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Abstract

In any real-life identification problem, only a finite number of data points is available. On the other hand, almost all results in stochastic
identification pertain to asymptotic properties, that is they tell us what happens when the number of data points tends to infinity. In this
paper we consider the problem of assessing the quality of the estimates identified from a finite number of data points. We focus on least
squares identification of generalised FIR models and develop a method to produce a bound on the uncertainty in the parameter estimate.
The method is data driven and based on tests involving permuted data sets. Moreover, it does not require that the true system is in the
model class.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The purpose of system identification is to construct a
mathematical model of a dynamical system based on mea-
surements. In order to give the user confidence in the ob-
tained model, a quality tag should be delivered together with
the model itself. Quality assessment is therefore an impor-
tant issue and there has been a great deal of effort to derive
methods for evaluating the model accuracy.
In this paper we consider the problem of assessing the

quality of the parameter estimate obtained using least
squares (LS) system identification methods with a finite
number of data points. The mismatch between the true plant
and the model consists of two components, bias error and
variance error. In this work we focus on the variance error,
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which is due to the fact that the best model within the con-
sidered model class has not been found. If the best model
within the model class is able to describe the true system,
then the variance error is the only mismatch between the
system and the model. However, if there are unmodelled dy-
namics, the variance error has to be combined with the bias
error to obtain the total system-model mismatch. The cause
of the bias error is that the model class considered is not
rich enough to contain the ‘true’ plant. Works dealing with
the problem of bounding the bias error includeGoodwin,
Gevers, and Ninness (1992), Hakvoort and Van den Hof
(1997)andLjung (2001).
In order for a method assessing the quality of the estimate

to be useful, it must have the following properties. First, if
we assume that the true system is in a given class, then the
quality measure must be valid for all systems in that class.
Furthermore, the quality measure must be computable based
on the available a priori information about the true system
and on the finite number of observed data points, and, finally,
it must provide a rigorous result valid for the given number
of data points.
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The asymptotic convergence properties of the estimate are
well understood, see e.g. (Ljung, 1999) or (Söderström &
Stoica, 1988). Under natural conditions, if the true system
belongs to the model class, the estimate�̂N converges to�0
(the true parameter) with probability 1, and

√
N(�̂N − �0)

is asymptotically normally distributed with zero mean and a
certain varianceP�0. This result allows us to attach a quality
tag to the estimate, and it is useful for gaining insight into
the properties of system identification methods. However,
with a finite number of data points the result holds only
approximately and there are instances where application of
the asymptotic theory leads to unreliable conclusions in the
finite sample case, see e.g. (Bittanti, Campi, & Garatti, 2002)
and (Garatti, Campi, & Bittanti, 2004).
Recently, the authors of this paper have studied finite sam-

ple properties of system identification methods inWeyer
(2000), Campi and Weyer (2002)andWeyer and Campi
(2002). The results obtained in those papers are essentially
data-independent, in the sense that the bounds can be com-
puted before any data are collected. This leads to results
which are worst case with respect to the prior information
and, consequently, the corresponding bounds may be con-
servative for the particular system at hand. In this paper,
the properties of the estimate are studied after the data are
collected, i.e. we obtain data-dependent results, leading to
tighter evaluations.
We concentrate on the setting where the plant is identified

through generalised FIR models with periodic inputs. This
setting is of interest since periodic inputs are often used in
applications when the input signal can be freely selected for
identification purposes. Our set-up allows for the presence
of unmodelled dynamics.
Finite sample properties have also been studied in differ-

ent settings.Welsh and Goodwin (2002)have investigated
the bias and variance of transfer function estimates obtained
from indirect closed loop identification assuming a periodic
reference signal and Gaussian noise. In the set membership
and worst case identification setting, see e.g. (Wahlberg &
Ljung, 1992; Giarre’, Kacewicz, & Milanese, 1997; Chen &
Gu, 2000; Milanese & Taragna, 2002), identification algo-
rithms are constructed to deliver models which are in agree-
ment with the observed data, and finite sample results are
therefore delivered by the nature of the setting.
The paper is organised as follows. In Section 2, the idea

of judging the quality of the estimate using half sample
estimates is introduced and motivated. The model structure
and the assumptions are precisely stated in Section 3, while
Section 4 delivers the main result. A simulation example
illustrating the developed method is presented in Section 5
followed by concluding remarks.

2. Quality assessment using half sample

In order to obtain a result of the type sought after, we
propose to assess the quality of the LS estimate using half

sample estimates. Assuming a linear regression predictor
model ŷt,� = �T

t �, the LS estimate is given by

�̂N = (��T)−1(�Y ),

whereYcontains the outputs,Y =[y1, . . . , yN ]T and� con-
tains the regressors,� = [�1, . . . ,�N ]. Two half sample
estimates

�′ = (�1�T
1)

−1(�1Y1) and �′′ = (�2�T
2)

−1(�2Y2)

can be computed using the first and second half of the data
set, where (assumingN even)

Y1 = [y1, . . . , yN/2]T, �1 = [�1, . . . ,�N/2],
Y2 = [y(N/2)+1, . . . , yN ]T, �2 = [�(N/2)+1, . . . ,�N ].
Considering different ways of partitioning the data set in two
halves, we can partition the original data set into two sets

(Y1,�1) and (Y2,�2) with N/2 elements each in
(

N
N/2

)
different ways. For example

Y1 = [yN−1, yN , y3, y4, . . . , yN/2]T,
�1 = [�N−1,�N,�3,�4, . . . ,�N/2],
Y2 = [y(N/2)+1, . . . , yN−2, y1, y2]T,
�2 = [�(N/2)+1, . . . ,�N−2,�1,�2]
is another possible partitioning. The idea is to judge the
quality of the estimatê�N by the difference between these
half sample estimates. The use of half sample estimates
dates back a long time in the statistical literature, see e.g.
(McCarthy, 1969) and (Hartigan, 1969).
If all values of the difference�′ − �′′ are within a small

region around zero, we expect that�̂N is a good estimate
since there is little variation in the half sample estimates.
On the other hand, we have a low confidence in�̂N if the
values of�′ − �′′ are widely spread. Intuitively, we take this
as an indication that the variability due to noise, unmodelled
dynamics, etc. have not been sufficiently averaged out and
hence we do not place much confidence in the estimate.
A precise statement of the mathematical setting for the

quality assessment method is postponed to Section 3. In
this section, we illustrate some significant aspects and touch
upon some issues of conceptual importance at a more intu-
itive level by examples.

2.1. Some preliminary examples

The first example illustrates that there are situations where
any data-independent assessment (i.e. an assessment which
can be computed before the data have been collected) of
the model quality is impossible, and yet model dependent
evaluations are possible. Thus, using data-dependent tests
(of which half sample estimates methods are one example)
is fundamental to derive sensible results.
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Example 1. Consider the system

yt = �0ut + wt, (1)

whereut = 1 for all t, andwt is white Gaussian noise with
zero mean and unknown variance�2. No upper bound on�2

is available. The predictor model used isŷt,� =�ut and a set
of input–output data,DN : ={(yt , ut )}Nt=1 is collected from
(1), whereN is the number of data points. The LS estimate
is �̂N = (1/N)

∑N
t=1yt . In this casê�N − �0 is a Gaussian

random variable with zero mean and variance�2/N .
Suppose now that we want to make a statement of qual-

ity for the estimate that is data-independent, i.e. it can be
evaluated before data have been collected and it holds for
all possible true systems (i.e. for all possible values of�2).
Precisely, the statement we are after is of the form

Pr{(�̂N − �0)2��}�1− �, (2)

where� (accuracy) and� (confidence) are numbers that do
not depend on the data. Since as already observed�̂N −
�0 is GaussianG(0,�2/N), for any given�>0 (even very
large), sup�2�(�

2) = 1, so that the only statement valid for
all possible data generating system is

Pr{(�̂N − �0)2��}�0,

which is evidently a void statement.
However, it is a well-known fact in statistics that a mean-

ingful data-dependent quality statement can be made by re-
sorting to the Studentt-distribution. This illustrates the im-
portance of using data not only in forming estimates but also
in assessing their quality. Unfortunately, resorting to the Stu-
dent t-distribution is possible in the simple context of this
toy-example, whereas developing rigorous data-dependent
results is far from simple in general.
It is well known (see e.g. (Richmond, 1964)) that

�̂N − �0√
1

N(N−1)

∑N
t=1(yt − �̂N)2

has a Studentt-distribution withN − 1 degrees of freedom
(in the statistical literature this is called a ‘pivotal’ variable
because its distribution does not depend on the unknown el-
ements in the problem). Thus, given�>0, using the Student
t-distribution table one can determine a� such that

Pr




 �̂N − �0√

1
N(N−1)

∑N
t=1(yt − �̂N)2



2

��


 �1− �, (3)

where the important fact is that (3) holds no matter what
the data generating system is. In (3),� and � are data-
independent. A data-dependent statement with the structure
as in (2), viz.

Pr
{
(�̂N − �0)2��(DN)

}
�1− � (4)

can be readily derived from (3) with

�(DN) = �
1

N(N − 1)

N∑
t=1

(yt − �̂N)2

(4) is the desired accuracy evaluation result: one selects a
� and computes the corresponding data-dependent accuracy
parameter�(DN). The Studentt-distribution table is then
used to find the associated confidence parameter�.

The next example shows some preliminary facts regarding
the parameter estimate quality assessment using half sample
estimates.

Example 2. Consider the same situation as in Example 1.
Let the number of data pointsN be even and split the index
set{1, . . . , N} into two halvesA1 andA2 withN/2 elements
each. The two half sample estimates are given by

�′ = 1

N/2

∑
t∈A1

yt and �′′ = 1

N/2

∑
t∈A2

yt .

The difference�′−�′′ is a zero mean Gaussian with variance
4�2/N and hence

Pr{(�̂N − �0)2��} = Pr{(�′ − �′′)2�4�}. (5)

We can therefore evaluate the quality of the estimate in terms
of the variation in the half sample estimates. Notice that the
equality in (5) is valid for all�2 so it holds uniformly with
respect to the data generating system.

In Example 2,Pr{(�′ − �′′)2�4�} is of course unknown
since it depends on the true system. Nevertheless, by parti-
tioning the data into two subsets in, say,M different ways,
we obtainM different pairs of half sample estimates�′

i and

�′′
i , i = 1, . . . ,M, and we can estimatep = Pr{(�̂N −

�0)2��} by

p̂(DN) = 1

M

M∑
i=1

1((�′
i − �′′

i )
2�4�), (6)

where1 is the indicator function, i.e. the estimatêp(DN)

is the empirical frequency of the event(�′ − �′′)2�4�.
p̂(DN) is an unbiased estimator forp. However, the claim
Pr{(�̂N − �0)2��} = p̂(DN) is itself stochastic since the
estimatep̂(DN) is data-dependent, and the claim does not
make sense at a conceptual level. In order to make sense,
the claim has to be qualified with a second probability giv-
ing us the probability that the claim itself is true. The next
example illustrates this matter, and it is a special case of our
main result Theorem 4.7.

Example 3. Consider the same situation as in Examples 1
and 2.Assume that we have split the data set into two subsets
in M different ways such that�′

i − �′′
i , i = 1, . . . ,M, are

iid, independent and identically distributed (see Section 4
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for how this can be achieved). Letp̂(DN) be as in (6). Then
the statement

Pr{(�̂N − �0)2��}� p̂(DN) − �

holds true with probability at least 1− e−2M�2. Here� is a
margin of error on the estimated probability. In words, the
claim is that the probability of the squared estimation er-
ror to be less than or equal to� is greater than or equal to
p̂(DN)− �. However, this claim is itself probabilistic since
p̂(DN) − � is a random variable. The second probability
tells us that the claim itself is true with probability not less
than 1− e−2M�2. This probability goes to 1 rapidly as the
last term is exponential inM, so that it can be neglected
in many practical situations. Yet, it is important to observe
that disregarding this probability leads to an unsound math-
ematical statement. Moreover, making this probability close
to 1 comes at the cost of decreasing the probability that
(�̂N − �0)2��. This tradeoff is represented by the “tuning”
parameter�.

In the next section we introduce the approach of assessing
the model quality using half sample estimates in a general
setting.

3. The identification setting

3.1. Model class and input signal

We consider models with predictors of the type

ŷt,� = �1g1(q−1, ut ) + · · · + �ngn(q−1, ut ).

This predictor can be written in linear regression formŷt,�=
�T
t � with

� = [�1, . . . , �n]T,
�t = [g1(q−1, ut ), . . . , gn(q

−1, ut )]T.
Here� is the parameter vector to be estimated,q−1 is the
backward shift operator (i.e.q−1ut =ut−1), andgk(q−1, ut ),
k=1, . . . , n, is a short form forgk(ut , ut−1, . . .), which are
linear or non-linear functions of the past inputs.

Example. A popular choice ofgk(q−1, ut ) isLk(q
−1, 	)ut ,

whereLk(q
−1, 	)=

√
1−	2
q−	

(
1−	q
q−	

)k−1
are the Laguerre poly-

nomials and	 is a parameter to be chosen by the user.

Next we introduce the assumptions on the input signal.
A1. The input signal is deterministic and periodic with

periodL. Moreover,gk(ut , ut−1, . . .), k=1, . . . , n, are well-
defined i.e., when the actual input is substituted, thegk ’s
return a finite value.
The assumption that thegk ’s are well-defined is a mild

assumption that relates to the stability of thegk operators.
When computinggk(ut , ut−1, . . .), we have in principle to

substitute the periodic inputuup to timet starting back from
−∞, implicitly assuming that the periodic input has been
applied since time−∞. In practice, the periodic inputu is
applied for long enough so that the tail behavior in thegk
functions is negligible.
Suppose that the true system output has been observed

for N periods, i.e.N periods are used in identification. To
simplify notation let

� = [�1, . . . ,�NL] = [�1, . . . ,�1],
�1 = [�1, . . . ,�L] = [�(i−1)L+1, . . . ,�iL],

i = 1, . . . , N,

where the last equality is due to the periodicity of the input.
As a final assumption on the input signal we assume that:
A2. The inputut and the functionsgk(q−1, ut ) are cho-

sen such that��T is non-singular, i.e. the LS estimate is
unique.

3.2. True system

We assume that the true system can be written as

yt = h(q−1, ut ) + wt,

which in vector form becomes

Y = Ȳ + W,

where

Y = [y1, . . . , yNL]T = [Y T
1 , . . . , Y

T
N ]T,

Ȳ = [h(q−1, u1), . . . , h(q
−1, uNL)]T = [Ȳ T

1 , . . . , Ȳ
T
N ]T,

W = [w1, . . . , wNL]T = [WT
1 , . . . ,W

T
N ]T,

Yi = [y(i−1)L+1, . . . , yiL]T, i = 1, . . . , N,

Ȳi = [h(q−1, u(i−1)L+1), . . . , h(q
−1, uiL)]T, i=1, . . . , N,

Wi = [w(i−1)L+1, . . . , wiL]T, i = 1, . . . , N.

Here h(q−1, ut ) = h(ut , ut−1, . . .) is a causal operator of
past input signals. We assume that
A3. h(q−1, ut ) = h(ut , ut−1, . . .) is well-defined, i.e.,

when the actual input is substituted,h returns finite values.
A4. �1Wi, i = 1, . . . , N , are iid and symmetrically

distributed around zero.
Assumptions A3 and A4 deserve some words of

explanation.
Note first that writingyt =h(ut , ut−1, . . .)+wt subsumes

that the system has been initialized in the remote past with
the periodic inputu, which in practice means that the tran-
sients have died out. Requiring thath(ut , ut−1, . . .) is well-
defined is necessary since if e.g. the true system is unstable
the output generated byhcan as well escape to infinity. More
subtle is the observation that assuming that the true system
output is, up to noise, given byh(q−1, ut )=h(ut , ut−1, . . .)

corresponds implicitly to assume that, after transients have
died out, the system outputs a periodic signal when fed
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by a periodic input signalu (note in fact that expression
h(ut , ut−1, . . .) returns the same value at timet and time
t +L). This assumption is very mild and is satisfied e.g. by
all asymptotically stable linear time invariant systems. Many
non-linear systems exhibit this behavior as well, provided
that they meet certain requirements of stability. A trivial
example is given by an asymptotically stable linear system
with static input and output non-linearities. We also note
that, due to the periodicity ofh, Ȳ1 = Ȳ2 = · · · = ȲN in the
definition of Ȳ .
As for the noise, Assumption A4 is certainly satisfied if

wt is a sequence of iid random variables symmetrically dis-
tributed around zero. Assumption A4 also allows for corre-
lated noise as long as�1Wi is iid over blocks of data. More-
over, in situations where correlation in the noise prevents
A4 from being rigorously satisfied, this assumption is still
expected to hold approximately due to the averaging effect
of the product�1Wi . Indeed, the elements of vector�1Wi

are weighted sums of all thewt variables over a period. As-
suming that the time dependence inwt is short as compared
to the periodL, even in two adjacent periods these weighted
sums will contain many terms that are almost independent,
so that the sums themselves will be almost independent. This
is important for the—at least approximate—applicability of
the results in this paper to practical situations. We also re-
mark that our results can be extended to dependent, mixing
�1Wi ’s. However, the mixing case is significantly more in-
volved, and a full presentation of results in the mixing set-
ting would detract from the principal ideas, and is therefore
not justified. SeeWeyer (2000)orWeyer and Campi (1999)
for results using mixing conditions.
Importantly, our setting does not assume that the true

system is contained in the model class.

3.3. LS estimate

The LS estimate is given by

�̂NL = (��T)−1(�Y ). (7)

As the number of data points tends to infinity,�̂NL

converges to

�∗ = (��T)−1(�EY) = (��T)−1(�Ȳ ),

whereE is the expectation operator.
The following lemmas will be used in subsequent

derivations.

Lemma 3.1.Y can be written asY = �T�∗ + W̄ whereW̄
has the property that�W̄ = �W .

Proof. �W̄=�(Y −�T�∗)=�(Ȳ +W−�T�∗)=�W . �

The difference between̂�NL and�∗ can be expressed in
terms ofW and� as shown in the next lemma.

Lemma 3.2.

(�̂NL − �∗)T(��T)(�̂NL − �∗) = WT�T(��T)−1�W.

Proof. �̂NL − �∗ = (��T)−1(�Y ) − �∗ = (��T)−1�W̄ =
(��T)−1�W , where the last equality follows from
Lemma 3.1 Hence,(�̂NL − �∗)T(��T)(�̂NL − �∗) =
WT�T(��T)−1�W . �

4. An algorithm for model quality assessment using
half sample estimates

The data blocks{(Yi,�1)}Ni=1 are split into two subsets
{(Yi,�1)}i∈A1

and{(Yi,�1)}i∈A2
, whereA1={i1, . . . , iN/2}

andA2={j1, . . . , jN/2} are two disjoint index sets contain-
ingN/2 elements each (N is assumed even). In other words,
each data block corresponds to one period, and we have split
the data block set into two subsets of equal size, each con-
tainingN/2 data blocks. Let�′ and�′′ denote the half sam-
ple LS estimates computed on each of the two subsets, i.e.

�′ = 2(��T)−1
∑
i∈A1

�1Yi and

�′′ = 2(��T)−1
∑
i∈A2

�1Yi.

Next we introduce some notation. Let
=[
̄1, . . . , 
̄N ]T be
anN-vector with


̄i =
{
1 i ∈ A1,

−1 i ∈ A2

and let

H
 =





̄1IL 0 . . . 0
0 
̄2IL . . . 0
...

...
. . .

...

0 0 . . . 
̄NIL


 ,

whereIL is theL × L identity matrix.
The two next lemmas show that the quality of the estimate

�̂NL can be related to the difference between the two half
sample estimates.

Lemma 4.1.

(�′ − �′′)T(��T)(�′ − �′′) = 4WTH
�
T(��T)−1�H
W.
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Proof.

�′ − �′′ = 2(��T)−1


∑

i∈A1

�1Yi −
∑
i∈A2

�1Yi




= 2(��T)−1

(
�1

N∑
i=1


̄iYi

)

= 2(��T)−1

(
�1

N∑
i=1


̄i (Ȳi + Wi)

)

= 2(��T)−1

(
�1

N∑
i=1


̄iWi

)

= 2(��T)−1�H
W, (8)

where the second last equality follows since
∑N

i=1
̄i = 0
and Ȳ1 = Ȳ2 = · · · = ȲN , from which the lemma easily
follows. �

Lemma 4.2.

Pr{(�̂NL − �∗)T(��T)(�̂NL − �∗)��}
= Pr{(�′ − �′′)T(��T)(�′ − �′′)�4�}.

Proof. From Assumption A4,�W = ∑N
i=1�1Wi and

�H
W = ∑N
i=1�1
̄iWi have the same distribution. The

lemma then follows from Lemmas 3.2 and 4.1.�

In view of Lemmas 4.1 and 4.2, an algorithm for
estimating

p = Pr{(�̂NL − �∗)T(��T)(�̂NL − �∗)��}
is to partition the data blocks into two subsets, each con-
tainingN/2 blocks, in a number of different ways and then
estimatep as the frequency of the event{(�′ − �′′)T(��T)

(�′ − �′′)�4�} where the half sample estimates are com-
puted from the partitioned data sets.
Theorem 4.3 below formalises this idea. Before the the-

orem is stated, some additional notation is required. Let

j =[
̄j,1, . . . , 
̄j,N ]T, j=1, . . . ,M, beM vectors with half
of the elements equal to 1 and the other half equal to−1
and let1((�′

j − �′′
j )
T(��T)(�′

j − �′′
j )�4�) be the indicator

function of the event(�′
j −�′′

j )
T(��T)(�′

j −�′′
j )�4� where

�′
j − �′′

j = 2(��T)−1
N∑
i=1

�1
̄j,iYi

is the difference between the half sample estimates ob-
tained when the data is partitioned into two sets according
to whether
̄j,i is+1 or−1. (That is all data blocks(�1, Yi)

with i such that̄
j,i =1 is in one set and the blocks(�1, Yi)

corresponding tō
j,i = −1 is in the other data set.)

Theorem 4.3. Given a model class and a true system as in
Sections3.1 and 3.2, let the LS estimate be given by(7),

and let
1, . . . ,
M be N-vectors withN/2 entries equal to
1 andN/2 entries equal to−1. Then,

p̂(DNL) = 1

M

M∑
j=1

1((�′
j − �′′

j )
T(��T)

× (�′
j − �′′

j )�4�) (9)

is an unbiased estimator for p.

Proof.

Ep̂(DNL) = 1

M

M∑
j=1

E1((�′
j − �′′

j )
T(��T)

× (�′
j − �′′

j )�4�)

= 1

M

M∑
j=1

Pr{(�′
j − �′′

j )
T(��T)

× (�′
j − �′′

j )�4�}

= 1

M

M∑
j=1

Pr{(�̂NL − �∗)T(��T)

× (�̂NL − �∗)��} = p,

where Lemma 4.2 has been used in the second last step.�

Theorem 4.3 delivers a way of assessing the model qual-
ity: estimate the probabilityp using the expression (9) for
p̂(DNL). As p̂(DNL) is an unbiased estimate ofp, this re-
turns a non-conservative evaluation of the probability that
(�̂NL − �∗)T(��T)(�̂NL − �∗)��.
However, one needs to be careful with the interpretation

of the estimatep̂(DNL). The statement

Pr{(�̂NL − �∗)T(��T)(�̂NL − �∗)��} = p̂(DNL) (10)

makes no sense at a conceptual level sincep̂(DNL) is data-
dependent and hence stochastic. Statement (10) needs to
be qualified with another level of probability, giving us the
probability that the stochastic quality claim (10) is true.What
is sought is a bound on the probability thatp� p̂(DNL)−�
where� is a margin. We have the following result.

Theorem 4.4. If 1((�′
j − �′′

j )
T(��T)(�′

j − �′′
j )�4�), j =

1, . . . ,M, are independent of each other, then

Pr{p� p̂(DNL) − �}�1− e−2M�2.

Proof. The proof is based on Hoeffding’s inequality. This
inequality states that, ifvj , j=1,2, . . . ,M, are independent
random variables taking value in[0,1], then

Pr{E[SM ]�SM − �}�1− e−2M�2,

whereSM = 1
M

∑M
j=1vj (see (Vidyasagar, 1997) for details).
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Thus, if we identifyvj with 1
(
(�′

j − �′′
j )
T(��T)(�′

j − �′′
j )

�4�
)
, by the independence property of these variables the

result follows.

We further show that independence of the1((�′
j −

�′′
j )
T(��T)(�′

j − �′′
j )�4�) variables can be secured by

choosing vectors
i ’s that are mutually orthogonal, under
some additional conditions. Admittedly, these conditions
are restrictive and others may find more general settings in
which independence holds.
We commence with two preliminary lemmas and pro-

vide the second level of probability in the subsequent
Theorem 4.7.

Lemma 4.5. LetN=2l , for some integer l. Then, there exist
N −1mutually orthogonal vectors of size N whose elements
are 1 and−1 with an equal number of each.

Proof. The proof is by induction. Forl=1, the vectora1,1=
[1 − 1]T satisfies the claim of the Lemma.
Assume that the claim is true forN=2l for somel�1 and

name the vectorsal,1, al,2, . . . , al,2l−1. Then, forN = 2l+1

the followingN − 1 vectors are mutually orthogonal

al+1,1 = [1, . . . ,1, −1, . . . ,−1]T,
al+1,2 = [aTl,1, aTl,1]T,
al+1,3 = [aTl,2, aTl,2]T,

...

al+1,N−2l = [aT
l,2l−1, aT

l,2l−1]T,
al+1,N−2l+1 = [−aTl,1, aTl,1]T,

...

al+1,N−1 = [−aT
l,2l−1, aT

l,2l−1]T. �

We also note that there cannot be more thanN−1 orthog-
onal vectors, sinceN orthogonal vectors would form a ba-
sis forRN , which is impossible since vectors with an equal
number of 1 and−1 can only span a subspace of vectors
whose entries add up to zero.

Lemma 4.6. Let 
1, . . . ,
M be mutually orthogonal.
Strengthen AssumptionA4 to the following AssumptionA4′:
A4′. wt is a sequence of iid zero mean Gaussian random

variables.
Then,

Pr{p� p̂(DNL) − �}�1− e−2M�2.

Proof. Based on Theorem 4.4, we have to show that
1((�′

j − �′′
j )
T(��T)(�′

j − �′′
j )�4�) and1((�′

k − �′′
k)
T(��T)

(�′
k − �′′

k)�4�) are independent forj �= k.

The indicator function1
(
(�′ − �′′)T(��T)(�′ − �′′)�4�

)
is a measurable function of�′ − �′′, and hence the two
indicator functions above are independent if�′

j − �′′
j is

independent of�′
k − �′′

k . Under Assumption A4′, �′
j − �′′

j

and�′
k − �′′

k are zero mean Gaussian random vectors, hence
they are independent if they are uncorrelated. We therefore
have to prove thatE(�′

j − �′′
j )(�

′
k − �′′

k)
T = 0. Now, from

(8) we have

E(�′
j − �′′

j )(�
′
k − �′′

k)
T

= E4(��T)−1(�H
j
W)(WTH
k

�T)(��T)−1

= 4(��T)−1[�H
j
(EWWT)H
k

�T](��T)−1

= 4�2(��T)−1(�H
j
H
k

�T)(��T)−1.

Observing that�H
j
= [
̄j,1�1, . . . , 
̄j,N�1], we obtain

�H
j
H
k

�T =∑N
i=1
̄j,i 
̄k,i�1�T

1 =�1�T
1
∑N

i=1
̄j,i 
̄k,i =
�1�T

1

T
j 
k =0, since
j and
k are orthogonal, so complet-

ing the proof. �

In view of Lemma 4.6 we have the following theo-
rem where the existence of the
j vectors follows from
Lemma 4.5.

Theorem 4.7. Given a model class and a true system as in
Sections3.1and3.2, let the number of observed periods of
data beN=2l , for some integer l, and let the LS estimate be
given by(7).Consider the estimator̂p(DNL) defined by(9)
and assume that
1, . . . ,
M are mutually orthogonal where
M = N − 1, and thatA4′ is satisfied. Then, the statement

Pr{(�̂NL − �∗)T(��T)(�̂NL − �∗)��}� p̂(DNL) − �

holds true with probability no smaller than1− e−2(N−1)�2.

The above theorem involves two levels of probability.
Firstly, it claims that the probability that̂�NL and �∗ are
less than a certain distance apart is larger than or equal to
p̂(DNL) − �. This claim is itself stochastic sincêp(DNL)

is a random variable. The second level of probability tells
us that the quality claim is true with probability at least
1−e−2(N−1)�2. For example, with�=0.1, andN =128 the
statement holds true with probability no less than 0.92113.
The probability rapidly increases withN, if � = 0.1 and
N = 512 the probability that the statement holds true is al-
ready at least 0.99996. This is the effect of the exponen-
tial function. Decreasing the value of� leads instead to
a rapid rise in the required number of periods. This be-
havior is in the nature of things and is a well-known fact
in the related field of statistical learning. The reason why
the external probability 1− e−2(N−1)�2 goes to 1 expo-
nentially with N is that we have wisely selected the
i
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vectors to be orthogonal, so that the different terms en-
tering the estimatêp(DNL) are independent (see proof of
Lemma 4.6).
Theorem 4.7 enables one to compute the quality of the pa-

rameter estimate based on the observed data and it provides
a rigorous result valid for a finite number of data points.
Sincep̂(DNL) is an unbiased estimator ofp, the only place
any conservativeness is introduced is in the second probabil-
ity through the margin�. Notice that the Gaussian assump-
tion A4′ is only used when bounding the second probabil-
ity. p̂(DNL) is still an unbiased estimator under the weaker
assumption A4.
Theorem 4.3 provides a result for LS estimation with peri-

odic inputs which holds under general technical conditions.
In Theorem 4.7, the technical conditions have been strength-
ened by a significant degree by assuming iid, Gaussian noise.
Yet, unmodelled dynamics is allowed.

Remark 1. Under the conditions of Theorem 4.7 a con-
fidence ellipsoid with a data dependent� can be obtained
similarly to Example 1 in Section 2.1 and therefore the con-
ditions of Theorem 4.7 are indeed restrictive. In fact,

(�̂NL − �∗)T(��T)(�̂NL − �∗)
n�̂2

, (11)

where �̂2 = 1
NL

∑NL
2

t=1t
(
yt − y

t+NL
2

)2
is a pivotal variable

which is Fisher distributedF
(
n, NL

2

)
. If one further restricts

generality by assuming that the true system belongs to the
model class, one obtains the standard result ((Ljung, 1999),
Appendix II) that

(�̂NL − �∗)T(��T)(�̂NL − �∗)
n�̂2NL

(12)

has a FisherF(n,NL − n) distribution, where�̂2NL =
1

NL−n

∑NL
t=1(yt − �T

t �̂NL)
2.

4.1. Relationship to other methods and techniques

Though the method developed in this paper presents its
own specific characteristics, it shares common aspects with
methodologies and techniques used in other related fields,
and a brief discussion of some of these techniques now
follows.

4.1.1. Bootstrap
Notice that we can expressyt as yt = �T

t �̂NL + �
t,�̂NL

where�
t,�̂NL

=yt − ŷ
t,�̂NL

=yt −�T
t �̂NL is the prediction er-

ror. Introducing the notation�i,�=[�(i−1)L+1,�, . . . , �iL,�]T,

i = 1, . . . , N , we have that

�′ − �′′ = 2(��T)−1


∑

i∈A1

�1(�T
1 �̂NL + �

i,�̂NL
)

−
∑
i∈A2

�1(�T
1 �̂NL + �

i,�̂NL
)




= 2(��T)−1�1


∑

i∈A1

�
i,�̂NL

−
∑
i∈A2

�
i,�̂NL




= 2(��T)−1

(
�1

N∑
i=1


̄i�i,�̂NL

)
,

where the
̄i ’s are defined as at the beginning of Section
4. Thus, the difference between half sample estimates is
nothing but a suitably weighted average of the prediction
errors.
Basic implementations of bootstrap would be based on a

random resampling from�
t,�̂NL

. The technique of partition-
ing blocks of output data in two subsets in a number of dif-
ferent ways bears some resemblances with the resampling
technique used in bootstrap. However, in our approach the
partitioning is done in a systematic and deterministic fash-
ion, and unlike bootstrap there is no random sampling from
an empirical distribution. One way to view our proposed
method is that we have replaced the original problem of
estimatingPr{(�̂NL − �∗)T(��T)(�̂NL − �∗)��} with the
problem of estimatingPr{(�′ − �′′)T(��T)(�′ − �′′)�4�}
where the latter problem is “easier” since we haveN −1 iid
realisations of(�′ − �′′)T(��T)(�′ − �′′) at hand.
Performing a systematic and deterministic partition of

blocks of data has an important advantage over random re-
sampling in that we are not forced to model the data gen-
eration mechanism in detail (so that�

t,�̂NL
is white) as it

is the case in basic implementations of bootstrap. Our ap-
proach allows for unmodelled dynamics as well since the
unmodelled dynamics is cancelled out by the way the
̄i ’s
coefficients are chosen. For details on bootstrap in a system
identification setting see e.g. (Tjärnström & Ljung, 2002).

4.1.2. Subsampling
The approach is also connected with subsampling meth-

ods (Politis, Romano, & Wolf, 1999) where the quality in
the estimate is assessed by comparing the estimate with esti-
mates computed on subsets of the total data set. This can be
seen by noting that�′ − �′′ = 2(�̂NL − �′′). Hartigan (1969)
has used subsamples to compute exact confidence intervals
for a scalar parameter.

4.1.3. Rademacher sequences
The technique of changing signs of data blocks has sim-

ilarities with the use of Rademacher sequences in learning
theory, see e.g. (Koltchinskii & Panchenko, 2000; Koltchin-
skii, 2001) or (Mendelson, 2002). A Rademacher sequence
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is an iid sequence{ri}, where eachri take on the value 1 or
−1 with probability 1/2 each. In function learning one tries
to learn an unknown functionf based onn observations off
at iid extracted pointsx1, . . . , xn. Typical results involving
Rademacher sequences in function learning are of the form

Pr

{
sup
f∈F

∣∣∣∣∣1n
n∑

i=1

f (xi) − Ef

∣∣∣∣∣ ��

}

�4Pr

{
supf∈F

∣∣∣∣∣1n
n∑

i=1

rif (xi)

∣∣∣∣∣ � n�
4

}
,

where the probability on the left is with respect tox1, . . . , xn
and the probability on the right with respect tox1, . . . , xn
and the Rademacher sequence. Empirical evaluations of
the right-hand side are often referred to as Rademacher
bootstrap.
Our approach of changing sign can be viewed as making

use of “deterministic Rademacher sequences”.

4.1.4. Multitaper power spectrum estimation
The approach of selecting matricesH
j

such that the half
sample estimates are independent of each other has simi-
larities with the way windowing functions are selected in
the multitaper approach to spectral estimation. The idea is
to window the time domain data by orthogonal window
functions such that the obtained spectral estimates (peri-
odograms) are independent of each other and then average
the periodograms to reduce the variance. For more details
see e.g. (Manolakis, Ingle, & Kogon, 2000).

4.1.5. Permutation tests
The proposed method for model quality assessment has

some features in common with permutation tests in statisti-
cal hypotheses testing. For more details on permutation tests
see e.g. (Lehmann, 1986; Van der Vaart, 1998) or (Good,
2000). Although there are similarities between permutation
tests and our proposed method, the purpose of permutation
tests is quite different from the objective here: in our pro-
posed method the permutations are used as a tool via the
computation of half sample estimates for assessing the qual-
ity of the obtained model, while in permutation tests they
are used for testing statistical hypotheses.

4.2. Discussion

From Section 4.1.1, it is clear that�′−�′′ can be expressed
in terms of the prediction errors. A considerable amount of
work has been done in assessing model quality using the
prediction errors. In particular,Ljung and Guo (1997)have
studied what a typical model validation test based on the
prediction errors implies in terms of the model error, ex-
pressed in the frequency domain. Moreover, a procedure for
estimating probabilistic uncertainty regions, which involves
the explicit calculation of the bias and variance errors of a
linear regression estimate, has been developed in (Hakvoort

& Van den Hof, 1997) and (Goodwin et al., 1992). In the
latter paper, stochastic embedding is used to produce an es-
timate of the mean square error between the true and esti-
mated nominal transfer function.
In the present paper, only the variance error has been con-

sidered, but we could have extended the method to take into
account the bias along the lines of the above cited papers.
However, this would have introduced conservativeness, and
our results are most useful in situations where we have a pri-
ori information that the bias error is small in the frequency
range of interest, i.e. the variance error is the one that con-
tributes the most to the total error in that frequency range.
This is illustrated in the simulation example in the next
section.
The extension to non-periodic input signals appears more

difficult. Some of the difficulties in moving to the non-
periodic case along a rigorous route are to find matrices
H
 such that the statistical properties of�W are the same
as those of�H
Y and to find an unbiased estimator ofp.
This is due to the fact that in the non-periodic case the un-
modelled dynamics cannot be averaged out. Furthermore,
the orthogonality condition is not preserved and hence Ho-
effding’s inequality cannot be used to bound the outer prob-
ability. However, in the special case where we have only
one parameter, we have been able to generalise the results
to non-periodic input signals along a rigorous route, see
(Ooi, Weyer, & Campi, 2003).

5. Simulations

Consider the following system:

yt = a01yt−1 + a02yt−2 + b01ut−1 + b02ut−2 + wt (13)

with parameter�0 = [a01, a02, b01, b02]T = [1.4,−0.45,0.07,
0.04]T (the poles are at 0.5 and 0.9) andwt is Gaussian white
noise with zero mean and variance�2 = 0.34. The model
class is the following second order Laguerre model class

ŷt,� = �1L1(q
−1, 	)ut + �2L2(q

−1, 	)ut ,

where � = [�1, �2]T is a parameter to be estimated and

Lk(q
−1, 	) =

√
1−	2
q−	 (

1−	q
q−	 )k−1, k = 1,2, 	 = 0.85, is an a

priori available estimate of the system dominant pole 0.9.
A multi-sine input signal,u(t) with five different frequen-

cies in addition to a DC component is generated, i.e.

ut =
5∑

k=1

1

10
sin(�kt + 
k) + 0.2,

where�k, for k = 1, . . . ,5, are 2�
125,

4�
125,

8�
125,

12�
125 and

16�
125,

and the sinusoids have Schroeder phases,
k = − k(k−1)�
5 in

order to keep their crest factor small, see (Ljung, 1999).
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Fig. 1. Plot of one period of the multi sine input signal.

Fig. 1 shows the plot of one period (i.e.L = 125) of the
input signal. The number of periods isN=32 andNL=4000
data points are generated according to system (13). For this
example,�∗ = [0.4223, 0.2032]T.
First, �̂4000 is computed. Then,� is fixed to 2 and an

estimatep̂(D4000) of p = Pr{(�̂4000− �∗)T(��T)(�̂4000−
�∗)��} is obtained from the simulated data with mutually
orthogonal
j ’s. The whole process is then repeated another

199 times so as to compare the probability 1−e−2(N−1)�2 of
Theorem 4.7 with the corresponding empirical probability
thatp� p̂(D4000) − �.

5.1. Results

The scatter plot of�′
j −�′′

j , j =1, . . . ,31, for a simulation

together with the true value of̂�4000 − �∗ denoted by a
cross is displayed inFig. 2. In this simulation we obtained
�̂4000= [0.4365,0.1825]T.
From this scatter plot, it is observed that the half sample

estimates form a region around zero, and that�̂4000− �∗
is within this region, illustrating that assessing the quality
of the estimate using half sample estimates is a feasible
approach.
The elements of the matrix��T = [25662161

2161
2566] are large

compared to� = 2, so the estimation error in each compo-
nent of the parameter vector is small. The magnitude of the
elements in��T increases “linearly” withN and, when the
value of � is chosen, the magnitude of the entries in��T

should be taken into account.
Fig. 3 shows the plot of the ellipsoid:(�̂4000 − �)T

(��T)(�̂4000− �)�� with � = 2.
The empirical distribution ofp̂(D4000) obtained over

the total of 200 repetitions of the simulation is plotted
in Fig. 4 together with the true value ofp = Pr{(�̂NL −
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Fig. 2. Scatter plot of�′
j − �′′

j , j = 1, . . . ,31. ‘×’ denotes�̂4000− �∗.
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Fig. 3. Plot of (�̂NL − �)T(��T)(�̂NL − �)�2 and 95% confidence
bound obtained using the Fisher distribution, ‘×’ denotes�̂4000 and ‘*’
denotes�∗.

�∗)T(��T)(�̂NL − �∗)��} = 0.9472 denoted by a cross.
As expected, the true value ofp falls in a central posi-
tion among thep̂(D4000)’s sincep̂(D4000) is unbiased and
hence a non-conservative estimator ofp.
By using the Fisher distribution, as detailed in Re-

mark 1, we obtained the 95% confidence ellipsoid
(�̂NL−�)T(��T)(�̂NL−�)

n�̂2
�3.0002 as shown inFig. 3, where

�̂2 is estimated as

�̂2 = 1

NL

NL
2∑

t=1

(yt − y
t+NL

2
)2 = 0.3212.
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Fig. 4. Empirical distribution ofp̂(D4000).

Table 1
�H and�s for different values of�

N L � � �H �s

32 125 2 1
31 0.0625 0.83
0.1 0.4621 1
0.3 0.9962 1
0.5 0.9999 1

We observe that the two confidence ellipsoids are very simi-
lar, further illustrating that̂p(D4000) is an unbiased estimate.
Next, let �H = 1 − e−2(N−1)�2 denote the probabil-

ity we guarantee the quality claim with (“H” stands for
“Hoeffding”, since this bound is computed from Hoeffd-
ing’s inequality). �H is computed for different values
of �, and compared with the empirical frequency that
p� p̂(D4000) − � (�s in Table 1, where “s” stands for
“sampling”). FromTable 1, when � = 1

31 we place little
confidence in the obtained statement about the quality of the
estimate even though it actually held true for 166 out of the
200 simulations. This shows that in this example the second
level of probability is conservative. Notice however that this
is the only place where conservativeness is introduced asp̂

is an unbiased estimator.�H can be increased by increas-
ing �. The price to pay is a more conservative bound for
Pr{(�̂4000− �∗)T(��T)(�̂4000− �∗)��}. We see that there
is a natural trade off between the additional margin� in the
bound onPr{(�̂4000− �∗)T(��T)(�̂4000− �∗)��} and the
confidence in the claim about the quality of the estimate.
The uncertainty in the parameter estimate was transferred

to the frequency domain in order to obtain a bound on the
transfer function. The frequency domain plots of the true
system, the estimated model, the uncertainty bounds and the
best model are given inFig. 5. Fig. 6 shows the zoomed in
version of the frequency domain plot with markers on the
frequencies of the input signal.
In the simulation ofFigs. 5and6, p̂(D4000)=0.9677, and

when�=0.1, the result inTable 1tells us that 86.77% of the
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Fig. 5. Frequency domain plot (G0: True system,Ghat: Estimated model
andG∗: “Best model”).
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Fig. 6. Frequency domain plot: Zoomed in version.

time �∗ will be located within the ellipsoid, or equivalently
the best model transfer function will be situated within the
uncertainty region inFig. 5, and this claim is true with prob-
ability larger than 0.4621. Obviously there is a fair bit of
conservativeness in the outer probability.
FromFig. 5 it is clear that the uncertainty region is quite

small in the low frequency range. The uncertainty region not
only covers the variance error but it also includes the transfer
function of the true system since the bias error is small. From
Fig. 6we observe that the estimated model is very close to
the best model at the frequencies of the input signals. As
these are the frequencies where the input energy is located,
the bias error is also quite small at these frequencies. From
Fig. 5 we can see that the bias error increases in the high
frequency region.
The above results show that the proposed method for

model quality assessment delivers useful frequency domain
bounds, particularly in the frequency range where the bias
error is small.
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6. Conclusion

In this paper we have presented new results on model
quality assessment of system identification models. We have
considered LS estimation of generalised FIR models with
periodic inputs. Importantly, we have not assumed that the
true system belongs to the model class. The probability
p=Pr{(�̂NL−�∗)T(��T)(�̂NL−�∗)��} is estimated using
an unbiased and hence non-conservative estimator based on
permutations of the data set. As the estimate ofp is stochas-
tic, a second probability is needed in order to assert the prob-
ability with which the stochastic quality claim is true. This
second probability is obtained using Hoeffding’s inequality.
The bound on the quality of the parameter estimate as stated
in Theorem 4.7 provides a rigorous result valid for a finite
number of data points.
These results are less conservative than previous finite

sample results. Simulation results have shown that the pro-
posed method works well and that we can transfer the uncer-
tainty in the parameter estimates into an uncertainty region
in the frequency domain.
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