVR(�), say �̂. In the rest of the paper, for
analysis purposes, JVR(�) will be used extensively in place
of JN

VR(�).
Using the de4nitions of uL(t) and eL(t) given in the

previous section, the de4nition of C0(z) in (5), and the
Parseval theorem (see e.g. Ljung, 1999), the asymptotic
criterion (7) can be given the following frequency-domain
representation:

JVR(�)=
1
2�

∫ �

−�
|P|2|C(�)−C0|2|1−M |2 |L|

2

|M |2�u d!; (8)

where �u is the spectral density of u(t).
Comparing JMR(�) and JVR(�) (Eqs. (6) and (8), respec-

tively), the following observations can be made:

• If C0(z)∈{C(z; �)} and JVR(�) has a unique minimum,
minimizing JVR(�) gives C0(z), no matter what L(z) is.

• Suppose instead that C0(z) �∈ {C(z; �)}. If the following
identity holds:

|L|2 = |M |2|W |2
|1 + PC(�)|2

1
�u

; ∀!∈ [− �; �]; (9)

then JVR(�) = JMR(�). As a consequence, minimizing
JVR(�) is the same as minimizing JMR(�).

Clearly, the choice of the 4lter L(z) suggested by Eq. (9)
is not feasible since P(z) is not known and it also depends
on �. Here, the following choice of L(z) is instead
proposed:

• Select L(z) such that

|L|2 = |1−M |2|M |2|W |2 1
�u

; ∀!∈ [− �; �]: (10)

First notice that all quantities in the right-hand side of
Eq. (10) are known and therefore L(z) can be actually com-
puted (in fact �u can be considered known only when the
input signal has been selected by the designer. In other sit-
uations, �u needs to be estimated). Moreover, it is readily
seen that expression (10) is equivalent to

|L|2 = |M |2|W |2
|1 + PC0|2

1
�u

; ∀!∈ [− �; �]:

Hence, choice (10) corresponds to substituting |1+PC(�)|2
with |1 + PC0|2 in Eq. (9), which appears to be a sensible
selection since we expect that |1 + PC(�)|2 ≈ |1 + PC0|2

for �= O�, where O� is the minimum of JMR(�). In Proposition
1 below, we show that choice (10) is in fact optimal in a
sense precisely stated in the proposition.

Remark. One should note that the analysis is based on
asymptotic results. Should the signals be poorly exciting
over certain frequency ranges of interest; the asymptotic re-
sults would start to hold for a very large amount of data
points.

3.2. Analysis of the proposed ?lter

Set TC(z) = C0(z) − �T(z) O�; where O� is the parameter
vector which minimizes JMR(�). Note that TC(z) is the part
of C0(z) which cannot be explained by the chosen family of
controllers. Obviously, ifC0(z)∈{C(z; �)}, thenTC(z)=0.
Introduce now the following extended vector of transfer

functions:

�+(z) = [�1(z) �2(z) · · · �n(z) TC(z)]T

and the following extended parameter vector

� + = [#1 #2 · · · #n #n+1]T:

Then, de4ne an extended family of controllers C+(z; � +)=
�+(z)T� +. Clearly, C0(z)=C+(z; O�

+
), with O�

+
=[ O�

T
1]T.

Finally, consider the extended performance index

J+MR(�
+) =

∥∥∥∥
(

P(z)C+(z; � +)
1 + P(z)C+(z; � +)

−M (z)
)
W (z)

∥∥∥∥
2

2
:

Note that the di7erence between JMR(�) and J+MR(�
+) is

that the latter is parameterized by the family of extended
controllers {C+(z; � +)}. The second-order Taylor expan-
sion around its global minimizer O�

+
is denoted by OJ

+
MR(�

+),
namely:

J+MR(�
+) = OJ

+
MR(�

+) + o(‖� + − O�
+‖22):

We have now the following result.

Proposition 1. The parameter vector O� which minimizes
the performance index JMR(�); and the parameter vector �̂
which minimizes JVR(�) when L(z) is selected according to
(10) are such that:

O�= argmin
�

J+MR([�
T 0]T); (11)

�̂= argmin
�
OJ
+
MR([�

T 0]T): (12)

Proof. See the appendix.

The above result is interesting since it provides a formal
relationship between the parameter vector �̂ obtained using
the virtual reference approach and the “optimal” parameter
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vector O�, which minimizes the original performance index
JMR(�). In particular, Proposition 1 states that O� minimizes
the restriction—over the n-dimensional vector space of
the 4rst n elements of � +—of J+MR(�

+), whereas �̂ min-
imizes the restriction over the same vector space of the
second-order expansion (around O�

+
) of the extended per-

formance index J+MR(�
+). The reason why this is so is that,

by the choice (10), JVR(�) is in fact equal to OJ
+
MR([�

T 0]T).
Based on this result, we conclude that if the transfer func-
tion TC(z) plays a marginal role in determining C0(z),
namely the family of controllers {C(z; �)} is only slightly
under-parameterized, then C(z; �̂) is a good approximation
to C(z; O�) since J+MR(�

+) is well approximated in a neigh-
borhood of its minimum by its second-order expansion
OJ
+
MR(�

+).

Example 1. Consider a plant; a reference model; and a fam-
ily of controllers characterized by the following transfer
functions:

P(z) =
z−1

1− 0:6z−1 ; M (z) =
0:6z−1

1− 0:4z−1 ;

C(z; �) =
�

1− z−1
:

Notice that C(z; �) can be rewritten as C(z; �) = �(z)T�;
where �(z) = 1=(1 − z−1). The “ideal” controller which
exactly solves the model-matching problem is given by

C0(z) =
0:6− 0:36z−1
1− z−1

(note that C0(z) �∈ {C(z; �)}). The global minimum of the
model-reference criterion JMR(�) is achieved by O� = 0:34;
whereas the global minimum of JVR(�) (when the 4lter is
chosen as in (10)) is achieved by �̂=0:44. Correspondingly;
JMR( O�) = 1:35; and JMR(�̂) = 1:45. Using the de4nitions
introduced above; the extended controller class is given by
C+(z; � +) = �+(z)T� +; where

�+(z) =
[

1
1− z−1

0:26− 0:36z−1
1− z−1

]T
; � + = [#1 #2]T

and C0(z) = �+(z)T O�
+
; with O�

+
= [ O�

T
1]T = [0:34 1]. A

graphical interpretation of the results is shown in Fig. 2;
where the contour plots of J+MR(�

+) and OJ
+
MR(�

+) are dis-
played. As stated in Proposition 1, it is apparent that O� is
the minimum of the extended performance index restricted
to #2 = 0, whereas �̂ is the minimum of the quadratic ap-
proximation around O�

+
of the extended performance index

restricted to #2 = 0.

4. The use of noisy data

In this section, we discuss the behavior of the VRFT
method when the plant output y(t) is a7ected by additive
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2 

1

Fig. 2. Contour plots of J+MR(�
+) (continuous line) and OJ+MR(�

+) (dashed

line); (O)= O�
+
; (X) =[�̂ 0]T; (+)=[ O� 0]T.

noise d(t), namely the collected output measurement is

ỹ(t) = P(z)u(t) + d(t):

We make the assumption that the processes u(·) and d(·)
are uncorrelated, namely that the data are collected when
the plant is working in open-loop con4guration. Closed-loop
data collection is not dealt with in detail in this paper for
space limitations; however, extending the presented ideas to
a closed-loop setting is straightforward and brieNy discussed
at the end of the present section.
If the virtual reference algorithm of Section 2 is applied

to the data-set {u(t); ỹ(t)}t=1; :::;N , one obtains a biased pa-
rameter vector and this results in a signi4cant deterioration
of the performance. This can be easily understood by in-
specting the frequency-domain expression of the asymptotic
criterion JVR(�), when using noise-free and noisy data:

• Asymptotic criterion using noise-free data {u(t);
y(t)}t=1; :::;N :

JVR(�) =
1
2�

∫ �

−�
|P|2|C(�)− C0|2

|1−M |2 |L|2
|M |2�u d!: (13)

• Asymptotic criterion using noisy data {u(t);
ỹ(t)}t=1; :::;N :

JVR(�) =
1
2�

∫ �

−�

[
|P|2|C(�)− C0|2|1−M |2 |L|2

|M |2�u

+
|C(�)|2
|P|2|C0|2 |L|

2�d

]
d! (14)

(�d is the spectral density of the noise).
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Apparently, the minima of (13) and (14) are di7erent be-
cause the term due to d(·) in (14) depends on �.
In the following, we propose the use of an instrumental

variable method to counteract the e7ect of noise (Ljung,
1999).
Introduce the symbol

’̃L(t) = �(z)L(z)(M (z)−1 − 1)ỹ(t)

which denotes the regressors when the system is a7ected by
noise (compare with (3)). Letting �(t) be the instrumental
variable, the parameter is estimated according to equation

�̂
IV
N =

[
N∑
t=1

�(t)’̃L(t)
T

]−1 [ N∑
t=1

�(t)uL(t)

]
: (15)

4.1. Choice of the instrumental variables

We propose two di7erent choices for the instrumental var-

iables. The 4rst one guarantees that asymptotically �̂
IV
= �̂.

However, an additional experiment on the plant is required.

The second one does not guarantee that �̂
IV
= �̂ rigorously,

but the residual error is expected to be small. It does not
require an additional experiment on the plant.
The proposed choices are as follows:

• Repeated experiment. Perform a second experiment on
the plant using the same input {u(t)}t=1; :::;N and collect
the corresponding output sequence {ỹ(t)′}t=1; :::;N . Then,
construct the instrumental variables as:

�(t) = �(z)L(z)(M (z)−1 − 1)ỹ′(t): (16)

Notice that {ỹ(t)′}t=1; :::;N will be di7erent from
{ỹ(t)}t=1; :::;N since the two sequences are a7ected by two
di7erent realizations of the noise in the two experiments.
If we assume, as it is reasonable, that the noise signals
in the two experiments are uncorrelated, then, asymptot-
ically, (16) gives �̂, the same result as in the noiseless
case.

• Identi?cation of the plant. Identify a model P̂(z) of the
plant from the set of data {u(t); ỹ(t)}t=1; :::;N and generate
the simulated output ŷ(t) = P̂(z)u(t). Then construct the
instrumental variables as:

�(t) = �(z)L(z)(M (z)−1 − 1)ŷ(t): (17)

The identi4cation of the plant is a standard open-loop
identi4cation problem. The model P̂(z) can be estimated
using di7erent techniques amongwhich a high-order ARX
model (Ljung, 1999), or a high-order state space model
(Van Overschee & De Moor, 1994).
Due to possible inaccuracy of the estimated P̂(z), this sec-
ond method does not guarantee that the estimate asymp-
totically tends precisely to �̂.

The following remarks are in order.

• Using (16) is possible only if two independent experi-
ments characterized by the same input signal can be made
on the plant.

• When (17) is used, strictly speaking, we can no longer
claim that the method is fully direct since P̂(z) has to be
estimated. However, it is important to note that the esti-
mated plant is used with the only objective of generating
an instrumental variable signal and its actual expression
is not directly used to design the controller. This in par-
ticular implies that a high-order model can be used in
the identi4cation of P(z) without a7ecting the controller
complexity.

We conclude this section by summarizing the complete
VRFT algorithm in the case when choice (17) is made.

VRFT Algorithm

• Set L(z) = (1−M (z))M (z)W (z)U (z)−1, where U (z) is
such that |U (e j!)|2 = �u(!).

• Compute uL(t) as: uL(t) = L(z)u(t).
• Compute ’̃L(t) as: ’̃L(t) = �(z)L(z)(M (z)−1 − 1)ỹ(t).
• Identify a high-order model P̂(z) from {u(t)}t=1; :::;N to

{ỹ(t)}t=1; :::;N .
• Compute �(t) as: �(t) = �(z)L(z)(M (z)−1 − 1)P̂(z)u(t).
• Compute the parameter vector of the controller as �̂ IVN =[∑N

t=1 �(t)’̃L(t)
T
]−1∑N

t=1 �(t)uL(t):

4.2. Closed-loop noisy data

The VRFT method can be successfully applied to data
collected in closed-loop as well. An extended discussion
on the use of closed-loop data goes beyond the scope of
this paper. Here, it suPces to say that the above procedure
can still be used by replacing the identi4cation step of P̂(z)
with the identi4cation of the complementary sensitivity of
the closed-loop system. The reader is referred to Lecchini
(2001) for details and comments.

5. A simulation example

In order to better illustrate the main features of the VRFT
technique, a simulation example is now presented.
The plant we consider is the Nexible transmission system

proposed in Hjalmarsson, Gunnarson, and Gevers (1995)
as a benchmark for digital control design. Here, the un-
loaded case is considered. The Nexible transmission consists
of three horizontal pulleys connected by two elastic belts
(see Fig. 3a). The system input is the angular position of
the 4rst pulley; the system output is the angular position of
the third pulley. The control objective is to make the an-
gular position of the third pulley as close as possible, over
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Fig. 3. (a) Layout of the Nexible transmission; (b) Bode magnitude plots: the plant (thin line) and the reference-model (bold line).

a suitable bandwidth, to the angular position of the 4rst
one.
The input–output dynamic behavior of the plant can be

described by the following discrete-time linear transfer
function P(z):

P(z) = z−3B(z)=A(z);

A(z) = 1− 1:41833z−1 + 1:58939z−2 − 1:31608z−3

+ 0:88642z−4;

B(z) = 0:28261 + 0:50666z−1

which is the discrete-time model (using a sampling time
Ts = 0:05 s) of the system described in Hjalmarsson et al.
(1995). The control objective is expressed by

M (z) =
z−3(1−  )2

(1−  z−1)2
;  = e−Ts O!; O!= 10;

where O! is the desired bandwidth. The magnitude Bode plots
of P(z) andM (z) are shown in Fig. 3b. The weighting factor
is W (z) = 1 and the class of controllers is

C(z; �) =
#0 + #1z−1 + #2z−2 + #3z−3 + #4z−4 + #5z−5

1− z−1
:

Note that, being P(z) nonminimum-phase, a perfect model
matching would lead to an unstable closed-loop. In order to
compute �̂N via the VRFT method, a set of data have been
obtained by feeding P(z) in open loop with N=512 samples
of a zero-mean Gaussian white noise (�u(!) = 0:01). In
the following, we will present three di7erent VRFT design
cases. The 4rst two cases aim to illustrate the e7ect of a
bad=good shaping of the 4lter L(z). Speci4cally, in Case 1
the trivial 4lter L(z) = 1 is used, whereas in Case 2 L(z) is

designed as proposed in Section 2. The third design case is
instead characterized by the presence of noise.

Case 1: L(z) = 1—no noise.

The estimated parameter vector is �̂
1
N = [0:14724

−0:25016 0:29166 − 0:25678 0:18587 − 0:03717]T. We

obtain JMR(�̂
1
N ) = 0:232. The magnitude Bode plot and

the step response of the corresponding closed-loop transfer
function are shown in Fig. 4. Apparently, the control system
has a behavior which remarkably di7ers from that of M (z).

Case 2: L(z) = (1−M (z))M (z)—no noise.

The estimated parameter vector is �̂
2
N = [0:32905

−0:59771 0:70728− 0:64010 0:46499− 0:11763]T. In this
case we obtain JMR(�̂

2
N )=0:0343. The magnitude Bode plot

and the step response of the achieved closed-loop transfer
function are shown in Fig. 5. Note that the so-obtained con-
trol system tracks almost perfectly the behavior of the refer-
ence model. It is interesting to compare the performance of

the controller C(z; �̂
2
N ) obtained via VRFT with the optimal

controller C(z; O�), for which O�=[0:33324−0:60964 0:72401
−0:66020 0:48204 − 0:12508]T, JMR( O�) = 0:0340. Since

JMR(�̂
2
N ) = 0:0343, the sub-optimality of C(z; �̂

2
N ) is

negligible.
Case 3: L(z) = (1−M (z))M (z)—noisy data.
In this case, the output signal has been corrupted by a

zero mean white disturbance such that the signal-to-noise
ratio is SNR = 10. (SNR is the ratio between the vari-
ance of y(t) = P(z)u(t) and the variance of the noise
signal). The 4lter L(z) has been chosen as in Case 2.

The controller parameter vector �̂
3
N = [0:07069 − 0:03865

−0:00191 0:00767 0:02166 − 0:0077]T is estimated with-
out paying attention to the presence of noise. The step
response of the achieved control system is shown in
Fig. 6a. Notice the degradation of the performance with re-
spect to the noise-free case (Case 2). The inNuence of noise
can be counteracted via the use of instrumental variables
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Fig. 4. (a) Magnitude Bode plots: the control system with �̂
1
N (thin line) and the reference-model (bold line); (b) Step responses: the control system
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Fig. 5. (a) Magnitude Bode plots: the control system with �̂
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with �̂
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Fig. 6. Step responses: (a) the control system with �̂
3
N (thin line) and the reference-model (bold line); (b) the control system with �̂

4
N (thin line) and

the reference-model (bold line).

as explained in Section 4. The parameter vector obtained
through (15) with choice (17) (where P̂(z) is a fourth-
order ARX model) is �̂

4
N = [0:28381 − 0:43055 0:39188

− 0:28544 0:23083 − 0:04599]T. The step response of the
so-designed control system is shown in Fig. 6b.

Note that, in the example, the unstable zero of the plant
gives no problems since it is located in the high-frequency
region, well beyond the closed-loop bandwidth, and there-
fore does not tend to be canceled by the controller. Should
this be not the case, stability problems could have arisen. In
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general situations, testing the controller for stability is nec-
essary before implementing it.

6. Conclusions

In this work, a design technique called Virtual Reference
Feedback Tuning has been presented. VRFT has many at-
tractive features, which can be summarized as follows:

• it allows the direct global minimization of standard
model-reference performance indices using I=O measure-
ments;

• it can be used to tune controllers with a prescribed struc-
ture (e.g. PID);

• it does not require a parameter initialization;
• it does not require iterations.

The main application realm of VRFT is represented by
applications where a quick (low-cost) controller design has
to be performed. However, it can be also regarded as a
powerful and e7ective initialization tool for gradient-based
iterative algorithms (like IFT) designed for the “4ne-tuning”
of controllers.

Appendix

Proof of Proposition 1. Since JMR(�) = J+MR([�
T 0]T) re-

sult (11) is trivially true. As for (12) we start by calculating
the Taylor expansion of J+MR(�

+) around O�
+
. After some

cumbersome calculations we obtain

[J+MR(�
+)]� += O� + = 0;[

d
d� +

J+MR(�
+)

]
� += O� +

= 0;

[
d2

d� +2
J+MR(�

+)
]
� += O� +

=
1
2�

∫ �

−�

2|P|2|W |2
|1 + PC0|4 �

+�+T d!:

The second-order expansion is then given by

OJ
+
MR(�

+)

= (� + − O�
+
)T

[
1
2�

∫ �

−�

|P|2|W |2
|1 + PC0|4 �

+�+T d!
]

(� + − O�
+
)

=
1
2�

∫ �

−�
|P|2|C+(� +)− C0|2 |W |2

|1 + PC0|4 : (A.1)

Consider now the cost function JVR(�).

If the 4lter L(z) is chosen as in (10) then JVR(�) is given
by

JVR(�) =
1
2�

∫ �

−�
|P|2|C(�)− C0|2 |W |2

|1 + PC0|4 d!: (A.2)

By comparing (A.1) and (A.2), we then note that if the 4lter
L(z) is chosen as in (10), then OJ

+
MR([�

T 0]T)=JVR(�), from
which result (12) follows.
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