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1 Introduction, preview example, and discussion

2 Introduction, preview example, and discussion

Models and uncertainty

Models of dynamical systems are used in many fields of science and engineering. It is
however widely recognised that a model is of limited use if no quality tag is attached
to it. The quality tag should give a description of the uncertainties associated with
the model, and the accuracy of the model should be taken into account when it is
used in practice.

A good technique or methodology for model uncertainty evaluation should meet the
following two requirements:

(1) it is applicable under general conditions;
(2) it provides a non-conservative evaluation of the system uncertainties.

Regarding the first item we note that evaluation methods that can be used for a
large class of systems and noise characteristics are desirable. For example, restrictive
assumptions on the noise (e.g. that it is Gaussian or bounded), means that the theory
is not applicable to many real life systems, and, even if it is, the verification of the
assumptions may be difficult in a given application. The second point is important
because loose uncertainty evaluations generate conservativeness in the belief that
the model is less reliable than it actually is. For example, a robust controller looses
in performance as the level of uncertainty increases. The reader is referred to our
recent paper Campi et al. (2004) for a broader discussion on these points.

One additional point that needs to be kept in mind is that, in system identification
(e.g. Ljung (1999), Söderström and Stoica (1988)), one always uses a finite number of
data points. And, in fact, uncertainty in the model is due to such a finiteness, as no
limit to the accuracy would exist if an infinite amount of information were available.
Likewise, for the evaluation of model quality and construction of confidence sets one
will only have a finite amount of data available. Thus, a sound uncertainty evaluation
method must provide results valid when the number of data is finite, and, possibly,
small.

The new theory presented in this paper

In this paper we introduce a novel approach for the construction of confidence regions
in system identification called ‘Leave-out Sign-dominant Correlation Regions’, LSCR
for short. LSCR exhibits the following features:

(i) It provides regions to which the true system parameter belongs with an exact guar-
anteed probability.

This means that if the user decides to determine a, say, 95% confidence region, the
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method returns a region which has exactly probability 0.95 of containing the true
system parameter; no overbounding is introduced and, therefore, no conservative-
ness in the found regions is present (yet, in order to obtain confidence regions of
suitable shape one may be willing to intersect different regions in which case some
overbounding is introduced).

(ii) The prior assumptions on the noise are reduced to a minimum.

The only assumption is that the noise is symmetrically distributed around zero.
Apart from that, it can have any (unknown) distribution: Gaussian; uniform; flat
with small-area spikes at high-value locations describing the chance of outliers; etc..
Its variance σ2 can be any (unknown) number: σ2 = 0.001, 0.1, 10 or 103, and yet
the confidence region has guaranteed exact probability. Of course, depending on the
strength of the noise, the region will be wider or smaller; the important point is
that knowledge of the noise characteristics is not a-priori required: the method let
the data speak and automatically outputs regions that are correct relative to the
existing level of the noise.

(iii) LSCR is guaranteed for any data set size.

Evaluating uncertainty is more important when the uncertainty is significant which
is the case when the information conveyed by data is limited. LSCR holds rigorously
for any information content and size of the data set.

The above features credit the LSCR method with a promise of making a great impact
on the model quality evaluation theory (see Section 2.2 for further comments and
comparison with existing results). Yet, the final word is not written as this paper
leaves an important point substantially open for further discussion: working out
procedures for construction of the confidence regions at low computational cost for
high order systems.

To make things concrete from the beginning, a simple example that shows how
LSCR works is given in the next section. Section 2.2 contains additional remarks
and comparison with the literature.

2.1 A preview example

Consider the system

yt + a0yt−1 = wt, (1)

where a0 = 0.2 and {wt} is an independent sequence of random variables uniformly
distributed between −1 and 1 (the distribution of wt is given for completeness of
description, but it is not used in the algorithm). 9 data points were generated ac-
cording to (1) and shown in Figure 1. Our goal is to form a confidence region for
a0 from the available data set. The small number of data points is used to facilitate
comprehension of the example as well as a full description of the obtained results.
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Fig. 1. Data for the preview example

Rewrite the system as a model with generic parameter a:

yt + ayt−1 = wt.

The predictor and prediction error associated with the model are

ŷt(a) = −ayt−1, εt(a) = yt − ŷt(a) = yt + ayt−1.

Next we compute the prediction errors εt(a) for t = 1, . . . , 8 and calculate

ft−1(a) = εt−1(a)εt(a), t = 2, . . . , 8.

Using the ft−1(a)’s, we want to form empirical estimates of the correlation
E[εt−1(a)εt(a)]. For a = a0 we have that E[εt−1(a

0)εt(a
0)] = E[wt−1wt] = 0. We

therefore expect the empirical estimates to be zero mean random variables for a = a0.
Based on this observation, we compute a number of estimates of the correlation using
different subsets of the data, and we discard those regions in parameter space where
the empirical estimates take positive (or negative) value too many times (from which
the name of the method derives: Leave-out Sign-dominant Correlation Regions). To
eventually provide rigorous results, these empirical estimates, however, need to be
constructed very carefully as illustrated in the following.

First, we generate a set G of subsets of I = {1, . . . , 7} which is a group with respect
to the symmetric difference, i.e. (Ii ∪ Ij)− (Ii∩ Ij) ∈ G, if Ii, Ij ∈ G. The set I is the
index set for the seven functions f1(a), f2(a), . . . , f7(a), and each set in the group G
gives the indices of the functions fi(a) used for computing one particular empirical
estimate. The group considered in this example is described by the incident matrix
below where each row corresponds to a subset in the group. A 1 means that the
element is in the set, while a 0 means that the element is not in the set.
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Fig. 2. The gi(a) functions for the preview example together with the confidence interval.
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The estimates of the correlation E[εt−1(a)εt(a)] (in fact a re-scaled version as no
normalization is present) are then given by

gi(a) =
∑

k∈Ii

fk(a), i = 1, . . . , 8

(g8(a) = 0 since we let gi(a) = 0 if Ii = ∅). The seven nonzero gi(a)’s are plotted in
Figure 2 as functions of a.

Following the LSCR idea, we recognise that it is very unlikely that all the gi(a
0)’s

have the same sign, and we therefore discard the rightmost and leftmost regions
where at most one function out of the seven non-zero functions is less than zero or
greater than zero. The resulting interval [−0.04, 0.48], is the confidence region for a0.
It is a rigorous fact (stated in Theorem 3.1) that the confidence region constructed
this way has probability 1 − 2 · 2/8 = 0.5 to contain the true parameter value a0.

As expected, due to the small number of data points, this confidence interval is
rather large and the associated probability is low. Next we increase the number
of data points to 1025 and using the group with incidence matrix R(1023) (see
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Appendix A.5) we keep the region in parameter space where at least 25 of the 1023
nonzero gi(a) functions are greater than 0 and at least 25 are smaller than zero. The
resulting interval [0.12, 0.2425], contains the true parameter value a0 with exact
probability 1 − 25 · 2/1024 = 0.9512 > 95% (see Theorem 3.1).

A verification of the theoretical confidence result was performed by running the last
simulation with 1025 data points 5000 times. The empirical frequency of a0 being
in the confidence interval was 0.9490, in good agreement with the theoretical result.

2.2 Some discussion on the existing literature on model quality evaluation

Quite often, uncertainty evaluations and confidence ellipsoids are derived based on
the asymptotic theory of system identification. It is common experience of theorists
and practitioners that this theory - though applied heuristically with a finite number
of data points - in many situations delivers sensible results. On the other hand, the
correctness of the results is not guaranteed, and contributions (Bittanti et al. (2002),
Garatti et al. (2003,2004)) have appeared that show that the asymptotic theory may
fail to be reliable in certain situations. Moreover, when the available data is scarce,
using asymptotic results makes no sense at all. Thus, there is a need for developing
techniques that provide results guaranteed for finite data samples.

Our earlier finite sample results (e.g. Campi and Weyer (2002) and Weyer and Campi
(2002)) were data independent, in the sense that they were uniform with respect
to the considered class of data generating systems, and they could essentially be
evaluated without any data. Because of the uniformity, it was realised that the
results could be quite conservative for the particular system at hand. The approach
presented here is data based as it uses data generated by the actual system at hand,
and avoids the problems due to uniformity. Finite sample results using a data based
approach have also been developed in Campi et al. (2002, 2004), and of course many
popular techniques such as bootstrap are data based (Tjärnström and Ljung (2002),
Bittanti and Lovera (2000)). However, few rigorous finite sample results exists for
bootstrap methods.

Similarly to set membership identification, e.g. Milanese and Vicino (1991), Bai et
al. (1995,1996), Vicino and Zappa (1996), Giarre’ et al. (1997), Garulli et al. (2000,
2002), LSCR returns regions for the true system parameter. However, unlike the
typical setting in set membership identification, LSCR does not assume that the
disturbances are deterministic or bounded.

In this paper we develop a methodology for construction of confidence sets for a gen-
eral linear system based on a finite number of data points. The confidence sets have
guaranteed probability of containing the true parameter. The sets are constructed
with no a-priori knowledge on the noise level, and they are concentrated around the
true parameter. The developed theory is rigorously valid for any finite data sample
and gives us a practically useful method for model quality evaluation which stands
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on a solid theoretical footing.

The mathematical approach taken in this paper is inspired by the work of Hartigan
(Hartigan (1969,1970)) in the statistical literature on estimating a constant in noise.
In this paper we consider a different problem from Hartigan (1969,1970) as we are
interested in dynamical systems and the theory developed herein departs signifi-
cantly from the work of Hartigan. Still, some basic concepts used in this paper are
common with those used by Hartigan and, in a sense, this paper can also be seen
as a contribution in the direction of fertilizing the area of system identification with
ideas inspired from a certain area of the statistical literature.

2.3 Organisation of the paper

This paper is organised in three main sections: Section 3 present the LSCR proce-
dure for constructing confidence regions. LSCR is applied to ARMA, ARMAX, and
general linear models in Section 4 and simulation examples are finally provided in
Section 5.

3 Confidence regions for linear systems

3.1 Data generating system

The data are generated by a general linear system

yt = G0(z−1)ut + H0(z−1)wt,

where G0(z−1) and H0(z−1) are stable rational transfer functions. z−1 is the back-
ward shift operator (z−1yt = yt−1). H0(z−1) is monic and has a stable inverse and
G0(z−1) has a delay of 1 or more time units. {wt} is a zero-mean independent se-
quence (noise). No a-priori knowledge of the noise level is assumed. The system
operates in open loop, that is {wt} and {ut} are independent. Closed loop systems
are discussed in Section 4.4.

3.2 Model structure

The model class consists of full order models

yt = G(z−1, θ)ut + H(z−1, θ)wt,

which are parameterised by θ. We assume that there exists a unique parameter θ0

such that G(z−1, θ0) = G0(z−1) and H(z−1, θ0) = H0(z−1). Moreover, we assume
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that θ is restricted to a set Θ such that H(z−1, θ) is monic, G(z−1, θ), H(z−1, θ)
and H−1(z−1, θ) are stable and G(z−1, θ) has a delay of 1 or more time units for all
θ ∈ Θ.

Remark 3.1 It should be noted that the goal of the present paper is to construct
confidence regions for the system parameter (as opposed to identifying a nominal
model). Similar to other existing techniques for model quality evaluation (e.g. stan-
dard asymptotic theory (Ljung (1999a)) and bootstrap techniques (Tjärnström and
Ljung (2002))), a full description of the system is adopted. It is important to re-
mark, however, that this in no way enforces a full order nominal model: one can
use a reduced order nominal model and then verify its reliability through a full order
model for quality evaluation along the approach of this paper. Moreover, the quality
evaluation can as well be directly applied to the model error similarly to the model
error modelling approach, Ljung (1999b,2001).

3.3 Construction of confidence regions

We start by describing procedures for the determination of confidence sets Θε
r and Θu

s

based on correlation properties of ε (the prediction error) at different time instants
and on cross-correlation properties of ε and u. Confidence sets Θ̂ for θ0 can then
be constructed by taking the intersection of a number of the Θε

r and Θu
s sets as

discussed at the end of this section.

Procedure for the construction of Θε
r

(1) Compute the prediction errors

εt(θ) = yt − ŷt(θ) = H−1(z−1, θ)yt − H−1(z−1, θ)G(z−1, θ)ut

for a finite number of values of t, say t = 1, 2, . . . ,K;
(2) Select an integer r ≥ 1. For t = 1 + r, . . . , N + r = K, compute

f ε
t−r,r(θ) = εt−r(θ)εt(θ);

(3) Let I = {1, . . . , N} and consider a collection G of subsets Ii ⊆ I, i = 1, . . . ,M ,
forming a group under the symmetric difference operation (i.e. (Ii ∪ Ij)− (Ii ∩
Ij) ∈ G, if Ii, Ij ∈ G). 1 Compute

gε
i,r(θ) =

∑

k∈Ii

f ε
k,r(θ), i = 1, . . . ,M ;

1 A group is a non-empty set G with a binary operation ◦ such that: a ◦ b ∈ G, ∀a, b ∈ G

and a ◦ (b ◦ c) = (a ◦ b) ◦ c, ∀a, b, c ∈ G; there exists an identity element e ∈ G such
that a ◦ e = e ◦ a = a, ∀a ∈ G; for every a ∈ G, there exists an inverse a−1 such that
a ◦ a−1 = a−1 ◦ a = e.
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(4) Select an integer q in the interval [1, (M + 1)/2) and find the region Θε
r such

that at least q of the gε
i,r(θ) functions are bigger than zero and at least q are

smaller than zero.

The above procedure is the same as the one used for construction of the confidence
set in the preview example in Section 2.1. In that example we had H−1(z−1, θ) =
1 + az−1, G(z−1, θ) = 0, and K = 8, N = 7, r = 1,M = 8 and q = 2.

Remark 3.2 The group in the procedure has identity element e = ∅, and the
inverse of an element is the element itself, i.e. I−1

i = Ii. In the procedure, the
group G can be freely selected. Thus, if I = {1, 2, 3, 4}, a suitable group is G =
{{1, 2}, {3, 4}, ∅, {1, 2, 3, 4}}; another one is G = {{1}, {2, 3, 4}, ∅, {1, 2, 3, 4}};
yet another one is G = all subsets of I. While the theory presented holds for any
choice and the region Θε

r is guaranteed to be a confidence region in any case (see
Theorem 3.1), the shape and size of Θε

r is affected by the choice made. Moreover,
the feasible choices are limited by computational considerations. For example, the
set of all subsets cannot be normally chosen as it is a truly large set. Gordon (1974)
discusses how to construct groups of moderate size where the subsets contain ap-
proximately half of the elements in I. These sets are particularly well suited for use
in point 3 above and we always use Gordon’s construction. Gordon’s procedure is
summarised in appendix A.5 for completeness, and the reader is referred to Gordon
(1974) for further discussion.

The intuitive idea behind this construction is that, for θ = θ0, the functions gε
i,r(θ)

assume positive or negative value at random (εt(θ
0) is a zero mean independent

sequence), so that it is unlikely that almost all of them are positive or that almost
all of them are negative. Since point 4 in the construction of Θε

r discards regions
where all gε

i,r(θ)’s but a small fraction (q should be taken to be small compared to
M) are of the same sign, we expect that θ0 ∈ Θε

r with high probability. This is put on
solid mathematical grounds in Theorem 3.1 below, showing that the probability that
θ0 ∈ Θε

r is actually 1− 2q/M . Thus, q is a tuning parameter that has to be selected
such that a desired probability of the confidence region is obtained. Moreover, as q
increases, we exclude larger and larger regions of Θ and hence Θε

r shrinks and the
probability that θ0 ∈ Θε

r decreases.

The procedure for construction of the sets Θu
s is in the same spirit. The only differ-

ence being that the empirical auto-correlations in point 2 are replaced by empirical
cross-correlations between the input signal and the prediction error.

Procedure for the construction of Θu
s

(1) Compute the prediction errors

εt(θ) = yt − ŷt(θ) = H−1(z−1, θ)yt − H−1(z−1, θ)G(z−1, θ)ut

for a finite number of values of t, say t = 1, 2, . . . ,K;
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(2) Select an integer s ≥ 1. For t = 1 + s, . . . , N + s = K, compute

fu
t−s,s(θ) = ut−sεt(θ);

(3) Let I = {1, . . . , N} and consider a collection G of subsets Ii ⊆ I, i = 1, . . . ,M ,
forming a group under the symmetric difference operation. Compute

gu
i,s(θ) =

∑

k∈Ii

fu
k,s(θ), i = 1, . . . ,M ;

(4) Select an integer q in the interval [1, (M + 1)/2) and find the region Θu
s such

that at least q of the gu
i,s(θ) functions are bigger than zero and at least q are

smaller than zero.

The next theorem gives the exact probability that the true parameter θ0 belongs to
one particular of the above constructed sets.

Theorem 3.1 Assume that the variables wt and wtuτ admit densities and that wt is
symmetrically distributed around zero. Then, the sets Θε

r and Θu
s constructed above

are such that:

Pr{θ0 ∈ Θε
r}= 1 − 2q/M, (2)

Pr{θ0 ∈ Θu
s}= 1 − 2q/M. (3)

Proof. See appendix A.1.

Remark 3.3 The only reason for requiring that the variables wt and wtuτ admit
densities is to avoid that the functions gε

i,r(θ) and gu
i,s(θ) can take on the same value

with nonzero probability. This condition prevents ties from occurring in point 4 of
the procedures for constructing Θε

r and Θu
s . It can be dropped by using a random

ordering in case of ties, but we have preferred to maintain the condition to avoid
unduly complications.

When the {wt} process is independent and identically but not symmetrically dis-
tributed, we can obtain symmetrically distributed data by considering the difference
between two subsequent data points, that is (yt − yt−1) = G(z−1, θ)(ut − ut−1) +
H(z−1, θ)(wt − wt−1); here, wt − wt−1, t = 2, 4, 6, . . . are independent and symmet-
rically distributed around 0.

The noise assumption is mild enough to accommodate a number of situations. In
particular, one can describe possible outliers by allowing the noise to take on large
values with small probability. Importantly, the procedures return regions of guaranteed
probability despite that we do not assume any a-priori knowledge on the noise level:
the noise level enters the procedures through data only. This could be phrased by
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saying that the procedures let the data speak, without a-priori assuming what they
have to tell us.

The evaluations (2) and (3) are nonconservative in the sense that 1 − 2q/M is the
exact probability, not a lower bound of it.

Each one of the sets Θε
r and Θu

s is a non-asymptotic confidence set for θ0. However,
each one of these sets will usually be unbounded in some directions of the parameter
space, and therefore not particularly useful. A general practically useful confidence
set Θ̂ can be obtained by intersecting a number of the sets Θε

r and Θu
s , i.e.

Θ̂ = ∩nε
r=1Θ

ε
r ∩nu

s=1 Θu
s . (4)

The next obvious question is how to choose nε and nu in order to obtained well
shaped confidence sets that are bounded and concentrated around the true param-
eter θ0. It turns out that the answer depends on the particular model class under
consideration and the number of parameters in the model, and these issues will be
discussed in detail in the next section.

We conclude this section with a fact which is immediate from Theorem 3.1.

Theorem 3.2 Under the assumptions of Theorem 3.1,

Pr{θ0 ∈ Θ̂} ≥ 1 − (nε + nu)2q/M,

where Θ̂ is given by (4).

The inequality in the theorem is due to that the events {θ0 /∈ Θε
r}, {θ0 /∈ Θu

s},
r = 1, . . . , nε, s = 1, . . . , nu may be overlapping. This is illustrated later on in the
simulation example in Section 5.1.

Remark 3.4 Note that for each one of the sets Θε
r and Θu

s we could have chosen
a different group and a different value of q with the effect that the probabilities on
the right hand side of (2) and (3) change to 1 − 2qε

r/M
ε
r and 1 − 2qu

s /Mu
s , where

qε
r and qu

s are the numbers chosen in point 4 of the constructions and M ε
r and Mu

s

are the number of elements in the chosen group. However, in order to keep the
notation relatively simple we have presented our results with a fixed q and M . The
generalisation is however straightforward.

The confidence region Θ̂ can be used to validate/invalidate a given model. However,
we do not want to focus solely on this specific application and we prefer to see Θ̂ as
the output of an identification procedure returning a guaranteed set, independently
of the use we make of this set. As an alternative example to validating a model, Θ̂
could be used directly in robust control design.

Finally, note that the probability in Theorem 3.2 is with respect to the observed
data sequences, and it bounds the probability that we observe realisations of {wt}
and {ut} such that θ0 ∈ Θ̂. Here, θ0 is deterministic and the random element is Θ̂

11



because this set depends on observations and hence the event that Θ̂ contains θ0

depends on the observed data. In theory we may even obtain Θ̂ = ∅, but this just
tells us that we have had the misfortune of observing one of the (rare) realisations
where θ0 /∈ Θ̂.

4 Confidence sets for different model classes

As we have seen in the previous section, Theorem 3.1 quantifies the probability
that θ0 belongs to the regions Θε

r and Θu
s . It holds for any finite N and is non-

conservative. On the other hand, Theorem 3.1 deals only with one side of the medal
in the study of uncertainty evaluation techniques. A good evaluation method must
have two properties: the provided region must have guaranteed probability (and
this is what Theorems 3.1 and 3.2 deliver); and the region must be bounded, and, in
particular, it should concentrate around θ0 as the number of data points increases.
In this section we show how this second requirement can be achieved by choosing nε

and nu in (4). The choices depend on the model class, and next we consider ARMA
and ARMAX models, followed by general linear model classes.

4.1 ARMA models

4.1.1 Data generating system and model class

The data generating system is given by

yt =
C0(z−1)

A0(z−1)
wt,

where

A0(z−1)= 1 + a0
1z

−1 + · · · + a0
nz

−n,

C0(z−1)= 1 + c0
1z

−1 + · · · + c0
pz

−p.

In addition to the assumptions in Section 3.1 and in Theorem 3.1, we assume that
A0(z−1) and C0(z−1) have no common factors and that {wt} is wide-sense stationary
with spectral density Φw(ω) = λ2

w > 0.

The model class is

yt =
C(z−1, θ)

A(z−1, θ)
wt,

where

A(z−1, θ)= 1 + a1z
−1 + · · · + anz

−n,

C(z−1, θ)= 1 + c1z
−1 + · · · + cpz

−p,
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θ = [a1 · · · an c1 · · · cp]
T , and the assumptions in Section 3.2 are in place.

4.1.2 Confidence regions for ARMA models

We next give a result which shows how a confidence region which concentrates
around the true parameter as the number of data points increases can be obtained
for ARMA systems.

Theorem 4.1 Let εt(θ) = A(z−1 ,θ)
C(z−1 ,θ)

yt be the prediction error associated with the

ARMA model class. Then, θ = θ0 = [a0
1 · · · a0

n c0
1 · · · c0

p]
T is the unique solution to

the set of equations:

E[εt−r(θ)εt(θ)] = 0, r = 1, . . . , n + p. (5)

Proof. See Appendix A.2.

Theorem 4.1 shows that if we simultaneously impose n + p correlation conditions,
where n and p are the orders of the A(z−1, θ) and C(z−1, θ) polynomials, then the
only solution is the true θ0. Guided by this idea, we consider n+p sample correlation
conditions, and let nε = n + p in (4). As N → ∞, the functions 1

Ni
gε

i,r(θ) →
E[εt−r(θ)εt(θ)], provided that Ni, the number of elements in the set Ii, also tends
to infinity (this is the case for the groups in Gordon (1974)). This means that each
region Θε

r gets smaller and the intersection of them gives an uncertainty region
shrinking around the true parameter θ0. This leads to the following construction of
confidence regions for ARMA models.

Confidence region for ARMA models

Θ̂ = ∩n+p
r=1 Θε

r.

Theorem 3.2 guarantees that this set contains θ0 with probability at least 1 − (n +
p)q/M , and Theorem 4.1 shows that the confidence set concentrates around θ0.

4.2 ARMAX models

4.2.1 Data generating system and model class

The data generating system is given by

yt =
B0(z−1)

A0(z−1)
ut +

C0(z−1)

A0(z−1)
wt,
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where

A0(z−1)= 1 + a0
1z

−1 + · · · + a0
nz−n,

B0(z−1)= b0
1z

−1 + · · · + b0
mz−m,

C0(z−1)= 1 + c0
1z

−1 + · · · + c0
pz

−p.

In addition to the assumptions in Section 3.1 and in Theorem 3.1, we assume that
A0(z−1) and B0(z−1) have no common factors and, similarly to the ARMA case, we
assume a stationary environment. Precisely, {wt} is wide-sense stationary with spec-
tral density Φw(ω) = λ2

w > 0 and {ut} is wide-sense stationary too and independent
of {wt} (open loop configuration, closed loop systems are considered in Section 4.4).

The model class is

yt =
B(z−1, θ)

A(z−1, θ)
ut +

C(z−1, θ)

A(z−1, θ)
wt,

where

A(z−1, θ)= 1 + a1z
−1 + · · · + anz

−n,

B(z−1, θ)= b1z
−1 + · · · + bmz−m,

C(z−1, θ)= 1 + c1z
−1 + · · · + cpz

−p,

θ = [a1 · · · an b1 · · · bm c1 · · · cp]
T and the assumptions in Section 3.2 are in place.

4.2.2 Confidence regions for ARMAX models

The next theorem shows that we can choose correlation equations such that the
solution is unique and equal to θ0, provided the input signal {ut} is white.

Theorem 4.2 Let εt(θ) = A(z−1 ,θ)
C(z−1 ,θ)

yt − B(z−1,θ)
C(z−1 ,θ)

ut be the prediction error associated

with the ARMAX model class. If {ut} is white with spectral density Φu(ω) = λ2
u > 0,

then θ = θ0 = [a0
1 · · · a0

n b0
1 · · · b0

m c0
1 · · · c0

p]
T is the unique solution to the set of

equations:

E[ut−sεt(θ)]= 0, s = 1, . . . , n + m, (6)

E[εt−r(θ)εt(θ)]= 0, r = 1, . . . , p. (7)

Proof. See Appendix A.3.

Guided by this result, we choose nε = p and nu = n + m in (4) to arrive at

14



Confidence region for ARMAX models

Θ̂ = ∩p
r=1Θ

ε
r ∩n+m

s=1 Θu
s .

Remark 4.1 Interestingly enough, the conclusion of Theorem 4.2 does not hold true
for coloured input sequences, see the simulation example in Section ??.

Thus, with {ut} white, no problems arise and the situation is similar to the ARMA
case. On the other hand, assuming that {ut} is white is often unrealistic and hence
we are well advised to discuss how to remove such an assumption.

Suppose that {ut} is prefiltered by a filter L(z−1) before it used in point 2 in the
construction of Θu

s , that is point 2 is substituted by

2’. Select an integer s ≥ 1. For t = 1 + s, . . . , N + s = K, compute

fu
t−s,s(θ) = (L(z−1)ut−s)εt(θ).

Then, Theorem 3.1 (and 3.2) remains valid, as can be verified by inspecting its
proof. In fact, we can also allow the filter L(z−1) to be dependent on the input
signal, that is, it can be constructed from the input signal without affecting the
validity of Theorem 3.1. Moreover, if the filter L(z−1) is appropriately chosen, θ0 is
the unique solution to the correlation equations, as stated in the next theorem.

Theorem 4.3 Assume ut = Q(z−1)νt with {νt} a white wide-sense stationary se-
quence of random variables with spectral density Φν(ω) = λ2

ν > 0 and Q(z−1) is a
rational and stable transfer function. Let L(z−1) = Q(z−1)−1Q(z)−1, then θ0 is the
unique solution to the set of equations

E[(L(z−1)ut−s)εt(θ)]= 0, s = 1, . . . , n + m (8)

E[εt−r(θ)εt(θ)]= 0, r = 1, . . . , p. (9)

Proof. See Appendix A.4.

Remark 4.2 The fact that the filter L(z−1) is unstable is not much of a concern
since all operations are performed in batch so that L(z−1)ut−s can be computed as a
solution having a causal as well as an anti-causal component.

Also note that an imprecise estimation of Q(z−1) does not affect the validity of
Theorem 3.1, so that the obtained region does have the guaranteed probability of
containing the true θ0. The issue here is the shape of the region, which, if uniqueness
is missing, may comprise spurious portions around the solutions of equations (8) and
(9) that do not correspond to θ0, see Campi and Weyer (2004) for an example. In
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that example it is also shown that the spurious regions disappear even if the applied
filter is only an approximation of Q(z−1)−1Q(z)−1.

4.3 General linear models

We now turn to the case of a general linear system

yt = G0(z−1)ut + H0(z−1)wt, (10)

where {ut} is wide-sense stationary with spectral density Φu(ω) and {wt} is a white
noise sequence with spectral density Φw(ω) = λ2

w > 0. Moreover, we assume that
{ut} and {wt} are independent. As usual, we consider a full order model class yt =
G(z−1, θ)ut + H(z−1, θ)wt. Moreover, the assumptions in Sections 3.1 and 3.2 and
in Theorem 3.1 are in place.

For ARMA and ARMAX models we saw in the previous sections that by computing
scaled empirical values of certain correlations for a finite number of lags we obtained
well shaped confidence regions concentrated around θ0. In the present general setting
it can be shown that imposing E[εt−r(θ)εt(θ)] = 0, ∀r ≥ 1, and E[ut−sεt(θ)] =
0, ∀s ≥ 1, returns θ0 as the unique solution. Computing an infinite number of
correlations is however not possible, but it is common experience in practice that
imposing as many correlations as there are parameters is sufficient in order to obtain
a well shaped region around θ0. In this section a heuristic guideline for how to choose
appropriate correlations is given. The guideline is based on the relative strength of
the external signals. It is perhaps worth mentioning once more that it is only the
shape of the obtained regions which is under discussion whereas Theorem 3.1 (and
3.2) are always valid so that the regions do have a guaranteed confidence.

Guideline 1 Compute as many empirical correlations as there are parameters
in the model. Let n be the number of parameters which G(z−1, θ) and H(z−1, θ)
have in common, m the number of parameters which appear exclusively in G(z−1, θ)
and p the number of parameters which appear exclusively in H(z−1, θ). Choose at
least m correlations ut−sεt(θ), s = 1, . . . ,m, and at least p correlations εt−r(θ)εt(θ),
r = 1, . . . , p. When choosing the last n correlations take into account the a priori
information about the energy in the signals ut and wt and how exciting they are.
Favour correlations of the type ut−sεt(θ) if ut is the stronger signal and correlations
of the type εt−r(θ)εt(θ) if wt is the stronger signal.

This guideline is put to practice in Section 5.2.
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4.4 Closed loop systems

Consider a general linear system (10), and assume now that the input is generated
by a feedback controller

ut = K(z−1)(r̃t − yt),

where r̃t is a reference signal, so that the closed loop system is stable. In this context
we regard the closed loop system as a whole with inputs r̃t and wt, i.e. (the argument
z−1 is suppressed)

yt =(1 + KG0)−1KG0r̃t + (1 + KG0)−1H0wt

= Ḡ0r̃t + H̄0wt.

It is now clear that we are in exactly the same situation as in Section 4.3 with r̃t

replacing ut, and therefore the standard approach can be applied in the present
context by imposing correlation conditions between εt−r(θ) and εt(θ) and between
r̃t−s and εt(θ).

The closed loop system is parameterised in terms of the parameters of the open loop
model. The LSCR approach determines directly whether a parameter value is in
the confidence set or not, and hence we do not need to perform a deconvolution to
find the confidence regions for the parameters of G and H. A closed loop simulation
example is given in Section 5.2.

Remark 4.3 It may be of interest to note that imposing correlation relations ut−sεt(θ)
does not preserve the result in Theorem 3.1 since {ut} and {εt(θ

0)} are not indepen-
dent processes and the proof for the open loop configuration no longer applies.

5 Simulation examples

In this section, we present simulation examples illustrating the developed methodo-
logy.

5.1 First order ARMA model

Consider the ARMA system

yt + a0yt−1 = wt + c0wt−1, (11)

where a0 = −0.5, c0 = 0.2 and {wt} is an independent sequence of zero mean nor-
mally distributed random variables with variance 1. 1025 data points were generated
according to (11). As a model class we used yt +ayt−1 = wt +cwt−1, |a| < 1, |c| < 1,
with associate predictor and prediction error given by
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ŷt(a, c)=−cŷt−1(a, c) + (c − a)yt−1,

εt(a, c)= yt − ŷt(a, c) = yt + ayt−1 − cεt−1(a, c).

In order to form a confidence region for (a0, c0) we calculated

f ε
t−1,1(a, c)= εt−1(a, c)εt(a, c), t = 2, . . . , 1024,

f ε
t−2,2(a, c)= εt−2(a, c)εt(a, c), t = 3, . . . , 1025,

and then computed

gε
i,1(a, c)=

∑

k∈Ii

f ε
k,1(a, c), i = 1, . . . , 1024,

gε
i,2(a, c)=

∑

k∈Ii

f ε
k,2(a, c), i = 1, . . . , 1024,

using the group in Appendix A.5. Next we discarded those values of a and c for which
zero was among the 12 largest and smallest values of gε

i,1(a, c) and gε
i,2(a, c). Then

according to Theorem 3.2 (a0, c0) belongs to the constructed region with probability
at least 1 − 2 · 2 · 12/1024 = 0.9531.

The obtained confidence region is the blank area in Figure 3. The area marked with
x is where 0 is among the 12 smallest values of gε

i,1, the area marked with + is where 0
is among the 12 largest values of gε

i,1. Likewise for gε
i,2 with the squares representing

when 0 belongs to the 12 largest elements and the circles the 12 smallest. The true
value (a0, c0) is marked with a star. As we can see, each step in the construction of
the confidence region excludes a particular region.

Using the algorithm for the construction of Θ̂ we have obtained a bounded confi-
dence set with a guaranteed probability based on a finite number of data points.
As no asymptotic theory is involved this is a rigorous finite sample result. For com-
parison, we have in Figure 3 also plotted the confidence ellipsoid obtained using
the asymptotic theory (Ljung (1999a), Chapter 9). The two confidence regions are
of similar shape and size, confirming that the non-asymptotic confidence sets are
practically useful, and, unlike the asymptotic confidence ellipsoids, they do have
guaranteed probability for a finite sample size.

The reader is also referred to Campi and Weyer (2004) for a simulation example
of an ARMAX system, omitted here due to space limitations. In that ARMAX
example, the input signal is non-white and there exist parameter values other than
the true ones which make the expected value of the correlations zero in Theorem 4.2
(see discussion in Section 4.2). However, it is demonstrated that the simple filtering
procedure discussed after Remark 4.1 removes the parameter values which do not
correspond to the true ones from the confidence region.
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Fig. 3. Non-asymptotic confidence region for (a0, c0) (blank region) and asymptotic con-
fidence ellipsoid. ? = true parameter, � = estimated parameter using a prediction error
method.

5.2 Closed loop system, general linear model structure

The following example is taken from Garatti et al. (2004). Consider the system

yt =
b0z−1

1 + a0z−1
ut + (1 + h0z−1)wt, (12)

with θ0 = [a0 b0 h0]T = [−0.7 0.3 0.5]T . {wt} is white Gaussian noise with variance
1, and the input is generated by

ut = r̃t − yt (13)

where r̃t is white Gaussian noise with variance 10−6.

In Garatti et al. (2004) the asymptotic variance of the parameter estimation error
was computed using asymptotic system identification theory, and it was shown that
this theory could give misleading results for the above system. The reason for this
can be explained as follows.

Using a standard quadratic criterion VN (θ) = 1/N
∑N

t=1 ε2(t, θ), the estimate is given
by θ̂N = arg minθ VN (θ). Asymptotically the estimate θ̂N converges to a value which
minimises V (θ) = E[ε2(t, θ)]. For r̃t ≡ 0, there are two isolated parameters which
minimise V (θ). These values are the true parameter θ0 and θ̄ = [h0 a0−h0+b0 a0]T .
When the input signal is different from zero, but poorly exciting, the only minimum
is θ0, but V (θ0) and V (θ̄) are close, and since the estimate is found by minimising
VN (θ), it will often end up being close to θ̄ which is now only a local minimum of
V (θ). The asymptotic theory for evaluation of the variance of θ̂N − θ0 is based on a
Taylor series expansion of

√
NV ′

N (θ) around the true parameter θ0 (′ and ′′ denote
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first and second derivative w.r.t. θ), i.e.

0 =
√

NV ′
N (θ̂N ) =

√
NV ′

N (θ0) + V ′′
N (ξN )

√
N (θ̂N − θ0),

where ξN is a point between θ̂N and θ0. When the asymptotic expressions are used
in the finite sample case, V ′′(ξN) is replaced by V ′′

N (θ̂N). This can give rise to a large
error when θ̂N is far from θ0 and this is what happens in this example. The net
result is that the obtained confidence region is deceivingly small.

As is clear from above, one reason why the asymptotic theory gives unreliable results
is that it is local in nature in the sense that it is based on a Taylor expansion
evaluated in θ̂N . It will only deliver a confidence set around the estimated parameter.
This is in contrast to the non-asymptotic theory developed here which is global in
nature as no local approximations are involved.

Returning to our approach for generating a confidence region we consider a full order
model yt = bz−1

1+az−1 ut + (1 + hz−1)wt. The prediction errors are given by

εt(θ)=
1

1 + hz−1
yt −

bz−1

(1 + az−1)(1 + hz−1)
ut

=
1 + (a + b)z−1

(1 + az−1)(1 + hz−1)
yt −

bz−1

(1 + az−1)(1 + hz−1)
r̃t.

As the system operates in closed loop, we consider r̃t as the input signal, and the
model structure is yt = Ḡ(z−1, θ)r̃t + H̄(z−1, θ)wt with

Ḡ(z−1, θ) =
bz−1

1 + (a + b)z−1
and H̄(z−1, θ) =

(1 + hz−1)(1 + az−1)

1 + (a + b)z−1
.

We have three parameters, one which belongs to H̄(z−1) only, and two which belong
to both Ḡ(z−1) and H̄(z−1). Using the Guideline in Section 4.3, we compute three
correlations, one of them being εt−1(θ)εt(θ). As r̃t is a poorly exciting signal compared
to wt, we choose the other two correlations to be εt−2(θ)εt(θ) and εt−3(θ)εt(θ).

We generated 2047+3 data points (N = 2047) according to (12) and (13). The group
was constructed as in the appendix A.5 (M = 2048), and we computed

gε
i,r(θ) =

∑

k∈Ii

εk−r(θ)εk(θ), r = 1, 2, 3

in the parameter space, making the standard assumptions that Ḡ(z−1, θ) and H̄(z−1, θ)
were stable (|a + b| < 1) and that H̄(z−1, θ) has a stable inverse (|a| < 1, |h| < 1).
We excluded the regions in the parameter space where 0 was among the 34 smallest
or largest values of any of the three correlations above to obtain a 1−3·2·34/2048 =
0.9004 confidence set. Note that, despite the heuristics in choosing the correlation
functions, the probability of the obtained set is still guaranteed. The confidence set
is shown in Figure 4. The set consists of two separate regions, one around the true
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Fig. 4. 90% confidence region.
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Fig. 5. Asymptotic confidence 90% ellipsoid (-), and the part of the non-asymptotic con-
fidence set around θ̄ (- -).

parameter θ0 and one around θ̄, the other minimum of V (θ) when r̃t ≡ 0. This
illustrates the global features of the approach, producing two separate regions far
apart in the parameter space as the confidence set.

We also computed the parameter estimate as in Garatti et al. (2004). The parameter
estimate turned out to be close to θ̄, and the asymptotic 90% confidence ellipsoid
is shown in Figure 5 together with the part of our non-asymptotic confidence set
which is concentrated around θ̄. As we can see, the asymptotic theory, due to its
local nature, produces a misleading result, since the confidence region is situated
around a parameter value corresponding to a local minimum and it does not include
the true parameter θ0. A close up of the part of the non-asymptotic confidence region
around the true parameter θ0 is shown in Figure 6.

6 Conclusions

In this paper, we have derived a new method, Leave-out Sign-dominated Correlation
Regions (LSCR), for the construction of confidence sets for general linear models.
The method is based on computing empirical correlation functions using subsamples
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Fig. 6. Close up of the non-asymptotic confidence region around θ0.

and discarding regions in the parameter space where only a small fraction of the
empirical functions are greater or smaller than zero. The developed methodology is
grounded on a solid theoretical basis, giving guaranteed probabilities for the true
parameter to belong to the constructed set for any finite number of data points, and,
as illustrated by the simulation examples, it produces practically useful confidence
sets.

The proposed method has a really broad applicability. Even though this has not
been discussed in the present paper, the developed method applies unaltered to
nonlinear systems as well. Particularly, our Theorem 3.1 is valid without any change
for nonlinear systems, provided of course that at point 1 of the procedures ŷt(θ) is
substituted by the predictor for the nonlinear system structure.
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[1] Åström K.J. and T. Söderström (1974). “Uniqueness of the maximum likelihood
estimates of the parameters of an ARMA model”. IEEE Trans. on Automatic Control,
Vol. 29, no.6, pp. 769-773.

[2] Bai E.W., K.M. Nagpal and R. Tempo (1996). “Bounded-error parameter estimation:
noise models and recursive algorithms.” Automatica, Vol. 32., pp. 985-999.

[3] Bai E.W., R. Tempo and H. Cho (1995). “Membership set estimators: size, optimal
inputs, complexity and relations with least squares.” IEEE Trans. on Circuits and
Sytems, Vol. 42., no. 5, pp. 266-277.

[4] Bittanti S., M.C. Campi and S. Garatti (2002). “New results on the asymptotic theory
of system identification for the assessment of the quality of estimated models”. In Proc.

22



41st Conf. on Decision and Control, Las Vegas, USA.

[5] Bittanti S. and M. Lovera (2000). ”Bootstrap-based estimates of uncertainty in
subspace identification methods”. Automatica, Vol. 36, pp. 1605-1615.

[6] Campi M.C. and S. Garatti (2003). “Correlation Approach for ARMAX Model
Identification: a counterexample on the uniqueness of the asymptotic solution”.
Internal Report of the University of Brescia.

[7] Campi M.C., S.K. Ooi and E. Weyer (2002). “Non-asymptotic quality assessment of
generalised FIR models”. Proceedings of IEEE Conference on Decision and Control,
pp. 3416-3421, Las Vegas, USA.

[8] Campi, M.C., S.K. Ooi and E. Weyer (2004). “Non-asymptotic quality assessment
of generalised FIR models with periodic inputs”. Automatica, Vol. 40, no. 12, pp.
2029-2041.

[9] Campi, M.C. and E. Weyer (2002). “Finite sample properties of system identification
methods”. IEEE Trans. on Automatic Control, Vol. AC-47, pp. 1329-1334.

[10] Campi M.C. and E. Weyer (2004). “Non-asymptotic confidence sets for the parameters
of ARMAX models”. IFAC Workshop on Adaptation and Learning in Control and
Signal Processing (ALCOSP 2004), pp. 841-846, Yokohama, Japan.

[11] Garatti S., M.C. Campi and S. Bittanti(2003). “Model quality assessment for
Instrumental Variable methods: use of the asymptotic theory in practice”. In Proc.
42nd Conf. on Decision and Control, Maui, USA.

[12] Garatti S., M.C. Campi and S. Bittanti (2004). “Assessing the quality of identified
models through the asymptotic theory - When is the result reliable ?”. Automatica,
Vol. 40., no. 8, pp. 1319-1332.

[13] Garulli A., L. Giarre’ and G. Zappa (2002). “Identification of approximated
Hammerstein models in a worst-case setting.” EEE Trans. on Automatic Control,
Vol. 47, pp. 2046-2050.

[14] Garulli A., A. Vicino and G. Zappa (2000). “Conditional central algorithms for worst-
case set membership identification and filtering.” IEEE Trans. on Automatic Control,
Vol. 45., no. 1, pp. 14-23.

[15] Giarre’ L., B.Z. Kacewicz and M. Milanese (1997). “Model quality evaluation in set
membership identification.” Automatica, Vol. 33., no. 6, pp. 1133-1139.

[16] L. Giarre’, M. Milanese and M. Taragna (1997). “H∞ identification and model quality
evaluation.” IEEE Trans. on Automatic Control, Vol. 4, pp. 88–199.

[17] Gordon L. (1974). “Completely separating groups in subsampling”. Annals of
Statistics, Vol. 2, pp. 572-578.

[18] Hartigan J. A. (1969). “Using subsample values as typical values”. Journal of
American Statistical Association, Vol. 64, pp. 1303-1317.

23



[19] Hartigan J. A. (1970). “Exact confidence intervals in regression problems with
independent symmetric errors”. Annals of Mathematical Statistics, Vol. 41, pp. 1992-
1998.

[20] Ljung, L. (1997). “Identification, model validation and control”. In Proc. 36th Conf.
on Decision and Control, plenary lecture, San Diego, USA.

[21] Ljung, L. (1999a). System Identification - Theory for the User. 2nd Ed. Prentice Hall.

[22] Ljung, L. (1999b). “Model validation and model error models”. In Wittenmark
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A Proofs

A.1 Proof of Theorem 3.1

A.1.1 Proof of (2)

The proof is divided into a few steps in the form of propositions.

Proposition A.1 Let {wt} be a sequence of independent random variables with
symmetric distribution around zero. Let I = {1, . . . , N}, and let G be a collection
of subsets Ii ⊆ I, i = 1, . . . ,M , forming a group under the symmetric difference
operation (i.e. (Ii ∪ Ij)− (Ii∩ Ij) ∈ G, if Ii, Ij ∈ G). Pick any Ī ∈ G and an integer
r. Then, the set of variables





∑

k∈Ii

wkwk+r, i = 1, . . . ,M



 (A.1)
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has the same M-dimensional joint distribution as the set of variables





∑

k∈Ii

wkwk+r −
∑

k∈Ī

wkwk+r, i = 1, . . . ,M



 , (A.2)

provided that the order of the variables is suitably rearranged.

Before providing the proof, we give a simple example illustrating the idea.

Example. Suppose that I = {1, 2, 3, 4}, r = 2, and G = {{1, 2}, {3, 4}, ∅, {1, 2, 3, 4}}.
Take Ī = {1, 2}. Proposition A.1 says that (by convention,

∑
k∈∅ wkwk+r = 0):

{w1w3 + w2w4, w3w5 + w4w6, 0, w1w3 + w2w4 + w3w5 + w4w6} (A.3)

has the same distribution as

{0, w3w5 + w4w6 − w1w3 − w2w4,−w1w3 − w2w4, w3w5 + w4w6}. (A.4)

Proof. The idea of the proof is to introduce new variables w̃k = −wk for some of
the wk and to rewrite these wk as −w̃k in (A.2) in such a way that the set (A.2)
is written as (A.1) with some of the wk replaced by w̃k. As wk is symmetrically
distributed around 0, wk and w̃k have the same distribution, and (A.2) and (A.1)
will therefore have the same joint M -dimensional distribution. The sign changing
procedure introduced below is illustrated in an example after the proof.

Consider the variables

w1w1+r w2w2+r w3w3+r · · · wNwN+r

and organise them in the following chains

w1w1+r w1+rw1+2r w1+2rw1+3r · · · (chain 1)

w2w2+r w2+rw2+2r w2+2rw2+3r · · · (chain 2)
...

wrw2r w2rw3r w3rw4r · · · (chain r).

We consider one chain at a time, starting with the first one. We scan its elements
from left to right. When an element belonging to the set {wkwk+r, k ∈ Ī} - say
wk̄wk̄+r - is encountered, the new variable w̃k̄+r = −wk̄+r is introduced, and the
element is rewritten as −wk̄w̃k̄+r. The next element is then rewritten as w̃k̄+rw̃k̄+2r

with w̃k̄+2r = −wk̄+2r. So is the next one: w̃k̄+2rw̃k̄+3r, and we proceed this way until
another element in {wkwk+r, k ∈ Ī} - say w¯̄kw¯̄k+r - is encountered. This element is
rewritten as −w̃¯̄kw¯̄k+r, where w̃¯̄k = −w¯̄k, stopping the sequence of sign change. We
then proceed scanning the first chain and we start changing the sign again when we
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encounter the next element in {wkwk+r, k ∈ Ī}. The procedure terminates when all
elements in the first chain have been scanned. Then, we do the same for the other
chains.

Next, set vk = wk if wk has not been substituted, and vk = w̃k if wk has been
substituted and consider the variables

v1v1+r v2v2+r v3v3+r · · · vNvN+r.

If k ∈ Ī, we have vkvk+r = −wkwk+r, while if k /∈ Ī, vkvk+r = wkwk+r. Thus, the ith
element of (A.2) is given by

∑

k∈Ii

wkwk+r −
∑

k∈Ī

wkwk+r =
∑

k∈Ii−Ī

wkwk+r −
∑

k∈Ī−Ii

wkwk+r

=
∑

k∈Ii−Ī

vkvk+r +
∑

k∈Ī−Ii

vkvk+r =
∑

k∈Ii∆Ī

vkvk+r. (A.5)

As G is a group under the symmetric difference, Ii∆Ī ∈ G, ∀i, and hence {Ii∆Ī, i =
1, . . . ,M} = {Ii, i = 1, . . . ,M}. This means that (A.2) can be rewritten, by reorder-
ing the elements and resorting to (A.5), as





∑

k∈Ii

vkvk+r, i = 1, . . . ,M



 . (A.6)

But, for every k, vk and wk have the same distribution and thus the set of variables in
(A.6) has the same M -dimensional joint distribution as the set of variables in (A.1).

Example. Consider the situation in the example before the proof. We arrange the
variables in two chains w1w3, w3w5 and w2w4, w4w6. For the first chain, since 1 ∈ Ī
we rewrite w1w3 as −w1w̃3, (w̃3 = −w3), and w3w5 as w̃3w̃5 (w̃5 = −w5). For the
second chain, since 2 ∈ Ī we rewrite the elements as −w2w̃4 and w̃4w̃6, where we
have introduced the new variables w̃4 = −w4 and w̃6 = −w6. Rewriting the set (A.4)
in the new notation we obtain {0, w̃3w̃5+w̃4w̃6+w1w̃3+w2w̃4, w1w̃3+w2w̃4, w̃3w̃5+
w̃4w̃6}, which we see is a reordering of (A.3) with w̃i substituting wi for i = 3, . . . , 6.

The next proposition proves that the variables in the set (A.1) exhibit a precise
ordering property.

Proposition A.2 Let {wt} be a sequence of independent random variables with
symmetric distribution around zero and such that Pr{wt = c} = 0, for any t and any
real c. Let I = {1, . . . , N}, and let G be a collection of subsets Ii ⊆ I, i = 1, . . . ,M ,
forming a group under the symmetric difference operation, and pick an integer r.
Then, the set of variables in (A.1) has the following property: each variable in the
set has the same probability 1/M to be in the j-th position (i.e. there are exactly
j − 1 other variables in the set (A.1) smaller than the variable under consideration)
and this holds for any choice of j between 1 and M .
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The condition Pr{wt = c} = 0 in the proposition statement serves the purpose of
avoiding ties: it prevents variables from having the same value on sets of nonzero
probability. This condition follows e.g. by assuming that the variables wt admit a
density.

If we consider the situation described in the example before the proof of Proposition
A.1, Proposition A.2 says that the variables in (A.3) have the same probability of
being in a generic j-th position. In other words, if we were asked to bet on one
of the variables to be e.g. smaller than all others, our probability of success would
not be affected by the choice we make and each of the four variables have exactly
probability 1/4 to be the smallest.

Proof. Pick a variable in the set (A.1), say
∑

k∈Ī wkwk+r, Ī ∈ G. This variable is in
the j-th position if the inequality

∑

k∈Ī

wkwk+r >
∑

k∈Ii

wkwk+r

is satisfied for exactly j − 1 choices of Ii ∈ G. This is equivalent to say that

∑

k∈Ii

wkwk+r −
∑

k∈Ī

wkwk+r < 0

holds for j − 1 selections of Ii. Now, using Proposition A.1 we have:

Pr





∑

k∈Ii

wkwk+r −
∑

k∈Ī

wkwk+r < 0 for j − 1 selections of Ii





= Pr





∑

k∈Ii

wkwk+r < 0 for j − 1 selections of Ii



 ,

showing that the probability of the event on the left hand side does not depend on
the chosen Ī, since the right hand side does not contain Ī. So, any Ī has the same
probability that

∑
k∈Ī wkwk+r is in the j-th position and, there being M possible

choices of Ī, the probability is 1/M .

We now come to the proof of (2) in Theorem 3.1. Consider the event
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A=





∑

k∈Ii

wkwk+r < 0 for at most q − 1 selections of Ii





⋃





∑

k∈Ii

wkwk+r > 0 for at most q − 1 selections of Ii





= {0 is in the 1-st or 2-nd or · · · or q-th position} ∪
{0 is in the M -th or (M − 1)-th or · · · or (M − q + 1)-th position}

In view of Proposition A.2 (note that 0 is one variable in set (A.1)),

Pr(A) = 2q/M. (A.7)

Note now that wt = εt(θ
0), so that

∑
k∈Ii

wkwk+r = gε
i,r(θ

0) (recall the definition
of gε

i,r(θ) in the ”Procedure for the construction of Θε
r”). Suppose that we have

extracted a probabilistic outcome s in A. Then, either gε
i,r(θ

0) > 0 for at most q− 1
selection of Ii or it is less than 0 for at most q − 1 selection of Ii, so that θ0 /∈ Θε

r

(recall the construction of Θε
r). Vice versa, if s /∈ A, then gε

i,r(θ
0) > 0 for at least

q selection of Ii and it is less than 0 again for at least q selection of Ii, yielding
θ0 ∈ Θε

r. Using (A.7), the conclusion is drawn that Pr{θ0 ∈ Θε
r} = 1 − 2q

M
and the

proof is completed.

A.1.2 Proof of (3)

The proof is similar to that of (2), but simpler, and we only sketch the differences.

For Θu
s , one observes that a result similar to Proposition A.2 holds showing that each

variable in the set
{∑

k∈Ii
wk+s, i = 1, . . . ,M

}
has the same probability 1/M to be in

the generic j-th position. This result can be proven similarly to Proposition A.2, even
though the proof is more straightforward. Keeping in mind that {ut} and {wt} are
independent, we can treat ut as if it were deterministic (technically, all derivations
can be carried out conditionally on the σ-algebra generated by the process {ut}) and

hence each variable in the set
{∑

k∈Ii
ukwk+s, i = 1, . . . ,M

}
has the same probability

1/M to be in the generic j-th position as ukwk+s is also symmetrically distributed
around 0. Then, one follows the same reasoning as in the proof of (2) to conclude
that Pr{θ0 ∈ Θu

s} = 1 − 2q
M

.

A.2 Proof of Theorem 4.1

In the proof, we use the following lemma, taken from Åström and Söderström (1974).

Lemma A.3 Consider the function

f(z) =
g(z)

Π`
i=1(z − ui)ti

28



where g is analytic inside and on the unit circle, the numbers ui are distinct and
ti ≥ 1. Assume that

∮
f(z)zk−1dz = 0, k = 1, . . . , q,

where the integration path is the unit circle and q =
∑`

i=1 ti. Then, f is analytic
inside and on the unit circle.

We now turn to the proof of Theorem 4.1. Condition (5) can be re-written as

0 =
∫ π

−π
Φε(ω)eiωrdω

=
∫ π

−π

∣∣∣∣∣
A(e−iω, θ)

C(e−iω, θ)

C0(e−iω)

A0(e−iω)

∣∣∣∣∣

2

λ2
weiωrdω

=
∮

znA(z−1, θ)zpC0(z−1)

zpC(z−1, θ)znA0(z−1)
· A(z, θ)C0(z)

C(z, θ)A0(z)

λ2
w

i
zr−1dz

=
∮

g(z)

Π`
i=1(z − ui)ti

zr−1dz = 0, r = 1, . . . , n + p,

where g(z) = znA(z−1 ,θ)zpC0(z−1)A(z,θ)C0(z)
C(z,θ)A0(z)

λ2
w

i
is analytic inside and on the unit circle,

the numbers ui are the distinct zeros of zpC(z−1, θ)znA0(z−1) and ti is their multi-

plicity. Then, by applying Lemma A.3 with q = n + p, we conclude that g(z)

Π`
i=1(z−ui)

ti

is analytic inside and on the unit circle. In turn, this implies that the zeros of
zpC(z−1, θ)znA0(z−1) - which are all inside the unit circle - are cancelled by those of
znA(z−1, θ)zpC0(z−1). Since znA0(z−1) and zpC0(z−1) have no common zeros, this
gives C(z−1, θ) = C0(z−1) and A(z−1, θ) = A0(z−1), concluding the proof.

A.3 Proof of Theorem 4.2

In order to avoid notational cluttering, in this proof we write A for A(z−1, θ) or
A(e−iω, θ) (where the argument can be deduced from the context), and the same
convention applies to all other polynomials. Moreover, ’ ¯ ’ denotes complex conju-
gation, so that Ā = A(eiω, θ).

Note first that

εt(θ) =
A

C
yt −

B

C
ut =

AB0

CA0
ut +

AC0

CA0
wt −

B

C
ut =

AB0 − BA0

CA0
ut +

AC0

CA0
wt.

Since {ut} and {wt} are independent, condition (6) can be written as
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0=
∫ π

−π

AB0 − BA0

CA0
λ2

ue
iωsdω

=
∮

znAzmB0 − zmBznA0

zpCznA0

λ2
u

i
zs+p−m−1dz s = 1, . . . , n + m

=
∮

znAzmB0 − zmBznA0

zpCznA0

λ2
u

i
zs̃−1dz, s̃ = 1 + p −m, . . . , n + p. (A.8)

We distinguish two cases: p < m and p ≥ m.

Case 1: p < m. From (A.8), we have

∮
g(z)

Π`
i=1(z − ui)ti

zs̃−1dz = 0, s̃ = 1, . . . , n + p,

where g(z) = (znAzmB0 − zmBznA0)λ2
u

i
, the numbers ui are the distinct zeros of

zpCznA0 and ti is their multiplicity. Taking s̃ = 1, . . . , n + p, we have voluntarily
disregarded the equations in (A.8) valid for s̃ = 1+ p−m, . . . , 0. Then, by applying

Lemma A.3 with q = n + p, we conclude that g(z)

Π`
i=1(z−ui)

ti
is analytic inside and on

the unit circle. In turn, this implies that g(z) has the following structure:

g(z) = zpCznA0 ·
m−p−1∑

j=0

αjz
j. (A.9)

Indeed, the first factor zpCznA0 has to be present since the zeros of the denominator
zpCznA0 - that are all inside the unit circle - must be cancelled by zeros in the
numerator, while the second factor with unknown coefficients αj’s is introduced

to equalize the degree of g(z) = (znAzmB0 − zmBznA0)λ2
u

i
(which is n + m − 1 -

remember that zmB = b1z
m−1 + · · · + bm has degree m− 1) with that of (A.9).

We now go to consider the so far neglected equations in (A.8) valid for s̃ = 1 + p −
m, . . . , 0. Taking into account the expression of g(z) in (A.9), we have:

∮ m−p−1∑

j=0

αjz
j+s̃−1dz = (2πi)α−s̃ = 0, s̃ = 1 + p −m, . . . , 0,

which gives αj = 0, j = 0, . . . ,m−p−1, so concluding that g(z) = 0. Finally, recalling

that g(z) = (znAzmB0−zmBznA0)λ2
u

i
and that A0 and B0 have no common factors,

this yields A = A0 and B = B0.

Case 2: p ≥ m. Consider the equations in (A.8), valid for s̃ = 1+ p−m, . . . , n+ p.
If p = m, s̃ starts from 1. If p > m, s̃ starts from 1 + p − m > 1. Yet, the range
of validity of (A.8) can be extended to s̃ = 1, . . . , n + p in the latter case too. The
reason is that for s̃ = 1, . . . , p − m, the degree of the numerator of the integrand
in (A.8) is no larger than n + p − 2 while the degree of the denominator is n + p.
Since the denominator has all its zeros inside the unit circle, we can then express
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the integrand as a Taylor expansion
∑∞

j=2 βjz
−j, where convergence takes place in a

co-disk containing the unit circle. Integrating such a series gives the desired result
that the integral is zero.

Now, from the equations

0 =
∮

znAzmB0 − zmBznA0

zpCznA0

λ2
u

i
zs̃−1dz, s̃ = 1, . . . , n + p,

by virtue of Lemma A.3 we again conclude that znAzmB0−zmBznA0

zpCznA0 is analytic inside
and on the unit circle. But, the numerator has degree n + m− 1 ≤ n + p − 1 which
is smaller than the degree n + p of the denominator, so the only possibility for this
function to be analytic inside and on the unit circle is that it is zero. The conclusion
that A = A0 and B = B0 then follows as for the case where p < m.

We now turn to conditions (7). Since, as we have proved, A = A0, they write:

0 =
∮

zpC0

zpC
· C̄0

C̄

λ2
w

i
zr−1dz, r = 1, . . . , p.

The fact that C = C0 follows along the same line as in the proof of Theorem 4.1.
This concludes the proof.

A.4 Proof of Theorem 4.3

ut has spectrum Φu(ω) = Q(e−iω)Q(eiω)λ2
ν and L(z−1) = Q(z−1)−1Q(z)−1 so that

condition (8) gives

0=
∫ π

−π

AB0 − BA0

CA0
L̄Φue

iωsdω =
∫ π

−π

AB0 − BA0

CA0
L̄QQ̄λ2

νe
iωsdω

=
∫ π

−π

AB0 − BA0

CA0
λ2

νe
iωsdω,

and the rest follows as in the proof of Theorem 4.2.

A.5 Gordon’s construction of the incident matrix of a group

Given I = {1, . . . , N}, the incident matrix for a group {Ii} of subsets of I is a
matrix whose (i, j) element is 1 if j ∈ Ii and zero otherwise. In Gordon (1974),
the following construction procedure for an incident matrix R̄ is proposed where
I = {1, . . . , 2l − 1} and the group has 2l elements.
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Let R(1) = [1], and recursively compute (k = 2, 3, . . . , l)

R(2k − 1) =




R(2k−1 − 1) R(2k−1 − 1) 0

R(2k−1 − 1) J − R(2k−1 − 1) e

0T eT 1




where J and e are, respectively, a matrix and a vector of all ones, and 0 is a vector
of all zeros. Then, let

R̄ =




0T

R(2l − 1)


 .

Gordon (1974) also gives construction of groups when the number of data points is
different from 2l − 1.
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