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Abstract
This report discusses problems and methodologies that lie in the broad scope of systems and signals, with special focus on modeling,

identification and signal processing; adaptation and learning; discrete event and hybrid systems; and stochastic systems. A common theme

underlying all these areas is that problems in control systems and signals are usually defined and best studied in the framework of stochastic

approaches. Although there are common precepts among all these technologies, there are also many unique topics within each area. Therefore, the

current key problems in each technology are explained, followed by a discussion of recent major accomplishments with trends, and finally some

forecasts of likely developments are provided. The conclusion summarizes some general forecasts for the overall field of systems and signals.

# 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There are many diverse methodologies that concern systems

and signals. This Milestone Report addresses the current status

and likely future developments for the following theoretical

control techniques and methodologies:

� modeling, identification and signal processing;
*
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do
� a
daptation and learning;
� d
iscrete event and hybrid systems;
� s
tochastic systems.

There are also many common challenges that all of these

control methodologies face, but each with its own unique

perspective, e.g., need for improved performance, need for better

models, better methods for handling uncertainty, complexity,

stability, boundedness, reduction of restrictive assumptions
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within design methodologies, more applicability to non-linear

systems, overcoming random disturbances, improved verifica-

tion, etc., and certainly the challenge of applying the techniques

to real-world applications such as networked systems. However,

in order to more clearly address the uniqueness of each of these

methodologies, we will discuss the problems, accomplishments

and forecasts of each individually in this report.

This paper is organized as follows. In Section 2, we discuss

the present status, key problems, recent accomplishment and

forecasts within modeling, identification and signal processing.

Sections 3–5 are devoted to similar exposition of problems and

methodologies in the areas of adaptation and learning, discrete

event and hybrid systems, and stochastic systems, respectively.

Finally, we conclude the paper in Section 6 with a summary of

general forecasts for the overall area of systems and signals.

2. Modeling, identification and signal processing

The objective of modeling and identification technology is

to develop efficient techniques which can be used to construct

mailto:katayama@amp.i.kyoto-u.ac.jp
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Fig. 1. A system with input u, output y and unmeasured disturbance v.
dynamic models based on physical insight and experimental

data. The use of a plant model is crucial for model based control

techniques, synthesis of servomechanisms and design of

predictive control algorithms, and absolutely every simulation

is based on a model of the event or process under consideration.

Thus, it is virtually impossible to consider the field of

automation and control without including the discipline of

modeling. In signal processing, dynamic models are essential in

time series analysis, adaptive filtering and fault/change

detection, etc. Dynamic models and identification techniques

are also critical in many other scientific areas such as

econometrics and environmental engineering.

A model of a physical system for developing control

solutions should include two main parts: a description of the

dynamics from inputs to outputs and a description of the

disturbances acting on the system. Fig. 1 shows a standard

configuration for open-loop identification, where no feedback

exists from y to u. The basic identification problem is to

construct a dynamic model of the system based on measured

input–output data ðu; yÞ. The identification process is satisfac-

torily solved when the measured data are used to formulate a

dynamic model that, when subjected to an input, produces

output that ‘‘matches’’ the output of the system when excited by

the same input. Most existing control systems are, however,

operated in a closed-loop configuration as shown in Fig. 2; in

this case we can employ measured input–output data ðu; yÞ
together with the reference input r for identifying the plant

model. In some cases, the external input can also be measured;

this additional information can then also play an important role

in successful identification.

2.1. Current key problems

Modeling, identification and signal processing faces many

interesting problems; among others, the following are some of

the current key problems.

Disturbances in control applications are predominantly

described by finite order rational spectral models; yet this type

of model is not totally compatible with several other formats
Fig. 2. A block diagram of closed-loop system with plant input u, output y and

reference input r.
used to model stochastic systems. Therefore, the unification of

several methods for approximation of stochastic systems with

rational spectral disturbance models is an important open

problem.

Since an accurate dynamic model is essential for the design

of most controllers, identification should always be seen as an

integral part of control design. Therefore, interplay between

identification and the designed controller should be utilized

when optimizing the design process; see Hjalmarsson (2005).

Continued development of methods and analysis tools for

control-oriented modeling is therefore another key problem

within modeling and identification.

Development of computational Bayesian approaches for

both estimation and quantification of modeling errors has

emerged only quite recently. Techniques such as Markov Chain

Monte Carlo methods have, for example, the ability to provide

accurate probabilistic error descriptions for finite length

identification data.

The success of many control applications when using linear

controllers relies on the fact that the process being controlled

behaves like a linear system around an appropriate working

point. Clearly this is a limited approach; therefore, identifica-

tion of non-linear systems using non-linear model structures

has been the subject of many studies during recent decades.

Nevertheless, this is still a significant challenge for modeling

and identification. Since estimation of general non-linear

structures from input–output data is quite difficult, we often

consider simple combinations of linear dynamics G and a static

non-linearity f as shown in Fig. 3. The non-linear models can be

used in several ways; examples are detecting the existence of

non-linearities or providing non-linear models for use in

subsequent non-linear control designs. We have also seen

development of approximation of non-linear systems using

techniques from machine learning. Examples are neural

networks, radial basis functions, support vector machines

and reproducing kernel Hilbert spaces, e.g., Perez-Cruz and

Bousquet (2004).

2.2. Recent major accomplishments, trends

In the past, a large number of theoretical as well as

application papers have been published in the area of modeling,

identification and signal processing. The following are major

accomplishments in recent years:

(a) Estimation of a rational spectral model from measured data is
Fig
a classical problem where the maximum-likelihood solution

in general leads to minimization of a possibly non-convex

criterion. Hence, non-iterative computational techniques are

of practical interest. Recently two different techniques have

emerged which provide promising alternative solutions to the
. 3. Non-linear models: (a) Hammerstein model and (b) Wiener model.



T. Katayama et al. / Annual Reviews in Control 30 (2006) 5–17 7
problem. The first uses sample covariance matrices estimated

from data and then finds a valid stochastic model which

extends the sample covariance sequences; see Byrnes, Gusev,

and Lindquist (1999). A second approach presented by Mari,

Stoica, and McKelvey (2000) finds a valid stochastic model

which approximates the given sequence of sample covar-

iances.
(b) U
se of computational Bayesian approaches for estimation

and a posteriori quantification of model errors has proved to

be accurate and useful for our domain of problems; see

Spall (2003) and Doucet and Wang (2005). The Bayesian

technique forms a statistically sound basis where the a priori

knowledge and the data together provides the a posteriori

estimate of the system.
(c) U
tilizing subspace methods for data collected under

feedback is now much better understood, and recently

several new techniques have been presented by Katayama,

Kawauchi, and Picci (2005), Qin, Lina, and Ljung (2005)

and Chiuso and Picci (2005). In Bauer (2005) a uniform

analysis of the asymptotic properties of subspace methods

is presented. Using discrete Fourier transformed data in

subspace methods has provided good results for determi-

nistic systems. Recently, also algorithms for stochastic and

combined system are emerging, e.g., Akcay and Türkay

(2004).
(d) P
lant friendly identification is a name for techniques aimed

at resolving the inherent conflict between theoretical results

on how to best achieve high quality models and the

requirements of the plant operation from a production point

of view. This topic is very relevant for industry, and we have

seen some developments of both theory and methods which

also encompasses relevant input constraints, e.g., Jansson

and Hjalmarsson (2005) and Kammer, Gorinevsky, and

Dumont (2003).
(e) F
or control design it is vital to assess the frequency domain

errors induced by the noise. In Ninness and Hjalmarsson

(2004) exact variance expressions are derived for the case of

a general finite order Box-Jenkins model.
(f) M
odeling of non-linear dynamic systems has always

attracted significant attention since many phenomena have

significant non-linear contributions. Currently the primary

interests can be divided into three approaches: (1)

approximation of Volterra series models, e.g., Nemeth,

Kollar, and Schoukens (2002), (2) estimation of Hammer-

stein and Wiener systems, e.g., Goethals, Pelckmans,

Suykens, and De Moor (2005), and (3) non-linear

regression based models, e.g., Roll, Nazin, and Ljung

(2005).
The Volterra approach has the advantage of a close

connection with linear analysis and provides a good structure

to analyze and quantify small to moderate non-linear

contributions. The second estimation technique involves a

mixture of linear model identification and static non-linear

function approximation. Non-linear regression approach is

closely related to machine learning and several methodologies

have been adapted to the time series setting. Key current
methodologies are support vector machines, neural networks,

reproducing kernel Hilbert spaces, etc. Most often linear time-

invariant models are identified although the system is non-

linear and time-varying. Analysis of this setting has appeared

in, e.g., Ljung (2001), Schoukens, Pintelon, Dobrowiecki, and

Rolain (2005) and Mäkilä and Partington (2004).

2.3. Forecast

Although modeling and identification have been useful tools

during all of the ‘‘modern control’’ era, there are still significant

challenges to be addressed as control technology advances and

complexity of applications increase. This discipline will

continue to advance, and several developments can be expected

within the coming years:

(a) In the future, we expect powerful new linear system
identification tools such that large scale systems can

efficiently be modeled. Here ‘‘large scale’’ refers to model

orders of 50–1000 states and inputs and outputs in the order

of 10–100.
(b) I
n many cases, a well posed system identification problem

leads to minimization of a possibly non-convex criterion

function. However, we expect new global search strategies

which incorporate problem domain knowledge to thereby

improve performance and reduce computational require-

ments; such developments should come within the next few

years. Examples of such developments are interval analysis

and grid based methods combined with branch and bound

techniques.
(c) M
any alternative modeling techniques will develop in the

future as a result of on-going decreases in the price for data

storage. The ability to store large quantities of operational

data opens up many new alternative possibilities for

modeling. A database where all operational records are

stored could then form the basis of the model. When a

particular feature is requested of the model, it can be

estimated on-line by querying the database for relevant

data. Several interesting problems will arise such as how the

operational data will be organized and how queries to the

database should be constructed. It will also be important to

find methods, i.e., data mining techniques, which auto-

matically evaluate the information content in data. Today

latent variable methods like principal component analysis

(PCA) and partial least squares (PLS) are used to project

data to a lower dimensional subspace where analysis and

control can be applied.
(d) T
he use of randomization methods for solving estimation

and filtering problems is expected to increase significantly

in the future. These methods will also provide the ability to

accurately predict performance of estimated models.
(e) A
lmost all identification methods use optimization tech-

niques to calculate the parameter estimates. In some

applications, the model class should be constrained due to

physical reasons. The use of semi-definite programming

techniques will help solve many such problems.
(f) I
t is apparent that as advances are made within computer

and signal processing technologies, many tasks which
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Fig. 4. A configuration of adaptive control system.

Fig. 6. A block diagram for adaptive control.
require manual processing will be automated so that

intervention by an operator will be reduced, or even

eliminated. There are several efforts underway within

modeling and identification that are aimed towards

development of ‘‘automatic’’ identification methods, and

we should see continued progress in this direction in the

future.
3. Adaptation and learning

Adaptation and learning methodologies are especially useful

to attain high performance of control systems which operate in

uncertain situations. These control methods are intended to

deliver proper system operation in spite of unknown – or

unpredicted – circumstances, in unforeseen environments or

even in situations where unexpected change may occur within

the plant being controlled. In past decades, adaptation and

learning approaches have been developed from various

theoretical and application points of view. Although it seems

that the number of theoretical papers presented in recent IEEE

conferences, and various IFAC meetings is shrinking, the

number of application papers is increasing; thus, practical

applications are obviously spreading into various areas of

industry. Actually much more papers on adaptation and

learning appear in application sessions.

As shown in Fig. 4, adaptive control systems have two

feedback loops: one is the adaptation loop for updating

controller parameters and the other is the feedback control loop.

The global stability can be attained by both the stability of the

adaptation algorithm and the boundedness of internal states of

the feedback control system; thus, the stability assurance is an

important issue of adaptive control for long time.

As shown in Figs. 5 and 6, the adaptive structures adopted in

adaptive signal processing and adaptive control are different, in

which the connection of unknown system and adaptive system

is reversed. Stabilization of the structure in Fig. 5 is easily
Fig. 5. A block diagram for adaptive filtering.
attained, so actually adaptive filtering and equalization is

effectively adopted in signal and communication areas.

3.1. Current key problems

Although adaptive and learning control techniques have

been under development for many years, there are still

significant challenges being addressed by both researchers and

practitioners. Current key problems and trends are summarized

as follows.

Adaptive control schemes with assurance of stability and

boundedness of internal states are limited to only certain classes

of control systems. This is an interesting situation in which

there are demonstrated successful practical applications for

which there are no theoretical ‘‘proofs’’ that such problems will

in fact be stable. Some researchers have suggested that this may

be part of the reason that theoretical interest may be declining;

these techniques may simply apply to more diverse applications

than can be fully supported by theory. Clearly additional

theoretical research is needed to expand the classes for which

stability can be proven; thus, relaxation of the necessary

conditions and extension to even more general classes are still

to be investigated. These investigations are, for instance, (a)

achieving robustness in the presence of unmodeled dynamics

and unknown disturbances together with assurance of global or

local stability, (b) eliminating the necessity of prior information

on the relative degree of controlled systems, or establishing

robust adaptive control algorithms for systems with uncertain

relative degree, (c) extending applicability of globally stable

adaptive control schemes limited to linear systems with a stable

numerator or non-linear systems with stable zero dynamics, (d)

giving stability-assured adaptive control schemes for time-

varying systems, (e) developing adaptation approaches to

control of systems with uncertainly changeable delay time, etc.

Adaptive control methods for non-linear systems are still

major research themes since almost all systems include some

non-linearities. The following issues are currently discussed for

non-linear adaptive control:

(a) Stable adaptive control for canonical forms of non-linear
systems is developed based on new stability analysis.
(b) E
xtension of linear parametrization to non-linear parame-

trization is an important issue, in which unknown

parameters appear non-linearly in input/output or in states.
(c) F
or a wide class of non-linear control systems, it seems

difficult to give general adaptive control algorithms in

analytic form and implement them in a feasible manner
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even if they can be given. Some simplified approaches are

made by adopting multiple models of fixed or adaptive

controllers or by switching multiple controllers. Stability

analysis is also made for the multiple model approaches.
(d) N
eural network based adaptive control algorithms are also

theoretically investigated from stability points of view as

well as practical applications.
Several adaptive algorithms have been proposed, for instance,

extended error method based on the certainty equivalence (CE)

principle, high-order tuning method based on the dynamic

equivalence principle, and the backstepping method. It is

important to attain fast adaptation and suppressed transient error,

and then an evaluation method of the transient error bound is

needed to decide design parameters for the adaptive algorithm.

Furthermore, adaptive control schemes should give suitable

guidelines for design of adaptive control systems to attain

desirable transient behavior and optimal performance.

One of the major themes in the area of adaptation and

learning is iterative learning control or repetitive control. With

the help of least prior knowledge on a controlled system, the

controller can be iteratively updated so that the system output

can track a periodic or repetitive reference signal. Convergence

analysis is investigated and its applicability is now extended to

non-linear controlled systems. The iterative learning control

algorithms have advantages of simplicity in implementation for

uncertain non-linear systems.

As alternative non-model based control approach, data

based control system design methods are much efficient, which

is referred to as lazy-learning control, local model based

control, just-in-time control or query based control. The

approaches are also applied to system identification and output

prediction for non-linear systems. The more the database is

increasingly obtained, the better control performance can be

attained, compared to neural network controllers.

On of the most significant efforts underway in adaptive and

learning field is extension and expansion of applications to an

even wider variety of practical systems: mechanical systems,

mechatronics, robotics, automobile, intelligent traffic systems,

aerospace, nanotechnology, manufacturing, smart structures,

chemical processes, iron and steel processes, environmental

control systems, wireless communications, signal and image

processing, network control, etc. Part of the challenge is for

engineers and scientists to continue to develop additional

practical applications even into situations where a strong

theoretical justification may not exist.

3.2. Recent major accomplishments and trends

Adaptive and learning techniques have made dramatic

progress in the last few decades, and practical applications are

now being developed in many fields. Current research is

especially focused on applying the methodologies to even more

practical solutions. However, two major theoretical accom-

plishments are apparent:

� Relaxation of necessary assumptions so that wide class of
systems can be adaptively controlled.
� Q
uality design and implementation of adaptation and

learning algorithms.
3.2.1. Extension of the classes of controlled systems and

relaxation of necessary assumptions

A variety of robust adaptive control schemes have been

developed to assure global stability of the controlled system

even in the presence of unmodeled dynamics and disturbances.

The normalization or normalizing signal is needed in the error

dynamics to assure the boundedness, and its mechanism is also

clarified. However, the role of the normalizing signals is not yet

clarified in a case with dynamic error systems.

Prior knowledge on the relative degree of a controlled

process is assumed in almost all adaptive design schemes. This

is because the most theoretical results on stability are based on

passivity. However, exact relative degree is usually unknown in

actual control processes. A new backstepping based adaptive

algorithm has been derived to attain robustness on the relative

degree; e.g., see Miyasato (2000). The ‘‘immersion and

invariance approach’’ in Astolfi and Ortega (2003) gives a

new adaptation algorithm based on a new tool of stability

analysis and it is also shown to be robust to uncertainty in the

relative degree. The relative degree is a very restrictive

condition in stable adaptive controller design, so it is still an

open problem.

Non-minimum phase systems or stable zero dynamics is a

necessary assumption to obtain stable control performance for

the model reference adaptive control systems (MRACS). In

order to relax these assumptions, alternative adaptive control

schemes have been formulated and solved, such as adaptive

pole assignment control, model predictive control and others.

An effective backstepping approach has been developed to

attain adaptation performance of a class of non-linear systems.

It can be extended to a certain case with unknown disturbances

based on the internal model principle. Local and global

conditions on stability are discussed on a wider class of non-

linear control systems. These theoretical approaches also have

an impact on stable design of neural network (NN) based

adaptive control systems.

Conventional adaptation and learning control schemes

assume that the unknown parameters are time-invariant and

appear in a linear parametrization form. Several recent methods

address alternative cases. When the system parameters appear

in a convex or concave with respect to them, a new efficient

adaptive adjustment law in Cao and Annaswamy (2003) has

been given to assure global stability of the obtained system.

Alternatively, by expressing an upper bound of non-linear

function of parameters and states as a product of parameters and

non-linear state functions, a very simple adaptation law is also

derived. The immersion and invariance approach is also

effective to cope with non-linear parametrization.

3.2.2. Quality design and implementation of adaptation

and learning algorithms

In order to improve transient behavior of adaptive control

systems, some approaches for evaluation of an upper bound of

the output error have been proposed, and it has clarified the
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dynamic relations between the output error and the design

parameters of the control systems, which will give help to

achievement of adaptation with optimal transient behavior.

Adaptation also plays a very important role as adaptive filtering

in signal processing and wireless communication. In the

adaptive signal processing area, a new tool for more precisely

evaluating the transient behavior of adaptive filters, referred to

as a learning curve, has been developed in Yousef and Sayed

(2001).

Ordinary adaptive control schemes are limited to model

reference adaptive control system, self-tuning regulator (STR)

and self-tuning controller (STC). Recently adaptive extremum

seeking control problems are formulated for minimization of a

non-linear performance index including unknown design

parameters subject to an uncertain non-linear dynamic system;

e.g., see Krstic and Wang (2000) and Rotea (2000). Several

approaches have been made, such as a perturbation approach,

passivity based approach, Lyapunov based approach and

sliding-mode based scheme. The scope of adaptive control is

therefore now extended to adaptive optimization.

Combination of adaptation and learning approaches with

iterative learning control (ILC), iterative feedback tuning (IFT),

iterative procedure of identification and controller design has

been studied. Since these approaches adapt to actual control

system design, many works have been done on the topic. The ILC

has seen major developments in the transfer of design algorithms

using various methods to both engineering and non-engineering

applications together with the emergence of the basis for a robust

control theory. As for IFT, theoretical results have been obtained

on model-free tuning of controllers in an iterative experimenta-

tion and controller recalculation process, using direct evaluation

of input–output data to obtain the empirical gradients of the

controller cost function. The result were demonstrated in a few

industrial applications as well as on laboratory hardware. This

controller tuning method is likely to spread in industrial

applications because of its direct experimental approach that

conservative industry is more willing to accept. Also, preliminary

investigations show a possibility of tuning for robustness without

explicit plant modeling.

An alternative non-model based approach to uncertain non-

linear systems is query based adaptive control which is also

referred to as lazy-learning control, just-in-time control. The

approach needs a large database for learning prior to control,

but its concept and algorithm are very simple and will be one of

powerful learning control schemes to uncertain non-linear

systems. However, its theoretical investigation has not been

developed yet and should be done as a future issue.

Dual control is an old, but still open problem. The overall

performance is given by compromise between fast identifica-

tion and control quality. Recently promising results have been

obtained for laying down the fundamentals of worst-case dual

control, on finite time tuning schemes and the development of

stochastic predictive dual control that has combined features of

caution, probing and constraint handling simultaneously; see

Veres (1999). A bicriterion approach was developed by using a

learning weight to define a compromise between the immediate

control effect and the learning effect of the controller.
Adaptation and learning approaches for robust control

design have also been studied. Many results are reported on

identification of unmodeled dynamics by using a finite number

of input–output data from various points of view, such as the

stochastic learning approach. Adaptive control approaches are

now linked with robust control schemes, such as gain scheduled

control, sliding mode control and others. The number of papers

and case study reports and industrial applications of adaptation

and learning approaches is increasing. The effectiveness of

adaptation and learning approaches when applied to robust

control is now being more widely recognized. However, a

universal design guideline is not clarified yet; it is only

considered on a case-by-case basis.

3.3. Forecast

Although adaptation and learning are fairly mature

technologies within the control field, continued development

is expected. Theoretical developments may not be as active as

in past decades, but practical applications of these technologies

will no doubt experience the most growth.

Adaptation and learning approaches to non-linear systems

are still very important issues and will be further developed.

New adaptive algorithms with guaranteed stability and novel

control schemes will be further developed. Experiment based

iterative approaches and dual control to handle transients are

likely to be developed further. Query based control may go

through some growth in control of a wide class of non-linear

systems. Neural network based control will receive an ever

more advanced theoretical investigation from researchers from

stability point of view. Also, more techniques are expected to

appear to integrate neuro-fuzzy techniques with traditional

structured model and logic based approaches.

Many case studies have been reported, but actual industrial

applications are not yet as common as they will likely become.

However, since the effectiveness of adaptive approaches is clear

compared to robust control schemes, the applications will no

doubt spread in various areas along with developments of

design guidelines for adaptation and efficient combination of

other control approaches, such as the linear-quadratic-Gaussian

(LQG) control, H1 robust control, gain scheduled control,

sliding mode control and others. Application area will spread in

future, for instance, adaptive control of large scale systems,

decentralized adaptive control, adaptive control of large

communication network with variable delay times, as well

as adaptive control of micro- or nano-scale systems.

4. Discrete event and hybrid systems

Fig. 7 contrasts the typical behavior of time-driven and

event-driven systems, in which the dynamics of the time-driven

system are governed by a differential (difference) equation,

whereas those of the event-driven system (with four states in the

example shown) are controlled by signals or triggers due to

occurrences of various events. This type of dynamic behavior is

important as it typifies most modern technological systems,

such as those encountered in manufacturing, computer
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Fig. 7. Time-driven and event-driven systems.
networking, transportation, command-control and, more gen-

erally, settings that involve the use of computers for control

purposes.

4.1. Current key problems

The most broad based general problem is that of integrating

the theories of discrete event systems (DES) [see Cassandras &

Lafortune, 1999] and hybrid systems (HS) [see Antsaklis, 2000,

and selected chapters in Levine & Hristu, 2005] that would

result in a comprehensive unifying system and control theory

incorporating both time-driven and event-driven dynamics.

Efforts along these lines are impeded by the fact that few

researchers have complete command of both the DES

framework and the classical time-driven theory, which have

traditionally evolved somewhat independently.

In DES, two major current problems are those of

decentralized supervisory control, e.g., Rudie and Wonham

(1992) and Sic and Lafortune (2005), and control with

imperfect information, e.g., Park and Lim (2000). In the latter

case, research has been directed along the lines of studying

uncertainty in the sense of robustness (i.e., studying the effect

of perturbations in model parameters), as well as using

stochastic models and methods.

Another problem of interest to DES is that of controlling

concurrency, i.e., two DES or two components of the same DES

that involve concurrent events, e.g., Takai and Ushio (2003).

A key challenge in developing workable solutions to

problems in DES is that of computational complexity, e.g.,

Rudie and Willems (1995) and Sampath, Sengupta, Lafortune,

Sinnamohideen, and Teneketzis (2004). This is an unavoidable

byproduct of the presence of discrete components in a DES

modeling setting, and one that is naturally inherited by HS as

well. This gives rise to the problem of abstraction: can a DES be

found that preserves certain desirable properties of a HS, e.g.,

Alur, Henzinger, Lafferriere, and Pappas (2000) and Silva and

Krogh (2000)? If so, problems related to the HS can be analyzed

through a simpler DES model. Interestingly, the converse
problem is also of great interest: can a simple HS be identified

that preserves certain desirable properties of a complex DES? A

noteworthy example is the Internet, which, being a commu-

nication network, is a typical DES. Because of its complexity, it

is desirable to abstract it into a simpler model which is hybrid in

nature, i.e., it is characterized by time-driven dynamics with

interspersed discrete events, e.g., Cassandras, Wardi, Melamed,

Sun, and Panayiotou (2002).

A related problem of great importance to both DES and HS

is that of controller verification: given a particular specification

and a controller designed to satisfy it, what are formal methods

through which one can verify that this is indeed the case, e.g.,

Alur, Henzinger, and Ho (1996), Silva and Krogh (2000) and

Tomlin, Mitchell, Bayen, and Oishi (2003)?

In developing a theory for HS that parallels that of classical

time-driven systems, one faces the usual problems of traditional

system and control theory: observability, controllability,

stability, identification and optimal control.

A fundamental problem in both DES and HS is that of

process synchronization. These systems commonly involve

multiple asynchronous interacting processes. Imposing a

synchronizing mechanism is difficult and occasionally ill-

advised. Developing distributed control mechanisms is highly

desirable, but generates instabilities that can be overcome either

through explicit synchronization schemes (often inefficient) or

through new mechanisms with inherent stabilizing properties.

A related problem is that of converting sampling and control

mechanisms from time-driven to event-driven. Not only is this a

theoretically challenging issue that parallels the contrast

between Riemann (time-driven) and Lebesgue (event-driven)

integration (Åström & Bernhardsson, 2002), but the benefits of

event-driven schemes in emerging wireless power-limited

systems are potentially enormous.

4.2. Recent accomplishments, trends

A problem coming under the heading of a ‘‘DES with

imperfect information’’ is that of fault diagnosis. In simple

terms, when an undesirable state is entered in a DES (a ‘‘fault’’

occurs), the issue is to identify the sequence of events that led to

a transition to this state and hence the cause of the fault. This

problem has attracted a lot of attention from the DES

community and significant progress has been made in the

form of explicit models for representing processes with faults

captured as ‘‘events’’ and supervisory control techniques for

diagnosing the source of such faults, e.g., Lafortune,

Teneketzis, Sampath, Sengupta, and Sinnamohideen (2001),

Sampath, Sengupta, Lafortune, Sinnamohideen, and Teneketzis

(1996) and Jiang, Huang, Chandra, and Kumar (2001).

Significant progress has also been made in the effort to

develop unified modeling frameworks for integrating the

theories of DES and HS. Specifically, extending the classical

setting of state automata used in DES, hybrid automata have

gained popularity in dealing with HS, e.g., Johansson, Lygeros,

Zhang, and Sastry (2000). However, there are still many

alternative models proposed and the final word on which of

those will ultimately gain universal recognition has not yet been
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written. A recent workshop [June 23–26, 2003, Veldhoven, The

Netherlands] on ‘‘Modeling and Control of Hybrid Systems’’ is

a good reflection of the state of the art.

Perhaps the simplest class of HS is that of linear switched

systems. Such systems have been the focus of research work

originating both from the classical control theory community

which views them as standard linear systems with occasional

changes in the model parameters, as well as from the DES

community which views them as hybrid automata.

A recent trend in the analysis of HS is an effort to design

continuous signal to finite symbol mappings. This leads to

symbolic descriptions and methods for system control,

including coding in finite-bandwidth control applications and

applying formal language theory to the continuous system

domain. An upcoming special issue of the IEEE Transactions in

Automatic Control will be dedicated to this topic.

Clearly, a major driving force behind recent developments in

DES and HS is the complexity of these systems. Therefore,

ongoing work has been geared towards understanding

complexity and overcoming it through a variety of novel

(and sometimes not-so-novel) approaches. Related to this

development is a trend towards using quantization in control.

Another related development is the use of receding horizon

concepts dealing with optimal control problems in DES and

HS.

Despite all these developments, practical tools for designing

and analyzing DES and HS are still lacking. Several efforts

along these lines are ongoing both in academic environments

and industrial organizations, including the development of new

simulation tools for HS.

DES and HS are at the center of a trend towards what is now

referred to as the convergence of communications, computing

and control. The study of networked control systems is an

emerging area expected to thrive over the next few years. An

upcoming special issue of the IEEE Transactions in Automatic

Control is dedicated to this topic.

4.3. Forecast

The field of DES has reached a level of considerable

maturity in terms of modeling frameworks. In contrast,

researchers in HS are continuing to experiment with different

models and one can expect that this process will continue for a

few more years. Models that efficiently unify HS and DES will

eventually emerge.

As increasingly more complex systems continue to be

designed, the problem of fault diagnosis is likely to remain at

the forefront of DES research. The use of state automata and

supervisory control techniques with partial information will

continue to be one of the most attractive approaches to fault

diagnosis.

The need for software tools to analyze DES and HS, perform

controller synthesis and verification, and evaluate the perfor-

mance of such systems will drive significant growth in this area.

Both industrial and academic communities have already

invested a considerable amount of effort in this direction.

Recently, for instance, the popular Simulink# time-driven
simulation software environment was enhanced by SimEvents,

an event-driven simulator, thus providing a new general-

purpose commercial product for hybrid system simulation. The

next few years are likely to see a number of competing tools and

a process of ‘‘natural selection’’ among them.

In the HS domain, switched linear systems have attracted a

lot of attention, largely because they allow many of the standard

results in linear systems to be extended and adapted to switched

control with relatively little effort. However, such activity

provides little innovation and it is likely that this trend will

rapidly bring about natural saturation. A more promising

growth area is that of symbolic descriptions and methods for

control, and one can expect it to generate much more interest

over the next few years.

The issue of system ‘‘complexity’’, as a concept that

demands deeper understanding and extensive intellectual

exploration, is likely to dominate the theoretical agenda of

many research groups in the DES and HS fields. This will also

naturally bring closer control theory and computer science.

Emerging technologies are inevitably the drivers for many of

the activities in the DES and HS fields. Whereas manufacturing

was one of the prevalent application areas in the 1980s and

1990s, communication networks and computer systems now

provide a much broader and rapidly evolving playground for

DES and HS researchers. Embedded systems and sensor

networks are the latest developments that will foster the long

anticipated convergence of communications, computing and

control.

5. Stochastic systems

Stochastic systems represent a flexible modeling tool for

describing dynamic behaviors in presence of uncertainty and

are successfully used in many estimation, identification and

control problems.

Stochasticity is not only a tool for modeling reality,

however. It is also a desirable ingredient that is artificially

introduced in many problem set-ups to improve solvability.

This is, e.g., the case of randomized methods in optimization,

robust control and blind deconvolution, to cite but a few

examples. Thus, stochastic system theory delivers valuable and

successful methodologies for modeling real systems and

processes as well as for finding solutions in many different

engineering endeavors.

5.1. Current key problems

The field of stochastic systems presents many challenging

problems; without any attempt of completeness, the following

are some of the key problems today:

Modeling and control of complex stochastic systems:

Complex stochastic systems include large, hybrid, event-

driven and discrete event systems; see Cassandras, Pepyne,

and Wardi (2001), Bemporad and Di Cairano (2005) and

Cassandras and Lafortune (1999). Complex systems deliver

challenging problems both in system identification and in

control that go well beyond traditional difficulties and
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involve converging aspects in communication, control and

computation.

Goal-oriented system identification: When performing

identification, the final use of the model has to be kept in

mind and the model quality has to be judged in relation to the

intended use of the model. In particular, designing

identification methodologies that are geared towards the

synthesis of control units is a challenging key problem today.

See Gevers (2000) and the recent survey, Hjalmarsson

(2005).

Subspace methods system identification: Subspace methods

are used for the identification of systems described in a state-

space form; see, e.g., Katayama (2005). One important

challenge the identification community is facing is that of

incorporating a priori knowledge in subspace system

identification methods. Moreover, closed-loop subspace

identification is not completely understood yet; see Chiuso

and Picci (2005).

Robust (worst-case) decision making (e.g., robust controller

selection) through randomized methods: Many robust

decision making problems are difficult to solve because

of their computational complexity and no algorithm that

scales polynomially with the problem size is available. A

way to escape such a difficulty is to resort to randomized

methods: a multisample of instances of the uncertain

parameter is randomly extracted and a decision making

problem where these instances only are taken into

consideration is solved (see Fig. 8). The so-found solution

should have ‘generalization properties’, that is, it is robust

even towards unseen uncertainty instances. First achieve-

ments along this line have been achieved in Calafiore and

Campi (2005, 2006), but the potentials of this approach are

expected to go well beyond what has been so far discovered.
Fig. 8. The sampling mechanism of randomized methods for robust (worst-

case) optimization, where D is the uncertain parameter set, DN the set where

extraction of the multisample is performed and Q is the set of optimization

variables. The ‘satisfaction set’ is the set of uncertain parameters towards which

robustness is automatically guaranteed.
5.2. Recent major accomplishments, trends

Stochastic systems have a long and rich history in the

science of modeling real phenomena, with goals ranging from

system description to prediction of future events and from

decision making in presence of uncertainty to plant control.

5.2.1. Stochastic modeling of complex systems

Stochastic modeling is nowadays moving towards the

description of systems of progressively increasing complexity.

This includes:

(a) large scale systems,
(b) s
ystems with decentralized control units,
(c) h
ybrid and event-driven stochastic systems,
(d) s
ystems with communication constraints,
(e) h
idden Markov models.
The mathematical description and use of systems belonging

to either of the above listed categories involves specific

challenges. Regarding large scale systems, advances have been

made in recent years in the description of: (a.1) complex

manufacturing systems (e.g. semiconductor manufacturing)

and (a.2) large scale communication networks (e.g., WWW)

(Alpcan, Basar, & Tempo, 2005).

Fields of intense research activity within systems with

decentralized control units are: (b.1) wireless ad-hoc networks;

(b.2) vehicle traffic control (ground traffic-highways, Giridhar &

Kumar, 2006; Varaiya, 2005; airplane traffic, see the Hybridge

website: http://hosted.nlr.nl/public/hosted-sites/hybridge).

Hybrid and event-driven (including jump parameters)

stochastic systems are gaining increasing popularity mainly

for their versatility in accommodating diverse needs in a

number of modeling contexts. Systems with communication

constraints have become a hot research subject since constraints

and delays in communication are important aspects for highly

performing distributed systems. Finally, hidden Markov models

(Elliott, Aggoun, & Moore, 1995) are being used in many

application problems, including image and speech processing

as well as some recently emerging areas such as genome

analysis.

Despite the recent progresses in the above listed modeling

fields, it appears that a long road is still to be covered and, in

certain cases, that only the tip of the iceberg has been as far

unveiled.

5.2.2. System identification

Recent years have witnessed a resurgence of interest in some

traditional topics in stochastic system identification, as well as

the birth of new challenging aspects of this discipline. A list of

subjects in system identification of present interest that have

witnessed important accomplishments in the last few years is

the following:

(a) identification of hybrid systems;
(b) i
dentification for control;
(c) s
ubspace methods;
(d) l
earning theory;
(e) fi
nite sample results for system identification.

http://hosted.nlr.nl/public/hosted-sites/hybridge
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While points (a)–(c) have been described elsewhere in this

paper, we limit to say that point (e) refers to an emerging area in

system identification where finite sample guaranteed results –

as opposed to results that only hold asymptotically – are sought

after; see Campi and Weyer (2005). Learning theory, point (d),

is an independent subject in statistics aimed at establishing the

intrinsic limits in the process of learning from data and has

important connections with finite sample system identification;

see Vapnik (1996) and Vidyasagar (1997).

5.2.3. Randomized methods

Randomized methods refer to the body of solution

methodologies where probability is deliberately introduced

as an algorithmic tool to solve problems that would otherwise

be too complicated to tackle along standard deterministic ways;

see Tempo, Calafiore, and Dabbene (2005). Examples where

randomized methods are used include:

(a) decision making along an average approach (e.g., average

T. Katayama et al. / Annual Re14
robust controller selection);
(b) e
valuation of probability of events;
(c) w
orst-case decision making (e.g., worst-case robust

controller selection).
Decision making along the average approach has been given

increasing attention by the scientific community in the last few

years and is today a relatively mature subject that presents

significant connections with the statistical learning literature;

see Vidyasagar (2001). Evaluation of probability of events goes

back to standard Monte Carlo methods, but new significant

accomplishments have been obtained recently in connection

with the evaluation of the probability of rare events, that is,

events that occur under rare circumstances only; see, e.g., Del

Moral (2004) and Glasserman, Heidelberger, Shahabuddin, and

Zajic (1999). Finally, worst-case decision making with

randomized methods is a truly new and promising subject area.

5.3. Forecast

Specific efforts will be spent in the next few years towards

solving the key problems for stochastic systems as explained

earlier. Specifically, it is observed that new problems involving

complex stochastic systems spring up almost daily and a special

effort is therefore expected in the direction of new methodol-

ogies for handling systems of this type. Moreover, randomized

methods for robust decision making look very promising and

are expected to attract a good deal of attention in the near

future.

System identification will continue to attract the attention of

a vast community in the coming years and the research is

expected to be directed towards a broad range of subjects,

including subspace methods, control-oriented identification

and finite sample identification. A potentially promising subject

within system identification is the use of randomized

algorithms aimed at delivering probabilistically guaranteed

confidence regions for the estimated models.

As a final remark, we wish to note that the control

community has today the opportunity to contribute not only to
traditional but also to less traditional fields involving stochastic

systems. This includes research subjects in biology, commu-

nication, effect–cause inverse problems, computational vision,

decision making in management and finance. It is important

that our community be able to take up these new challenges in

the upcoming years.

6. Conclusions

We have discussed the major problems, accomplishments

and forecasts of likely future developments of a broad class of

systems and signals. Controller methodologies applicable to

systems and signals have played important fundamental roles in

analysis and design of various control systems, and will

continue to be the central issues of automatic control for many

years to come. As we close, the following general forecasts can

be visualized for this field:

(a) First, we can be confident that developments of advanced
communications and networks which have occurred within

the last decade are going to have a significant impact on

future control systems. However, methodologies that have

traditionally been associated with control will likewise

contribute to further advancements within the communica-

tions and network field. The future will see many

synergistic benefits coming from joint developments of

these two fields.
(b) S
ubspace identification methods will play important roles

in the identification in closed-loop systems, and some up-to-

date knowledge and procedures of closed-loop subspace

identification will be discussed at the 2005 Prague IFAC

Congress. Also, identification of non-linear systems will

receive much attention in the future, including Wiener and

Hammerstein models, for which kernel methods, support

vector machine, neural networks and radial basis functions

are employed.
(c) A
daptation and learning approaches to non-linear systems

are still very important issues and will be further developed.

Also, many case studies have been reported, but actual

industrial applications are not as common. Applications

will spread in various areas along with developments of

design guidelines for adaptation and efficient combination

of other control approaches.
(d) D
iscrete event systems and hybrid systems are at the center

of a trend towards what is now referred to as the

convergence of communications, computing and control.

The study of networked control systems is an emerging area

expected to thrive over the next few years. Moreover, efforts

for developing practical tools for designing and analyzing

DES and HS will be done both in academic environments

and industrial organizations, including the development of

new simulation tools for HS.
(e) N
ew problems involving complex stochastic systems spring

up almost daily and a special effort is therefore expected in

the direction of new methodologies for handling systems of

this type. Randomization methods for robust decision

making look very promising and are expected to attract a

good deal of attention in the near future. A promising



T. Katayama et al. / Annual Reviews in Control 30 (2006) 5–17 15
subject within system identification is the use of

randomization algorithms aiming at delivering probabil-

istically guaranteed confidence regions for the estimated

models, including finite sample identification.
(f) A
s mentioned above most future topics require some sort of

probabilistic or stochastic concepts in modeling and control

of large complex systems. Thus, we believe that robust

design in the future will be based on stochastic techniques,

including stochastic robust techniques and randomization

approaches.
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