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Abstract— This paper deals with the problem of constructing
confidence regions for the parameters of truncated series
expansion models. The models are represented using orthonor-
mal basis functions, and we extend the “Leave-out Sign-
dominant Correlation Regions” (LSCR) algorithm such that
non-asymptotic confidence regions can be constructed in the
presence of unmodelled dynamics. The constructed regions
have guaranteed probability of containing the true parameters
for any finite number of data points. The algorithm is first
developed for FIR models and then generalized to orthonormal
basis functions expansions. The usefulness of the developed
approach is demonstrated for Laguerre models in a simulation
example.

I. INTRODUCTION

One of the intrinsic tasks in system identification is to

evaluate how close the model is to the true system. This

depends heavily on the quality and the size of the observed

input-output data set and the specific rule used to construct

a (set of) model(s) from the observed data.

This work focuses on truncated series expansion models

represented by orthonormal basis functions and develops

a method for constructing confidence regions for the co-

efficients of the series expansion using only finitely many

input-output data points {uk, yk}k=1,··· ,N . For this purpose,

we extend the LSCR (Leave-out Sign-dominant Correlation

Regions) algorithm introduced in [1]. The algorithms in

[1], [2] provide non-asymptotic confidence sets with a user-

specified probability for the case where the true transfer

function from the input signal to the output signal belongs

to the model class. Here we remove the constraint that the

true system must belong to the model class, and we consider

truncated series models

G(z) =
L

∑

k=1

θkBk(z) (1)

for the true system represented by an infinite series

G0(z) =
∞
∑

k=1

θ0
kBk(z) (2)

using orthonormal basis functions {Bk(z)}. Moreover we

accommodate any noise sequence corrupting the output se-

quence.
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Typical examples of such basis functions are the pulse

functions {z−k} corresponding to the FIR (Finite Impulse

Response) models, the Laguerre models [3], the Kautz mod-

els [4], and more generally the orthonormal basis functions

in [5] and [6].

The main novelty of the proposed approach as compared

to the standard LSCR algorithm is the application of the sign-

function in the computations of the correlation functions, and

this allows us to deal with unmodelled dynamics.

In the next subsection we give a simple preview example

which illustrates the main ideas of the proposed approach.

Then in Section II the algorithm is presented at a general

level for FIR models and extended to models represented

by generalized orthonormal basis functions in Section III.

A simulation example demonstrating the usefulness of the

proposed approach is given in Section IV.

A. A preview example

To illustrate the main ideas of the paper, we present an

introductory toy-example. Suppose that the true system is

given by

yt = θ0
0ut + θ0

1ut−1 + nt, (3)

where θ0
0 = 1 and θ0

1 = 0.1, and the noise has been indicated

with a generic nt to signify that it can be arbitrary, and

not just a white signal. Since the output yt has weaker

dependence on the past input ut−1 than on the current input

ut, we may want to find a non-dynamical link between ut

and yt.

Our task is to generate 7 input data and to construct a

guaranteed confidence interval for θ0
0 .

We first generate an input signal ut, t = 1, · · · , 7 which

is independent and identically distributed (i.i.d.) with

ut =

{

+1, with probability 0.5

−1, with probability 0.5,
(4)

and apply it to the system. The input-output data are shown in

Fig. 1. We regard the term θ0
1ut−1 as unmodelled dynamics

and construct a reduced-order predictor

ŷt(θ) = θut. (5)

The corresponding prediction error is given by

ǫt(θ) = yt − ŷt(θ) = yt − θut. (6)

We calculate

ft(θ) = sign[utǫt(θ)], t = 1, · · · , 7, (7)
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Fig. 1. Data for the preview example

where the sign-function is defined as

sign[x] =







−1, for x < 0,
0, for x = 0,

+1, for x > 0.

Corresponding to the true parameter value, θ = θ0
0 , an easy

inspection reveals that sign[utǫt(θ
0
0)] = sign[ut(θ

0
1ut−1 +

nt)] is an independent and symmetrically distributed pro-

cess. It is in fact a Bernoullian process taking on the

values ±1 with probability 0.5 each. Thus, based on this

observation, we compute a number of scaled estimates of

E{sign[utǫt(θ)]} using different subsets of the data, and we

discard those regions in parameter space where the empirical

estimates take positive (or negative) value too many times.

The subsets are generated by forming a set G of subsets

of I = {1, · · · , 7} which is a group with respect to the

symmetric difference, i.e., (Ii ∪ Ij) − (Ii ∩ Ij) ∈ G, if

Ii, Ij ∈ G (see [1]). The sets Ii in the group G gives

the indices of the functions ft(θ) used for computing one

particular empirical estimate. The group considered in this

example is described by the incident matrix below.

1 2 3 4 5 6 7

I0 0 0 0 0 0 0 0

I1 1 1 0 1 1 0 0

I2 1 0 1 1 0 1 0

I3 0 1 1 0 1 1 0

I4 1 1 0 0 0 1 1

I5 1 0 1 0 1 0 1

I6 0 1 1 1 0 0 1

I7 0 0 0 1 1 1 1

Here each row corresponds to a subset. A 1 means that the

element is in the set, while 0 means that the element is not

in the set. The scaled empirical estimates are then given by

ḡi(θ) =
∑

t∈Ii

ft(θ), i = 0, · · · , 7 (8)

(ḡ0(θ) = 0 since ḡi(θ) = 0, if Ii = ∅). Since it is very

unlikely that all the ḡi(θ
0)’s have the same sign, we discard

the regions in parameter space where all functions but at

most one are less than the zero function ḡ0(θ) or greater

than the zero function ḡ0(θ), hence the name of the method:

Leave-out Sign-dominant Correlation Regions (LSCR). Since

ft(θ) = sign[utǫt(θ)] can take on only the values −1, 1 and

0, it is possible that two or more of the ḡi(θ) functions take

on the same value on an interval. This tie can be broken

by introducing a random ordering (e.g., by adding a random

number νi, which is uniformly distributed between −0.2 and

0.2, to the ḡi(θ) functions except for ḡ0(θ))

gi(θ) = ḡi(θ) + νi, i = 1, · · · , 7. (9)

Next we plot gi(θ), i = 1, · · · , 7 as functions of θ and

exclude the regions where at most one function is greater

than zero and at most one is smaller than zero. The obtained

gi(θ) functions and the confidence interval are shown in Fig.

2. The confidence interval is Θ̂ = [0.73 1.07]. It is a rigorous

fact (stated in Theorem 1) that the confidence interval

constructed this way has probability 1 − 2 · 2/8 = 0.5 of

containing the true parameter value θ0
0 . In this example, the

noise sequence nt was a realization of a biased independent

Gaussian process with mean 0.5 and variance 0.1. However,

the noise characteristics are only provided for completeness

and no knowledge about them was used in the algorithm.

Despite the facts that the system is not within the model

set, the number of data points is small, and the noise is

biased, the procedure still provides a rigorous confidence

interval for the true parameter value.
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Fig. 2. The gi(θ) functions for the preview example together with a 50%
confidence interval (thick solid line) and the true parameter (⋆)

II. CONFIDENCE REGIONS WITH UNDERMODELLING

In this section we present the general algorithm for FIR

models.
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Fig. 3. The dynamical system

A. Problem definition

Data generating system:

Consider the following linear time-invariant stable discrete-

time system with additive noise as shown in Fig. 3

yt = G0(z)ut + nt. (10)

The transfer function G0(z) is represented by

G0(z) =
∞
∑

k=1

θ0
kz−k (11)

where {θ0
k}k=1,2,··· is the sequence of Markov parameters.

Assumption:

(A1) The noise sequence {nt} is independent of {ut}, in

the sense that our choice of ut does not affect the

values of nt.

Model class:

For estimation purposes, we consider the following predictor

corresponding to an Lth order FIR model

ŷt(θ) = G(z, θ)ut =
L

∑

k=1

θkz−kut = φT
t θ, (12)

where φt = [ut−1, · · · , ut−L]T and θ = [θ1, · · · , θL]T .

Objective:

Design the input signal sequence ut and provide a

guaranteed confidence region for θ0 = [θ0
1, · · · , θ0

L]T using

N input-output data {ut, yt}t=1,··· ,N .

B. Construction of confidence regions

First we design the input signal and determine confidence

regions Θs based on the sign of the correlation between the

prediction error ǫt(θ) and the input ut−s for s ∈ {1, . . . , L}.

Input design:

(D1) The input signal sequence {ut}, for t = 1, · · · , N ,

is independent and has equal probability 0.5 of being

larger or smaller than zero.

Procedure for the construction of Θs:

(1) Compute the prediction errors

ǫt(θ) = yt − ŷt(θ) = yt − φT
t θ (13)

for t = 1 + L, 2 + L, · · · ,K + L = N .

(2) Select an integer s ∈ {1, · · · , L} and compute

ft−s,s(θ)=sign
[

ut−sǫt(θ)
]

(14)

for t=1+L, · · · ,K+L.

(3) Let G(K) = {Ii, i = 0, · · · , M−1} be a collection of

subsets of {1, 2, · · · ,K} forming a group with respect

to the symmetric difference and let without loss of

generality I0 = ∅. Compute the empirical correlations

ḡi,s(θ) =
∑

t−L∈Ii

ft−s,s(θ), i = 0, · · · ,M − 1. (15)

(4) Add a small random number νi uniformly distributed

on [−a, a] with a < 0.5 to each correlation functions

apart from the zero function ḡ0,s(θ) ≡ 0

gi,s(θ) = ḡi,s(θ) + νi, i = 1, · · · ,M − 1. (16)

The addition of νi prevents ties from occurring in the

next step.

(5) Select an integer q in the interval [1, (M + 1)/2)
and find the region Θs such that at least q of the

gi,s(θ) functions are greater than the zero-function

g0,s(θ) ≡ 0 and at least q are smaller than g0,s(θ) ≡ 0.

For θ = θ0, sign
[

ut−sǫt(θ)
]

is a sequence of indepen-

dent random variables with symmetric distribution around

zero (see [7]). Therefore, it is unlikely that nearly all of

the correlations functions gi,s(θ) are positive or negative

corresponding to the true value θ0, and those regions in

parameter space where this happens are therefore excluded

from the confidence regions in point (5) of the procedure.

The following theorem gives the exact probability that θ0

belongs to the constructed region.

Theorem 1: In addition to (A1), assume that

(A2) Pr
{

ǫt(θ
0) = 0

}

= 0.

Then,

Pr
{

θ0 ∈ Θs

}

= 1 − 2 · q/M. (17)

Proof: See [7].

Remark 1: The assumption (A2) in Theorem 1 is mild.

It is typically only violated when there is no undermodelling

and nt takes on the value 0 with non-zero probability. ¥
The evaluation (17) is non-conservative in the sense that

1 − 2 · q/M is the exact probability, not a lower bound.

For each s ∈ {1, . . . , L}, the set Θs is a non-asymptotic

confidence set for θ0. However, each one of these sets can

be unbounded in some directions of the parameter space, and

therefore not particularly useful. A useful confidence set Θ̂

is obtained by intersecting all the sets Θs for s = 1, · · · , L,

i.e.

Θ̂ =
L
⋂

s=1

Θs. (18)

From Theorem 1 it follows that

Theorem 2: Under the assumptions of Theorem 1,

Pr
{

θ0 ∈ Θ̂
}

≥ 1 − 2 · L · q/M. (19)

By adding some further statistical assumptions on the input

and noise sequence, we can show that the constructed region

concentrates around the true parameter θ0 as the number of

data points increases [7].
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Remark 2 (Errors-in-variables model): The fact that The-

orem 1 and Theorem 2 hold with a minor assumption (A1)
on nt provides much flexibility in practical situations where

the input to the system is also corrupted with an unknown

noise sequence {ηt} independent of {ut}. Let

rt = ut + ηt (20)

as shown in Fig. 4. Substituting (20) into (10) yields

yt = G0(z)rt + nt = G0(z)ut + et (21)

where et , G0(z)ηt + nt.

ut
G0(z)

ηt

rt

nt

yt

Fig. 4. Errors-in-variables model

By treating et as the new measurement noise sequence, we

can construct confidence regions for the system parameters

by following the same procedures as in Section II-B with the

data set {ut, yt}t=1,...,N . ¥

III. GENERALIZATIONS

It is well known [3], [5] that using the pulse basis

functions for identification of moderately damped systems or

of systems with high sampling rates leads to approximations

of high order. To deal with these situations, several orthonor-

mal functions have been suggested which incorporate prior

system information, e.g., the Laguerre functions [3] and the

Kautz functions [4], both of which are special cases of the

generalized orthonormal basis functions introduced in [5] and

[6]. In this section, we first briefly describe these generalized

orthonormal basis functions and then extend the results from

the previous section to cover series expansion in these basis

functions.

A. Generalized orthonormal basis functions

The theorem below from [5] describes the generalized

orthonormal basis functions.

Theorem 3: Let Gb(z) be a stable all-pass transfer func-

tion having an internally balanced realization1 (A,B,C,D)
of order nb. Denote

Vk(z) = Vk−1(z)Gb(z) with V0(z) = z(zI − A)−1
B.

Then the sequence of scalar rational functions

{eT
i Vk(z)}i=1,··· ,nb;k=0,...∞ forms an orthonormal basis

for the Hilbert space H2. Here ei is i-th Euclidean basis

vector in R
nb .

Note here that the basis functions constructed above are

complete in H2 since the all-pass transfer function Gb(z) is

stable (see [8]).

One can construct an all-pass transfer function Gb(z)
from any given set of poles, and thus the resulting basis

1In [5], balanced realization was used simply as a technique to generate
orthonormal basis functions from an all-pass transfer function Gb(z).

can incorporate dynamics of any complexity, combining,

for example, both fast and slow dynamics in damped and

resonant modes (see Proposition 7.1 of [5].) Corollary 1

below follows directly from Theorem 3.

Corollary 1: Let Gb(z) be a stable all-pass transfer func-

tion of order nb with a corresponding sequence of basis

functions Vk(z) as in Theorem 3. Then for every strictly

proper stable transfer function H ∈ H2 there exists a unique

sequence L = {Lk}k=0,1,··· ∈ ℓ1×nb

2 [0,∞), such that

H(z) = z−1
∞
∑

k=0

LkVk(z). (22)

We refer to Lk as the orthonormal expansion coefficients of

H(z).
The pulse, Laguerre, and Kautz functions are special

cases of the generalized orthonormal basis functions as

shown next.

Pulse Functions: Using the all-pass transfer function

Gb(z) = z−1 with minimal balanced realization (0, 1, 1, 0),
we obtain the standard pulse basis

Vk(z) = Gk
b (z) = z−k.

Laguerre Functions: Using the all-pass transfer function

Gb(z) = (1−az)/(z−a) for some real-valued a with |a| <
1, and balanced realization

(A,B, C,D) = (a,
√

1 − a2,
√

1 − a2,−a),

the Laguerre basis results [3]: Vk(z) =
√

1 − a2z (1−az)k

(z−a)k+1

Kautz Functions: Using the all-pass transfer function

Gb(z) = −cz2+b(c−1)z+1
z2+b(c−1)z−c

for some real-valued b, c with

|c|, |b| < 1, and a balanced realization

A =

[

b
√

1 − b2

c
√

1 − b2 −bc

]

,B =

[

0√
1 − c2

]

C =
[

γ2 γ1

]

, D = −c

with γ1 = −b
√

1 − c2 and γ2 =
√

(1 − c2)(1 − b2),

z−1
V0(z) =

√
1 − c2

z2 + b(c − 1)z − c

[√
1 − b2

z − b

]

,

we obtain the Kautz functions [4].

B. Generalized FIR models

In this section we convert models, which are series ex-

pansions in the above generalized basis functions, into FIR

models using a filtering procedure.

Using (22) and denoting Bk+1(z) , z−1
Vk(z) and

Lk+1 , θ0
k ∈ R

1×nb , we can represent the true transfer

function as

G0(z) =
∞
∑

k=1

θ0
kBk(z) (23)

where the basis functions have the property

Bk(z) = B(z) · Ak−1(z) (24)
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with B(z) , (zI−A)−1
B, A(z) , Gb(z). Then, a linear

time-invariant system can be represented as

yt = G0(z)ut + nt =
∞
∑

k=1

θ0
kBk(z)ut + nt. (25)

In order to use the procedure for constructing confidence

regions developed in Section II, we create a new input-

output data set {ũt, ỹt}t=1,··· ,N from the original data set

{ut, yt}t=1,··· ,N such that the new data set satisfies

ỹt =
∞
∑

k=1

θ0
kz−k

ũt + ñt. (26)

The filtered data set {ũt, ỹt} is constructed starting from the

last elements {ũN , ỹN} (at time t = N ) to the first elements

{ũ1, ỹ1} through successive filtering with the all-pass filter

A(z) as described below:

For i = N: Take

ũN , {ut}|t=N × 1, ỹN , {yt}|t=N .

Here 1 is a vector of all ones in R
nb.

For i = N-1,· · ·,1: Apply filtering N-i

times and collect the last elements

ũi ,
[

AN−(i+1)(z)B(z)
]

{ut}
∣

∣

t=N
, (27)

ỹi ,
[

AN−i(z){yt}
]
∣

∣

t=N
. (28)

By applying the filtering above, we obtain

ỹN = {yt}|t=N

= θ0
1B1{ut}|t=N + θ0

2B2{ut}|t=N + · · · + {nt}|t=N

= θ0
1B{ut}|t=N + θ0

2AB{ut}|t=N + · · · + nN

= θ0
1ũN−1 + θ0

2ũN−2 + · · · + ñN

and similarly, for i = N − 1, · · · , 1,

ỹi = AN−i{yt}|t=N

= θ0
1AN−i

B1{ut}|t=N + θ0
2AN−i

B2{ut}|t=N + · · ·
+ AN−i{nt}|t=N

= θ0
1ũi−1 + θ0

2ũi−2 + · · · + ñi.

Therefore, we can represent the system in terms of the pulse

basis functions

ỹt =
∞
∑

k=1

θ0
kz−k

ũt + ñt (29)

with ñi , AN−i(z){nt}|t=N . The corresponding predictor

and prediction error become

ˆ̃yt(θ) =
L

∑

k=1

θkz−k
ũt, ǫ̃t(θ) = ỹt − ˆ̃yt(θ). (30)

Now we design the following new input signal ut and make

a strengthening assumption on the noise nt:

(D2) The input {ut} is a white gaussian sequence with

spectral density Φu.

(A3) The the noise {nt} is a white gaussian sequence

independent of the input ut.

Then,

E{ũiũ
T
j }=[ N − i − 1 , k, N − j − 1 , l ]

=E
{

Bk(z){ut}|t=N · BT
l (z){ut}|t=N

}

=
Φu

2π

∫ π

−π

Bk(ejω)BT
l (e−jω)dω=ΦuIδ(i−j)

(31)

where we have used the Parseval’s relationship and the

orthonormality. Hence, the filtered input sequence {ũt} is

uncorrelated and also independent, since {ũt} is gaussian.

Furthermore, {ũt} and {ñt} are strict sense stationary and

ergodic (see [7]). Therefore, from the observation that the

new input {ũt} and the new noise sequence {ñt} satisfy

assumptions (A1) - (A2) in Section II, the procedure for

construction of confidence regions for θ0
k, k = 1, · · · , L

developed in Section II-B can be applied to (29) with the

new data set {ũt, ỹt} (as summarized in Corollary 2 below),

and the convergence property explained in Section II-B also

holds for the system (29)(see [7]).

Corollary 2: Under the input design (D2) and the as-

sumption (A3), the set Θs obtained by applying the proce-

dure in Section II-B to the system (29) with the filtered data

(27)- (28) has the property that

Pr
{

θ0 ∈ Θs

}

= 1 − 2 · q/M,

and the set Θ̂ = ∩L
s=1Θs has the property that

Pr
{

θ0 ∈ Θ̂
}

≥ 1 − 2 · L · q/M.

Remark 3 (Effects of initial conditions): Performing the

successive filtering described above requires information

about past input and output {ut, yt}t≤0. We can decompose

the input and the output as yt = y+
t + y−

t , ut = u+
t + u−

t

where (·)+t , (·)t for t > 0 and (·)+t = 0 for t ≤ 0, and

(·)−t , (·)t for t ≤ 0 and (·)−t = 0 for t > 0. Then, the

system equation (25) can be written as

y+
t = G0(z)u+

t +
[

nt + G0(z)u−
t − y−

t

]

= G0(z)u+
t + n̄t

with n̄t , nt + G0(z)u−
t − y−

t . By treating n̄t as a new

noise sequence, we can construct confidence regions for

the parameters of the system by following the previous

procedure using the data set {u+
t , y+

t }. Generally, the new

input sequence obtained by repeated filtering of {u+
t } is not

an independent sequence due to the zero initial condition.

The exception is the pulse basis functions for which the

sequence will be independent. However, for a filter Bk(z)
with a fast-decaying impulse response, the magnitude of the

tail is so small that the new input {ũ+
k } in practice can be

treated as an independent sequence. ¥

IV. NUMERICAL EXAMPLE

In order to numerically demonstrate the effectiveness of

the algorithms described in previous sections, we consider

the following discrete-time system

yt = G0(z)ut + nt. (32)
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using 511 filtered data points. ⋆ = true parameter, Laguerre case

The transfer function G0(z) is given by

G0(z) =
0.03555z + 0.02465

(z − 0.90483)(z − 0.36787)
(33)

which was obtained from a continuous-time system

1

(10s + 1)(s + 1)
(34)

by discretizing with zero-order-hold and sampling period 1
second. The input sequence {ut} and the noise sequence

{nt} were zero-mean white Gaussian sequences with vari-

ance 1 and 0.05, respectively. 5000 data points were col-

lected.

The coefficients of the pulse basis functions slowly decay,

but for the Laguerre basis function the two terms are suf-

ficient to get a good approximation. Therefore, we use the

2nd order Laguerre model for prediction

ŷt = θ1B1(z)ut + θ2B2(z)ut (35)

with a = 0.8 the pole location of the Laguerre basis functions

between the true system poles.

To obtain confidence regions for θ0
1 and θ0

2 , the successive

filtering explained in Section III-B was applied to the original

data set {ut, yt}t=1,··· ,N generated from (32) and a filtered

data set {ũt, ỹt}t=1,··· ,N was obtained. The initial conditions

were set to zero as in Remark 3.

The last 511 data points out of the 5000 filtered data points

were used. We computed

ft−1,1(θ) = sign
[

ũt−1ǫt(θ)
]

,

ft−2,2(θ) = sign
[

ũt−2ǫt(θ)
]

,

for t = 4490, · · · , 5000, and

gi,1(θ) =
∑

t−2∈Ii

ft−1,1(θ) + νi,1 i = 0, · · · ,M − 1

gi,2(θ) =
∑

t−2∈Ii

ft−1,2(θ) + νi,2 i = 0, · · · ,M − 1

where νi,1 and νi,2 were uniformly distributed on

[−0.1, 0.1]. We excluded the regions in parameter space

where at most five (out of the M = 512) gi,1 and gi,2

functions were positive or negative. The obtained confidence

region is the blank area in Fig. 5. The region constructed this

way has a probability of at least 1 − 2 · 2 · 6/512 = 0.9531
of containing the true parameter. The true value is marked

with ⋆. The regions where at most five gi,1(θ) functions

were negative are marked with ©, and the regions where

at most five were positive are marked with ¤. Likewise for

gi,2(θ), where + and × represent the regions where at most

five values of gi,2(θ) were negative or positive. As we can

see, each step in the construction of the confidence region

excludes a particular region.

V. CONCLUDING REMARKS

In this paper, we have extended the LSCR algorithm

developed in [1], [2] for constructing non-asymptotic con-

fidence regions to the case where undermodelling is present.

The systems are approximated by generalized orthonormal

basis functions models, and by applying the sign-function

in the computations of the correlation functions, guaranteed

non-asymptotic confidence regions can be constructed. The

method was first developed for FIR models and then ex-

tended to models represented by generalized orthonormal

basis functions through a filtering procedure.
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