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Abstract

In this paper, the problem of estimating uncertainty regions for identi!ed models is considered. A typical approach in this context is to
resort to the asymptotic theory of Prediction Error Methods for system identi!cation, by means of which ellipsoidal uncertainty regions
can be constructed for the uncertain parameters.

We show that the uncertainty regions worked out through the asymptotic theory can be unreliable in certain situations, precisely
characterized in the paper.

Then, we critically analyze the theoretical conditions for the validity of the asymptotic theory, and prove that the asymptotic theory
also applies under new assumptions which are less restrictive than the usually required ones. Thanks to this result, we single out the
classes of models among standard ones (ARX, ARMAX, Box–Jenkins, etc.) where the asymptotic theory can be safely used in practical
applications to assess the quality of the identi!ed model.

These results are of interest in many applications, including iterative controller design schemes.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a data-generating dynamical system P and a
model P̂ of it estimated from data. It has been fully recog-
nized in the literature that the estimated model P̂ is of little
use without a statement on its quality. In other words, it is
fundamental to characterize the error model, i.e. the distance
between P and P̂ (see e.g. Bittanti & Picci, 1996; Goodwin,
1999; Kosut, Goodwin, Polis, 1992; Ljung, 1999b; Ninness
& Goodwin, 1995; SBoderstrBom & CAstrBom, 1995).
The most commonly used tool for evaluating the error

model is the asymptotic theory of Prediction Error Meth-
ods (PEM) for system identi!cation. It returns ellipsoidal
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con!dence regions in the space of parameters such that
the true system parameters belong to this ellipsoid with a
speci!ed probability (see e.g. Ljung, 1999a; SBoderstrBom &
Stoica, 1989).
The main advantage of using the asymptotic theory is

that the con!dence regions can be easily computed from the
available data. Moreover, these con!dence regions are often
reliable and give a tight description of uncertainty.
On the other hand, asymptotic theory has its own draw-

backs too.
First, its applicability substantially requires the absence

of un-modelled dynamics, while in real applications this
assumption never applies (even if in many cases it does
approximately). The importance of undermodelling is wit-
nessed by many recent contributions such as Goodwin,
Gevers, and Ninness (1992); Hakvoort and Van den Hof
(1997); Hjalmarsson and Ljung (1992); Ljung and Guo
(1997); Ljung (1999b,2000,2001); Reinelt, Garulli, and
Ljung (2002) and Tjarnstrom and Ljung (1999). In order
to overcome the problems encountered when the system
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order is unknown, certain formulas valid for both the model
order and the number of data points growing unbounded
have been derived, see e.g. Ljung (1985,1999a), Ninness,
Hjalmarsson, and GustaLson (1999) and Xie and Ljung
(2001).
A second drawback is that the asymptotic theory is rigor-

ously correct only when the number of data tends to in!nity
in such a way that the total amount of information on the
system parameters grows unbounded. On the other hand, in
real applications it often happens that the amount of excita-
tion is substantial for certain parameters while there is a lack
of information on other parameters (poor excitation). As a
consequence, the asymptotic theory is used as a heuristic
tool for the model quality evaluation.
In this paper, we focus attention on the problems aris-

ing when data are not informative enough, and one of our
aims is to pinpoint the situations where the asymptotic the-
ory may fail to provide sensible results with poor excitation.
In these situations, the estimated parameters are subject to
large uncertainty levels and the asymptotic theory can as
well provide misleading results. This is quite a severe lim-
itation since assessing the model quality is especially im-
portant for large uncertainty levels. Indeed, in the opposite
case, the estimated model can be safely used in place of the
true system with no particular need for an evaluation of its
uncertainty. This leads to our !rst contribution:

(i) By way of an example, we explain why the asymptotic
theory may fail for the model quality evaluation in
presence of a high level of uncertainty.

We also note that this result is relevant to iterative control
schemes where the closed-loop bandwidth is very restricted
at the !rst iterations leading to poorly exciting signals and, in
turn, to wide uncertainty in the estimated model (see Bittanti,
Campi, Garatti, 2002; Gevers, 2000; Lee, Anderson, Kosut,
& Mareels, 1993; Van den Hof & Schrama, 1995).
We next move to establish the situations where the asymp-

totic theory does not suLer from the problem highlighted
in point (i) above, and it turns out that the asymptotic the-
ory provides sensible results or not depending on the model
class in which the data-generating system is identi!ed. Our
second contribution can be summarized as follows:

(ii) We single out the model classes among standard ones
(ARX, ARMAX, Box–Jenkins, etc.) such that the
asymptotic theory can be safely used to assess model
quality, even in presence of a high level of uncertainty.

This latter result is made possible by a new asymptotic result,
valid under relaxed assumptions, also worked out in this
paper.
A diLerent approach can be adopted in the analysis of un-

certainty in the estimate by explicitly considering the !nite-
ness of the data record. For some recent contributions along
this line see Campi and Weyer (2002); Campi, Weyer, and
Ooi (2002) and Weyer and Campi (2002).

1.1. Structure of the paper

In Section 2, our working assumptions are stated and a
brief summary of the classical asymptotic theory is given.
This allows us to keep the paper self-contained. Section 3
delivers the example as explained in point (i) above. After a
mid-paper conclusion section (Section 4), Section 5 contains
the new asymptotic result valid under relaxed assumptions.
In Section 6, we move to consider the quality assessment
with !nite data points and show the relevance of the theorem
in Section 5 to this purpose. Finally, in Section 7 the classes
of models to which the asymptotic theory can be safely
applied for model quality estimation are singled out, while
some illustrative simulations are given in Section 8.

2. Asymptotic theory of PEM

In this section we provide a compendium of the asymp-
totic theory of PEM for system identi!cation with the
objective of clarifying the context of our results. For a
more comprehensive description of the subject, we refer the
reader to the literature (see e.g. Ljung, 1999a; SBoderstrBom &
Stoica, 1989).

2.1. Mathematical setting

Let

M# = {ŷ(t; #) =Wu(z−1; #)u(t)

+Wy(z−1; #)y(t); #∈	 ⊆ Rn} (1)

be a parameterized set of predictor models, where
Wu(z−1; #) and Wy(z−1; #) satisfy the following assump-
tion.

Assumption 1. Wu(z−1; #) and Wy(z−1; #) are rational
strictly proper (as functions in z) transfer functions whose
coeNcients are functions of a parameter #∈	, where 	
is a nonempty compact set in Rn. The coeNcients are four
times diLerentiable with respect to # and the fourth deriva-
tives are continuous. Moreover, Wu(z−1; #) and Wy(z−1; #)
are asymptotically stable, ∀#∈	.

Remark 1. In the classical asymptotic theory, the coeN-
cients of the transfer functions Wu(z−1; #) and Wy(z−1; #)
are usually only required to be twice diLerentiable with
continuous second derivatives. Here, the assumption has
been strengthened in view of our further results. It is per-
haps worth mentioning that for standard identi!cation model
classes (ARX, ARMAX, Box–Jenkins, etc.) the coeNcients
are the parameters themselves, so that the diLerentiability
assumption is not an issue.

u and y are respectively the input and output of the system,
and are generated according to the following scheme.



S. Garatti et al. / Automatica 40 (2004) 1319–1332 1321

Assumption 2. Processes u and y are given by

u(t) = Gu(z−1)r(t) + Hu(z−1)e(t); (2)

y(t) = Gy(z−1)r(t) + Hy(z−1)e(t); (3)

where Gu(z−1), Gy(z−1), Hu(z−1) and Hy(z−1) are asymp-
totically stable rational transfer functions. e(t) is a zero mean
independent process with constant variance equal to �2 ¿ 0
and such that supt E[|e(t)|4+�]¡∞, for some �¿ 0. r(t) is
a wide sense stationary, ergodic, stochastic, external input
sequence. e(t) and r(t) are independent.

Remark 2. The results given below can be proved even
if r(t) is a bounded deterministic external input sequence.
Considering a stationary, ergodic reference as in Assumption
2 has been preferred since it simpli!es the presentation.

Remark 3. Note that Assumption 2 encompasses closed-
loop as well as open-loop con!gurations. In the latter,
Hu(z−1) = 0 and Gu(z−1) = 1.

We also require that the data-generating system belongs
to the class of models M#, that is:

Assumption 3. There exists a parameter #0, which is an
interior point of 	, such that

y(t) =Wu(z−1; #0)u(t) +Wy(z−1; #0)y(t) + e(t): (4)

Remark 4. When the data-generating system does not be-
long to the assumed class of model M#, the system-model
mismatch comprises two terms: a variance term and a bias
term. In this case the asymptotic theory applies so as to only
assess the variance term at the price of a more complicated
formulation that accounts for the correlation in the residue
due to the bias term. See e.g. Hakvoort and Van den Hof
(1997) and Hjalmarsson and Ljung (1992).

Parameter # is estimated by the minimization of the stan-
dard quadratic cost:

VN (#) =
1
N

N∑
t=1

�(t; #)2;

where N is the number of data points and �(t; #) = y(t) −
ŷ(t; #) is the prediction error.
Thus, the estimate is

#̂N = argmin
#∈	

VN (#):

The asymptotic cost criterion is QV (#) = E[�(t; #)2], and
we will denote by 	∗ the corresponding set of minimizers
within the feasible set 	, that is

	∗ = {argmin
#∈	

QV (#)}:

In the classical asymptotic theory it is assumed that QV (#)
has a unique minimizer:

Assumption 4. The set 	∗ has cardinality equal to 1.

Remark 5. Under Assumption 3, it is easy to demonstrate
that the parameter #0 always belongs to the set 	∗. There-
fore, Assumption 4 can be rewritten as 	∗ = {#0}.

2.2. Asymptotic theory results

Let

QN =
(1=N )

∑N
t=1  (t; #̂N ) (t; #̂N )′

(1=N )
∑N

t=1 �(t; #̂N )2
;

where  (t; #) denote (d=d#)�(t; #), and consider the follow-
ing ellipsoid centered in #̂N :

E(r) = {#: (#̂N − #)′QN (#̂N − #)6 r}; (5)

where r is a real positive number called the size of the
ellipsoid.
The standard result of the asymptotic theory writes as

follows:

Theorem 1. Let p∈ [0; 1) and assume that (d2=d#2) QV (#0)
¿ 0. Under Assumptions 1, 2, 3 and 4, it follows that:

lim
N→∞

P
{
#0 ∈E

(
�(p)
N

)}
= p;

where �(p) is the inverse of the function p=
∫ �
0 f�2 (x) dx

andf�2 (x) is the probability density of a �2 random variable
with n degrees of freedom.

The above theorem suggests how to select r so as to
obtain an ellipsoidal con!dence region for #0 of pre-assigned
asymptotic probability p. The proof of Theorem 1 can be
found in Chapter 9 of Ljung (1999a).
The following result is obtained immediately from Theo-

rem 1.

Theorem 2. Assume that (d2=d#2) QV (#0)¿ 0. Under As-
sumptions 1, 2, 3 and 4, for any sequence �N which tends
to ∞ as N → ∞, we have that

lim
N→∞

P
{
#0 ∈E

(�N

N

)}
= 1:

Remark 6. As a natural choice for �N , consider �N =
�(p)(1 + �N ), for some p, with �N → ∞ as N → ∞, that
is, the ellipsoid size is inSated by the factor 1 + �N with
respect to Theorem 1. If �N =N → 0, when N → ∞, the
ellipsoid size still tends to zero, though with a slower rate
than the ellipsoid of Theorem 1. Theorem 2 says that, no
matter how slow such an inSation takes place, the true pa-
rameter #0 will asymptotically belong to the ellipsoid with
con!dence 1. A good choice of �N is reliant on the speci!c
problem at hand and its value is dictated by experience.

In real applications, the asymptotic theory is often used to
generate con!dence regions for the system parameters, even
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Fig. 1. The real plant.

if, as is obvious, such a theory applies only approximately
since the evaluation is based on a !nite number of data
points. Though it is common experience that the results are
still reliable in many cases even for a moderate data sample,
it is also true that in other situations the asymptotic theory
may fail to provide sensible indications, even for a large set
of data points.
The goal of the present paper is to give a clearcut view of

the situations in which this actually occurs and to pinpoint
the model classes for which the asymptotic theory can be
safely used. We start in the next section with an example
clarifying where the trouble may come from in the use of
the asymptotic theory.

3. An example where the asymptotic theory provides
misleading results with poorly informative data

Consider the following data-generating system:

y(t) =
b0z−1

1 + a0z−1 u(t) + (1 + h0z−1)e(t); (6)

where a0 = −0:7, b0 = 0:3, h0 = 0:5 and e(t) ∼ WGN (0; 1)
(WGN= White Gaussian Noise). In addition, the plant is
operated in closed loop as shown in Fig. 1. It is a trivial task
to verify that the closed loop system is stable. N = 10; 000
data points (u; y) have been collected when the system was
operated with a reference signal r(t) ∼ WGN(0; 1), inde-
pendent of e(t) (note that the variance of the reference sig-
nal is very small as compared to the noise variance—poor
excitation).
Based on the (u; y) measurements, a full-order model for

the data-generating system (6) has been identi!ed and a con-
!dence region E(�(p)=N ), p=0:99, has also been estimated
through the asymptotic Theorem 1.
The amplitude Bode diagrams of the identi!ed model and

of the real system u to y transfer functions have been plotted
in Fig. 2.
From the plot, a wide mismatch between the real plant and

the identi!ed model is apparent. This is not surprising, since
the reference signal is poorly exciting. On the other hand,
we would also expect that the uncertainty region supplied
by the asymptotic theory is wide.
Fig. 3 displays the con!dence region E(�(p)=N ) in the

frequency domain. Surprisingly, the con!dence region con-
centrates around the identi!ed model, showing that the

10
 −1

10
0

 −20

 −15

 −10

−5

0

5

10

ω

dB

Fig. 2. Amplitude Bode plot of the real plant (- -) and of the estimated
model (—).
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Fig. 3. Uncertainty region of the estimated model vs. real plant Bode
diagram.

model quality assessment is completely unreliable in this
case.
It is perhaps interesting to note that the presented situation

—though admittedly arti!cial—is a simpli!cation of what
often happens in practical identi!cation, where poor excita-
tion is due to a restricted bandwidth of the closed-loop sys-
tem. The simpli!ed situation of a poorly exciting external
signal r(t) has been adopted here for ease of presentation.

3.1. Explanation

Let us brieSy explain the mechanism that made the model
quality estimation unreliable in the present situation.
The explanation becomes easier if we assume that the

reference signal is exactly equal to zero. For this reason we
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concentrate for a moment on the case r(t)=0 and we return
to the case where r(t) has a small variance further below.
For r(t) = 0, a simple computation shows that:

QV (#) =
1
2#

∫ #

−#

∣∣∣∣1 + h0z−1

1 + hz−1 · 1 + (a+ b)z−1

1 + (a0 + b0)z−1

· 1 + a0z−1

1 + az−1

∣∣∣∣2
z=ej!

d!; (7)

where #= [a b h]′.
The minimal value of QV (#) is 1 and it is easy to see that

the minimum is achieved if and only if every monomial
at the numerator is cancelled by another monomial at the
denominator. This happens only in the following two cases:

a∗
1 + b∗

1 = a0 + b0 a∗
2 + b∗

2 = a0 + b0

a∗
1 = a0 a∗

2 = h0

h∗
1 = h0 h∗

2 = a0

Thus, there are just two distinct minima of the asymptotic
cost criterion, one of which corresponds to the true system.
Fig. 4 represents QV (#) along the line connecting the two

minimizers.
Turn now to the case where r(t) is a WGN (0; 10−6), that

is, to the actual situation. Here, the minimizer of the asymp-
totic cost criterion QV (#) is unique, as the asymptotic theory
prescribes, and coincides with #0. The other minimum be-
comes a local minimum. Yet, the diLerence between the val-
ues taken by QV (#) at the two minimizers will be very small.
When identi!cation is performed in practice, the empiri-

cal cost VN (#) has to be used in place of QV (#). Since a !nite
number of data points is available, VN (#) is only an impre-
cise replica of QV (#) so that the global minimizer of VN (#)
may as well happen to be near the minimizer of QV (#) which
does not correspond to the real plant parameter (this is what
happened in our simulation results). If so, #̂N gets trapped
far from #0.

It is important to reassert the fact that such a behavior
is a consequence of the poorness of the available infor-
mation. In turn, this is primarily due to the poor excita-
tion conveyed by each single data point (since r(t) is very
small) and secondarily to the !niteness of the number of data
points (so that the total amount of information in the data is
limited).
In order to explain why the con!dence region provided

by the asymptotic theory is not reliable, it is, at this point,
necessary to recall an aspect of the asymptotic theory which
is relevant to the present discussion (see Ljung, 1999a;
SBoderstrBom & Stoica, 1989 for details).
Theorems 1 and 2 are both based on the following fun-

damental expansion:

0 =
√
N

d
d#

VN (#̂N )

=
√
N

d
d#

VN (#0) +
d2

d#2VN (%N )
√
N (#̂N − #0): (8)

This equation is nothing but the Taylor expansion of
(d=d#)VN (where all terms are inSated by the coeNcient√
N and %N is a point between #0 and #̂N ). The evaluation

of the con!dence region for #̂N −#0 is carried out by observ-
ing that: !rst,

√
N (d=d#)VN (#0) is asymptotically a zero

mean Gaussian random variable; second, (d2=d#2)VN (%N )
converges to (d2=d#2) QV (#0), since #̂N → #0 so that %N

is squeezed towards #0. The quantity (d2=d#2) QV (#0) is
further approximated by (d2=d#2)VN (#̂N ) leading to the
asymptotic Theorems 1 and 2.
If #̂N is suNciently close to #0, this last approximation

concerning the second derivative has a negligible eLect.
However, in the previous example this is not so, since the
estimate #̂N is trapped far from #0 and this is the reason for
the misleading result as shown in Fig. 3.
Let us explain more in detail the mechanism through

which such a misleading result is generated.
Due to the eLect of the inSating coeNcient

√
N ,

√
N (#̂N −

#0) takes on quite a large value. Despite this, Eq. (8) holds
true (Eq. (8) is always true since it contains no approxi-
mation). In fact, in (8) (d2=d#2)VN is computed in a point
%N between #0 and #̂N where (d2=d#2)VN (%N ) is almost
singular, leading to a term (d2=d#2)VN (%N )

√
N (#̂N − #0)

of moderate magnitude. Unfortunately, as explained before,
%N is not accessible and (d2=d#2)VN (%N ) is substituted by
(d2=d#2)VN (#̂N ) which turns out to be well positive de!nite.
This leads to the mistaken conclusion that #̂N − #0 is small
and to the unreliable uncertainty region shown in Fig. 3.
Note that a second interpretation of the obtained result is

also possible: For r(t)= 0 the found region is in fact a con-
!dence region around #∗

2 , the spurious minimizer diLerent
from #0. When r(t) =WGN (0; 10−6) the found con!dence
region can be interpreted as a perturbation of the previous
one.



1324 S. Garatti et al. / Automatica 40 (2004) 1319–1332

4. Mid-paper conclusions

The results of the previous sections can be summarized
as follows:

(i) The classical asymptotic theory requires that the
asymptotic cost criterion has a unique minimizer
#∗ = #0; moreover if data are poorly informative so
that #̂N is not close enough to #∗ (wide uncertainty),
then the resulting uncertainty evaluation by means
of E(�(p)=N ) can be unreliable, i.e. the asymptotic
theory results do not hold, even approximately.

(ii) Due to (i), a blind application of the asymptotic theory
can lead to misleading results.

In the next sections our goal is to study the situations where
the asymptotic theory provides reliable results, even when
#̂N is far from #0. To this purpose, we proceed along the
following lines:

(iii) We extend the asymptotic theory results so as to en-
compass the case of multiple minimizers of the asymp-
totic cost criterion QV (#) (Section 5).

(iv) Thanks to the result of point (iii), we show that—
if a suitable additional condition on the model class
is satis!ed—then the asymptotic theory can be safely
used even for a high level of uncertainty, namely for
#̂N far from #0 (Section 6).

(v) We establish which standard model classes (ARMAX,
Box–Jenkins, etc.) satisfy the additional condition of
point (iv) (Section 7).

5. A new asymptotic result

In this section, we provide a new asymptotic result which
generalizes the standard asymptotic theory of Section 2. The
fact that this result is useful when data are poorly informative
is discussed in Section 6.
Assumption 4 in Section 2 is here replaced by the follow-

ing one.

Assumption 4′. 	∗=S∩	, whereS is an aNne subspace
of the parameter space Rn.

Moreover, #̂N → #∗ (not necessary equal to #0) almost
surely, where #∗ ∈	∗ is an interior point of 	.

Remark 7. Note that Assumptions 1, 2, 3 and 4′ are more
general than Assumptions 1, 2, 3 and 4. Indeed, Assumption
4 implies that	∗={#0}, so that the !rst part of Assumption
4′ holds with S = {#0}, which is an aNne subspace (it is
the origin of Rn translated).
As for the second part of Assumption 4′, it holds under

Assumptions 1, 2, 3 and 4 with #∗ = #0.

Remark 8. In Assumption 4 the important fact is that 	∗

is linearly structured (apart from the fact that it is con!ned
to 	).

In the following Theorem 3 we show that the asymptotic
Theorem 2 can be preserved in the present setting.

Theorem 3. Assume that (d2=d#2) QV (#∗) is positive de!nite
along the directions of S⊥ (the subspace orthogonal to S).
Under Assumptions 1, 2, 3 and 4′, for any sequence �N

which tends to ∞ as N → ∞, we have that (see (5) for the
de!nition of E(·)):
lim

N→∞
P

{
#0 ∈E

(�N

N

)}
= 1: (9)

Proof. See the Appendix.

Remark 9. In contrast to Theorems 1 and 2, in Theorem 3
the positive de!niteness of (d2=d#2) QV (#∗) is only required
in the directions of S⊥. In this connection, one could note
that (d2=d#2) QV (#∗) is in fact singular in the direction of S
due to Assumption 4′.

Remark 10. Allowing for multiple minimizers of QV (#),
as is done in Theorem 3, permits to cope with situations
where there is a lack of excitation (see Section 6 for further
discussion).

Remark 11. Similarly to Remark 4 we mention here that the
results of the new asymptotic Theorem 3 can be extended to
the case in which the model class does not contain the true
system. Clearly, in full analogy with Remark 4 this allows
one to assess the variance term only, so that the ensuing
results are perhaps less interesting than in the full order case.
Details are omitted as a complete discussion of the matter
would lead us too far a!eld.

6. Use of Theorem 3 in practice

As we have seen in Section 3, in certain cases applying
the asymptotic formulas to assess the quality of the identi!ed
model can lead to misleading conclusions.
Here, we want to show that, under an additional condition

on the model class, the asymptotic formulas can indeed be
safely used for such an evaluation. This conclusion is pos-
sible in the light of the new asymptotic result stated in the
previous section.
Let us go back for a moment to the example of Section 3.

There, if r(t) = 0, then QV (#) has two global isolated mini-
mizers. When we performed the identi!cation of the plant,
instead of minimizing QV (#) we had of course to resort to
its empirical counterpart VN (#); moreover, r(t) was small,
but not equal to 0. Thus, the actual identi!cation optimiza-
tion setting can be seen as a perturbed setting with respect
to the ideal one where one minimizes QV (#) with r(t) = 0.
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As we have seen, #̂N can possibly fall near the minimizer
of the ideal setting which does not correspond to the true
system. If so, the asymptotic formulas lead to computing a
deceivingly small uncertainty region.
We now introduce the following additional condition on

the model class:

Condition 1. Independently of the level of excitation in
the signals, the set of the minimizers of QV (#) is an aNne
subspace.

Remark 12. Condition 1, as is obvious, can be rewritten
as For every excitation level of the signals, there exists an
a8ne subspace S such that 	∗ = S ∩ 	. However, the
reader should note that this requirement is diLerent from the
!rst part of Assumption 4′ where one requires that	∗=S∩
	 only for 	∗ arising in the particular operating condition,
i.e. for a !xed level of excitation of the input signal.

Now, suppose that a model class ful!lling Condition 1 is
used. If we are in an ideal situation with a complete lack of
excitation, then QV (#) is minimized in an aNne subspace, say
S, and Theorem 3 can be applied to this situation. If instead
we are in a real identi!cation setting where we minimize
VN (#) and, possibly, some extra degree of excitation is added
to the signals, this real setting can be seen as a perturbed
setting of the ideal one. Thus, though #̂N is far from #0,
Theorem 3 still holds approximately and formula (9) can be
used for the model quality assessment.
As it appears, the asymptotic theory can be safely applied

with poorly exciting data to the model classes for which the
set of minimizers of QV (#) is an aNne subspace. Studying
these classes is the subject of the next section, while simula-
tion examples illustrating the result are shown in Section 8.

7. Assessment of the model classes for which -V (#) is
minimized in an a1ne subspace

We treat separately two diLerent situations, namely
open-loop identi!cation and closed-loop identi!cation as
these two settings give diLerent results.

7.1. Open-loop identi;cation

By “open-loop identi!cation” we mean that the input sig-
nal u(t) and the noise signal e(t) are independent. Techni-
cally speaking, this is equivalent to taking Hu(z−1) = 0 and
Gu(z−1) = 1 in Assumption 2.

Theorem 4. LetM# be the Box–Jenkins (BJ) class of pre-
dictor models, i.e.

M# = {ŷ(t; #) = (1 − H (z−1; #)−1)y(t)

+H (z−1; #)−1G(z−1; #)u(t); #∈	};

where G and H are rational transfer functions, H (0; #) =
1; ∀#∈	, and # is a vector containing the numerator and
denominator polynomial coe8cients of G and H .

Suppose that the identi;cation is performed in open-loop
and that Assumptions 1, 2 and 3 are satis!ed.

Then, Condition 1 holds true.

Proof. See the Appendix.

Theorem 4 can be applied to Output Error (OE) models as
well, since OE is a particular case of BJ. In fact, we remind
that the OE predictor model class is

M# = {ŷ(t; #) = G(z−1; #)u(t); #∈	};
where G is a rational transfer function and # is the vector
of the numerator and denominator polynomial coeNcients
of G.
Even though Theorem 4 does not apply directly, a result

similar to Theorem 4 holds for ARX and ARMAX models
too. In this case,

M# =
{
ŷ(t; #) =

(
1 − A(z−1; #)

C(z−1; #)

)
y(t)

+
B(z−1; #)
C(z−1; #)

u(t); #∈	
}

;

where A, B andC are polynomials in z−1, A andC are monic,
and # is the vector of the coeNcients of these polynomials
(the ARX case corresponds to C(z−1; #) = 1). One should
note that in the ARX and ARMAX structures, G(z−1; #) and
H (z−1; #) are not freely parameterized as assumed in Theo-
rem 4. However, the proof of this theorem can be extended
with minor amendments to cover the ARX and ARMAX
cases.
It is perhaps worth mentioning that not all model struc-

tures satisfy Condition 1 even in open-loop. An example is
given by the model class

A(z−1; #)y(t) = G(z−1; #)u(t) + H (z−1; #)e(t) (10)

which corresponds to the predictor model class

M# = {ŷ(t; #) = (1 − A(z−1; #)H (z−1; #)−1)y(t)

+H (z−1; #)−1G(z−1; #)u(t); #∈	};
where A is a monic polynomial in z−1, G and H are rational
transfer functions, H (0; #) = 1; ∀#∈	, and # is the vector
of the coeNcients of A and of the numerator and denomina-
tor polynomial coeNcients of G and H . In Section 8, a sim-
ulation example involving this class of models is presented.

7.2. Closed-loop identi;cation

Suppose now that the system is operated in closed-loop
with a controller R as in Fig. 5.

Theorem 5. Suppose that the identi;cation is performed in
closed-loop and that Assumptions 1, 2 and 3 are satis;ed.
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Fig. 5. Closed loop system.
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Fig. 6. Amplitude Bode plot of the real plant (- -) and of the estimated
model (—).

Then, Condition 1 holds true for the ARMAX and OE
classes of models.

Proof. See the Appendix.

It has to be noted that, when identi!cation is performed
in closed-loop, the Box–Jenkins structure does not meet
Condition 1 in general. In fact, the example presented in
Section 3 was based on a Box–Jenkins model.

8. Simulation examples

8.1. Example—BJ model of Section 3 in open-loop

Consider again the data-generating system described in
(6), but suppose now that the system is operated in open-loop
with an input signal u(t) ∼ WGN (0; 10−6), independent of
e(t). A full order model has been identi!ed by means of
the BJ model class with N = 10; 000. An ellipsoidal con!-
dence region E(�N =N ), �N = �(p), p= 0:99, has been also
estimated.
The identi!ed model is shown in Fig. 6. Again, as in

Section 3, the model presents a large mismatch with the true
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Fig. 7. Uncertainty region of the estimated model.

system since the noise-to-signal ratio is large. Fig. 7 displays
E(�N =N ) in the frequency domain.

The uncertainty region is very scattered in this case, and
covers the gap between the identi!ed model and the true
plant. Thus, the estimated uncertainty is reliable, in agree-
ment with Theorem 4.

8.2. Example—a model class which does not meet
Condition 1 in open-loop

Consider now the following data-generating system:

(1 + a0z−1)y(t) = b0z−1u(t) +
1

1 + h0z−1 e(t); (11)

where a0 =−0:7, b0 = 0:3, h0 = 0:5 and e(t) ∼ WGN (0; 1).
We have identi!ed a full order model when the plant

is operated in open-loop with a constant (poorly exciting)
input signal u(t) = 1, ∀t, and N = 10; 000. An ellipsoidal
con!dence region E(�N =N ), �N = �(p), p=0:99, has been
also estimated.
System (11) belongs to the model class (10) and falls out-

side the realm of applicability of Theorem 4. The computed
uncertainty region is displayed in Fig. 8, showing that the
asymptotic theory provides unreliable results. As a matter
of fact it is not diNcult to see that Condition 1 is violated
in this case. Indeed, a simple computation shows that:

QV (#) = |1 + h|2
∣∣∣∣ b0

1 + a0
− b

1 + a

∣∣∣∣2 + 1
2#

∫ #

−#

∣∣∣∣ 1 + hz−1

1 + h0z−1

· 1 + az−1

1 + a0z−1

∣∣∣∣2
z=ej!

d!;

where #= [a b h]′.
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Fig. 8. Uncertainty region of the estimated model.

The minimal value of QV (#) is achieved only in the fol-
lowing two points:
b∗
1 = 1 + a∗

1 b∗
2 = 1 + a∗

2

a∗
1 = a0 a∗

2 = h0

h∗
1 = h0 h∗

2 = a0

and, therefore, Condition 1 does not hold.

9. Concluding remarks

In this paper we have considered the problem of assess-
ing the quality of identi!ed models in a “Prediction Error”
framework. Two main facts have been pointed out:

• In case of large uncertainty, the con!dence regions sup-
plied by the asymptotic theory may be unreliable;

• in spite of the presence of large uncertainty, the same
con!dence regions can be safely used if an extra condition
holds true for the model class used in the identi!cation
procedure.

Moreover, we have provided a classi!cation of the standard
model classes (ARX, ARMAX, Box–Jenkins, etc.) which
satisfy the extra condition.
The results of this paper can possibly be extended to new

directions so as to cover other settings of interest in system
identi!cation. In particular, one could consider correlation
approaches (e.g. instrumental variable methods), that play
an important role in a number of applications.
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Appendix A. Proofs of the results

A.1. Proof of Theorem 3

We need a preliminary result.

Lemma 1. Let Q# be a minimizer of QV (#). Then, under
Assumptions 1, 2, 3, it holds that

�(t; Q#) = e(t) almost surely:

Proof. Since ŷ(t; #) depends on data up to time t − 1 only
(see Assumption 1), predictor ŷ(t; #) and e(t) are indepen-
dent for any #.
Therefore, thanks to Assumption 3, we obtain that

QV (#) = E[(e(t) + ŷ(t; #0) − ŷ(t; #))2]

= E[e(t)2] + E[(ŷ(t; #0) − ŷ(t; #))2]:

Since Q# minimizes QV (#), the term E[(ŷ(t; #0) − ŷ(t; Q#))2]
must be equal to 0 and this implies that ŷ(t; #0)− ŷ(t; Q#)=0
almost surely.
Finally, �(t; Q#) = y(t) − ŷ(t; Q#) = y(t) − ŷ(t; #0) = e(t)

almost surely.

Proof of Theorem 3. Recall that, by de!nition (5) of E(·),
the condition

#0 ∈E
(�N

N

)
is equivalent to

(#̂N − #0)′QN (#̂N − #0)6
�N

N
:

As a consequence, the theorem can be proven by showing
that

lim
N→∞

N
�N

· (#̂N − #0)′QN (#̂N − #0) = 0 in probability:

(12)

Let d be the dimension of the aNne subspace S. Then,
let x∈Rd [z ∈Rn−d] be the !rst d [the remaining n − d]
coordinates of #, that is #=[x′ z′]′. Thus, #∗=[(x∗)′ (z∗)′]′,
#0 = [(x0)′ (z0)′]′ and #̂N = [(x̂N )′ (̂zN )′]′.
Without loss of generality we assume that S is parallel

to the hyperplane determined by the x coordinates (this can
be always achieved by a rotation of the axes). See Fig. 9
for a graphical representation of the parameter space when
	 ⊂ R2 and S is a straight line.
We now prove Eq. (12).
In order to avoid notational cluttering, throughout we omit

the t-dependence, e.g.  (#̂N ) stands for  (t; #̂N ). Moreover,∑
is used for

∑N
t=1.
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Fig. 9. The parameter space.

Since

QN =
(1=N )

∑
 (#̂N ) (#̂N )′

(1=N )
∑

�(#̂N )2

=

(1=N )
∑ �x(#̂N )�x(#̂N )′ �x(#̂N )�z(#̂N )′

�z(#̂N )�x(#̂N )′ �z(#̂N )�z(#̂N )′


(1=N )

∑
�(#̂N )2

;

where �x and �z denote the vector of derivatives of � with
respect to x and z coordinates, we have that
N
�N

· (#̂N − #0)′QN (#̂N − #0)

=
N

�N · (1=N )
∑

�(#̂N )2
1
N

∑ (
((x̂N − x0)′�x(#̂N ))2

+ 2(x̂N − x0)′�x(#̂N )(̂zN − z0)′�z(#̂N )

+ ((̂zN − z0)′�z(#̂N ))2
)

6
N

�N · (1=N )
∑

�(#̂N )2
1
N

∑ (
2((x̂N − x0)′�x(#̂N ))2

+ 2((̂zN − z0)′�z(#̂N ))2
)

=
N

�N · (1=N )
∑

�(#̂N )2

×
(
(x̂N − x0)′

2
N

∑
�x(#̂N )�x(#̂N )′(x̂N − x0)

+ (̂zN − z0)′
2
N

∑
�z(#̂N )�z(#̂N )′(̂zN − z0)

)
;

where in the second last step we have used the inequality
a2 + 2ab+ b26 2a2 + 2b2.
The term (1=N )

∑
�(#̂N )2 converges almost surely to

�2 = E[e(t)2]¿ 0 (see Ljung, 1978,1999a). Thus, all we
need to show is that:

N
�N · �2 (x̂N − x0)′

1
N

∑
�x(#̂N )�x(#̂N )′(x̂N − x0)

→ 0 in probability; (13)

N
�N · �2 (̂zN − z0)′

1
N

∑
�z(#̂N )�z(#̂N )′(̂zN − z0)

→ 0 in probability: (14)

Let us !rst prove Eq. (14).
We !rst consider the term (1=N )

∑
�z(#̂N )�z(#̂N )′ and

prove that

1
N

∑
�z(#̂N ) �z(#̂N )′ →

QV zz(x∗; z∗)
2

almost surely:

(15)

Note that (1=N )
∑

�z(x̂N ; ẑN )�z(x̂N ; ẑN )′ → E[�z(x∗; z∗)
�z(x∗; z∗)′] almost surely, as it follows from Assumptions 1,
2, 3 and 4′ (in fact, this result is a consequence of the uni-
form convergence of empirical means for linear predictors
—see Ljung (1978) and Theorem 2B.1 in Ljung (1999a)).
Thus, all we need to prove is

QV zz(x∗; z∗) = 2E[�z(x∗; z∗)�z(x∗; z∗)′]: (16)

We have that

d2

d#2
QV (#∗) = E[2 (#∗) (#∗)′] + E[2�(#∗)

d
d#

 (#∗)]:

Lemma 1 says that �(t; #∗) = e(t), which in turn gives
( depends on past data only)

E
[
2�(#∗)

d
d#

 (#∗)
]
= 2E[e(t)]E

[
d
d#

 (#∗)
]
= 0:

Thus, (d2=d#2) QV (#∗) = 2E[ (#∗) (#∗)′], and, by special-
izing this latter expression to the z component, we obtain
Eq. (16) which implies Eq. (15) as we have shown before.
Turn now to consider the term

√
N (̂zN − z0) and note that

it is equal to
√
N (̂zN − z∗) (in fact z0 = z∗).

We show that
√
N (̂zN − z∗) ∼ asG(0; 2�2 QV zz(x∗; z∗)−1): (17)

As a matter of fact, consider the following Taylor expansion
(which holds almost surely thanks to the diLerentiability
properties of transfer function coeNcients in Assumption 1):

0 =
√
N

@
@z

VN (x̂N ; ẑN )

=
√
N

@
@z

VN (x̂N ; z∗) +
@2

@z2
VN (x̂N ; %N )

√
N (̂zN − z∗);

(18)

where %N is a point between ẑN and z∗ and the !rst equality
follows from the fact that #̂N =[(x̂N )′ (̂zN )′]′ is a minimizer
of VN .
Then, we can follow the same rationale as in Ljung

(1999a, Chapter 9) to conclude that:

• √
N (@=@z)VN (x̂N ; z∗) ∼ asG(0; 2�2 QV zz(x∗; z∗)) (this re-

sults follows along the same lines as Theorem 9.1 in Ljung
(1999a))

• (@2=@z2)VN (x̂N ; %N ) → QV zz(x∗; z∗) almost surely (again,
this result follows from Theorem 2B.1 in Ljung (1999a)).
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These two facts imply (17) (see Ljung, 1999a, chapter 9,
for details).
Equation (14) now follows from (17) and (15). Indeed,

the left-hand side of (14) can be rewritten as (note that
z∗ = z0)[

1
�N

][√
N (̂zN−z∗)′

(1=N )
∑

�z(#̂N )�z(#̂N )′

�2
√
N (̂zN−z∗)

]
;

(19)

where the !rst term goes to zero (recall that �N → ∞)
and the second one converges to a �2-distributed random
variable.
We next prove Eq. (13).
Note that the proof of (13) is substantially diLerent from

the one of (14) since x0 �= x∗ and, in contrast to ẑN − z0,
x̂N − x0 does not tend to zero.
We commence by observing that, since QV (x; z∗)

has a constant value in the x direction—recall that
{[x′ (z∗)′]′; x: [x′ (z∗)′]′ ∈	} is the set of minimizers
of QV (#)—it holds that QV xx(x; z∗) = 0; ∀x: [x′ (z∗)′]′ is an
interior point of 	, and, in particular, QV xx(x∗; z∗) = 0. On
the other hand, proceeding as for (15), it can be proved
that (1=N )

∑
�x(x̂N ; ẑN )�x(x̂N ; ẑN )′ → 1

2
QV xx(x∗; z∗) almost

surely, and, thus,

1
N

∑
�x(x̂N ; ẑN )�x(x̂N ; ẑN )′ → 0 almost surely:

This last equation suggests that Eq. (13) can be proved by
characterizing the rate of convergence to 0 of (1=N )

∑
�x

(x̂N , ẑN )�x(x̂N , ẑN )′.
Consider the following Taylor expansion:

((x̂N − x0)′�x(x̂N ; ẑN ))2

= ((x̂N − x0)′�x(x̂N ; z∗))2

+(̂zN − z∗)′
@
@z

((x̂N − x0)′�x(x̂N ; z))2
∣∣∣∣
z=z∗

+(̂zN − z∗)′
@2

@z2
((x̂N − x0)′�x(x̂N ; z))2

∣∣∣∣
z=0N

(̂zN − z∗);

(20)

where 0N is a point on the segment connecting ẑN and z∗.
Derivatives are well de!ned almost surely thanks to the four
times diLerentiability of the transfer functions coeNcients,
as required in Assumption 1.
We want to show that the !rst and second terms in the

right-hand side of (20) are null so that (20) reduces to

((x̂N − x0)′�x(x̂N ; ẑN ))2

= (̂zN − z∗)′
@2

@z2
((x̂N − x0)′�x(x̂N ; z))2

∣∣∣∣
z=0N

(̂zN − z∗):

(21)

To prove (21), let us start by observing that, similar to Eq.
(16), it can be proved that QV xx(x; z∗)=2E[�x(x; z∗)�x(x; z∗)′],

∀x: [x′ (z∗)′]′ is an interior point of 	 (name X ∗ such a
set of points x). Recalling that QV xx(x; z∗) = 0, ∀x∈X ∗,
we then have E[�x(x; z∗)�x(x; z∗)′] = 0, or equivalently
E[‖�x(x; z∗)‖] = 0, ∀x∈X ∗.
Now, from the latter expression we obtain 0 =∫

X ∗ E[‖�x(x; z∗)‖]dx=E[ ∫X ∗ ‖�x(x; z∗)‖dx] (the last equal-
ity is an application of Fubini’s theorem), which entails∫

X ∗
‖�x(x; z∗)‖dx = 0 almost surely: (22)

Since ‖�x(x; z∗)‖ is an almost surely continuous function in
x, this !nally implies that the following relation holds true
almost surely:

�x(x; z∗) = 0; ∀x∈X ∗ (23)

(indeed if �x(x; z∗) �= 0 for some x∈X ∗, by continuity∫
X ∗ ‖�x(x; z∗)‖dx �= 0 which can happen on a zero proba-
bility set only—see (22)).
By specializing (23) to x = x̂N , we have �x(x̂N ; z∗) = 0

almost surely, showing that the !rst term in the right-hand
side of (20) is null. The fact that the second term is null too
follows by observing that

@
@z

((x̂N − x0)′�x(x̂N ; z))2
∣∣∣∣
z=z∗

=2((x̂N − x0)′�x(x̂N ; z∗))[�zx(x̂N ; z∗)(x̂N − x0)]:

This proves (21).
Now, the left-hand side of (13) can be rewritten as

N
�N · �2

1
N

∑
((x̂N − x0)′�x(#̂N ))2;

which, using (21), is equal to[
1
�N

] [√
N (̂zN − z∗)′

× (1=N )
∑

(@2=@z2)((x̂N − x0)′�x(x̂N ; z))2|z=0N

�2

×
√
N (̂zN − z∗)

]
: (24)

The convergence to zero in probability of (24) now fol-
lows similarly to the convergence to zero in probability of
(19). As a matter of fact, the only diLerence between (24)
and (19) stays in their kernel, where the kernel of (19)
(1=N )

∑
�z(#̂N )�z(#̂N )′=�2 tends almost surely to the posi-

tive de!nite matrix QV zz(x∗; z∗)=2�2 while the kernel of (24)
converges to (2=�2)E[�zx(x∗; z∗)(x∗−x0)(x∗−x0)′�xz(x∗; z∗)]
almost surely, as it follows from Theorem 2B.1 in Ljung
(1999a).
This concludes the proof.
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A.2. Proof of Theorem 4

The asymptotic cost criterion can be rewritten through
Parseval identity as

QV (#) =
1
2#

∫ #

−#

|G(e−j!; #) − G(e−j!; #0)|2
|H (e−j!; #)|2 Fu(d!)

+
1
2#

∫ #

−#

|H (e−j!; #0)|2
|H (e−j!; #)|2 �2 d!;

where Fu is the spectral measure of u(t).
Let #∗ be a minimizer of QV (#). Since also #0 minimizes

QV (#), we have that

QV (#∗) = QV (#0) = �2:

Thus,

1
2#

∫ #

−#

|G(e−j!; #∗) − G(e−j!; #0)|2
|H (e−j!; #∗)|2 Fu(d!) = 0 (25)

and

1
2#

∫ #

−#

|H (e−j!; #0)|2
|H (e−j!; #∗)|2 �2 d!= �2: (26)

Eq. (26) implies that

H (e−j!; #∗) = H (e−j!; #0); ∀!∈ [0; #]: (27)

On the other hand, from Eq. (25) it follows that G(e−j!; #∗)
must be equal to G(e−j!; #0) at every frequency where u(t)
is exciting. That is

G(e−j!; #∗) = G(e−j!; #0);

∀!: Fu(A)¿ 0; for any open A containing !: (28)

Now, letting H (e−j!; #) = NH (e−j!; #)=DH (e−j!; #) and
G(e−j!; #) = NG(e−j!; #)=DG(e−j!; #), Eqs. (27) and (28)
can be rewritten as

NH (e−j!; #∗)DH (e−j!; #0) = DH (e−j!; #∗)NH (e−j!; #0);

∀!∈ [0; #] (29)

and

NG(e−j!; #∗)DG(e−j!; #0) = DG(e−j!; #∗)NG(e−j!; #0);

∀!: Fu(A)¿ 0; for any open A containing !: (30)

For any !xed !, these equations are linear in #∗, so de!ning
an aNne subspace. Since the intersection of aNne subspaces
is an aNne subspace, the set of #∗ satisfying Eqs. (29) and
(30) is still an aNne subspace. This concludes the proof.

A.3. Proof of Theorems 5

Let us consider the ARMAX case !rst.
De!ne: G0(z−1)=B0(z−1)=A0(z−1), H 0(z−1)=C0(z−1)=

A0(z−1), G(z−1; #) = B(z−1; #)=A(z−1; #) and H (z−1; #) =
C(z−1; #)=A(z−1; #), where A0(z−1), B0(z−1) and C0(z−1)
stand for A(z−1; #0), B(z−1; #0) and C(z−1; #0),
respectively.

Similarly to the proof of Theorem 4, the asymptotic cost
criterion can be rewritten through Parseval identity as

QV (#) =
1
2#

∫ #

−#

|G(e−j!; #) − G0(e−j!)|2
|1 + R(e−j!)G0(e−j!)|2

× |R(e−j!)|2
|H (e−j!; #)|2 Fr(d!)

+
1
2#

∫ #

−#

|H 0(e−j!)|2
|H (e−j!; #)|2

×|1 + R(e−j!)G(e−j!; #)|2
|1 + R(e−j!)G0(e−j!)|2 �2 d!;

where Fr is the spectral measure of r(t).
Now, following the same rationale as in the proof of

Theorem 4, we obtain that #∗ is a minimizer of QV (#) if and
only if

G(e−j!; #∗) − G0(e−j!) = 0;

∀!: Fr(A)¿ 0; for any open A containing ! (31)

and

H 0(e−j!)
H (e−j!; #∗)

· 1 + R(e−j!)G(e−j!; #∗)
1 + R(e−j!)G0(e−j!)

= 1; ∀!∈ [0; #]:

(32)

Then, by the de!nition of G, G0, H and H 0 we have that
(the dependencies on # and e−j! have been omitted to ease
the notation):

G − G0 =
B
A

− B0

A0

and

H 0

H
· 1 + RG
1 + RG0 =

C0A
A0C

· DRA+ NRB
DRA

· DRA0

DRA0 + NRB0

=
C0

C
· DRA+ NRB
DRA0 + NRB0 ;

where NR and DR are, respectively, the numerator and the
denominator of R.
As a consequence, Eqs. (31) and (32) can be rewritten as

B(e−j!; #∗)A0(e−j!) = B0(e−j!)A(e−j!; #∗);

∀!: Fr(A)¿ 0; for any open A containing ! (33)

and

C0(e−j!)(DR(e−j!)A(e−j!; #∗) + NR(e−j!)B(e−j!; #∗))

=C(e−j!; #∗)(DR(e−j!)A0(e−j!)

+NR(e−j!)B0(e−j!)); ∀!∈ [0; #]: (34)
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As in Theorem 4, for any !xed ! these equations are linear
in #∗ and, therefore, the set of #∗ satisfying Eqs. (33) and
(34) is an aNne subspace.
The same proof applies also for OE models con-

sidering G(z−1; #) = B(z−1; #)=A(z−1; #), G0(z−1) =
B0(z−1)=A0(z−1) and H 0(z−1) = H (z−1; #) = 1 in this
case.
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