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Abstract— In this paper, we present a new approach to
control design in presence of constraints. This approach relies
on the reformulation of the controller design problem as a
semi-infinite convex optimization program, and on the solution
of this program by the scenario optimization technology.
The approach is illustrated through a simple example of
disturbance rejection subject to input saturation constraints.

I. INTRODUCTION

In this paper, we propose a new approach to address robust

control design in presence of constraints in a systematic and

optimal way.

For ease of explanation, we illustrate this new approach

through a simple example where, given a linear system

affected by a disturbance belonging to some class, the goal

is to design a feedback controller that attenuates the effect

of the disturbance on the system output, while avoiding

saturation of the control action due to actuator limitations.

The proposed control design method relies on the re-

formulation of the problem as a robust convex optimiza-

tion program by adopting an appropriate parametrization

of the controller. A robust convex optimization problem is

expressed in mathematical terms as

min
θ∈ℜn

g(θ) subject to: (1)

fδ(θ) ≤ 0, ∀δ ∈ ∆,

where δ is the uncertain parameter, and g(θ) and fδ(θ) are

convex functions in the n-dimensional optimization variable

θ for every δ within the uncertainty set ∆. Convexity is

appealing since ‘convex’ - as opposed to ‘non-convex’ -

means ‘solvable’ in many cases, [1], [2]. In our context,

the uncertain parameter δ represents a realization of the

disturbance affecting the system, hence ∆ contains an infinite

number of instances. It is well known that semi-infinite opti-

mization problems, that is problems with a finite number n of

optimization variables and an infinite number of constraints,

are difficult to solve and they have even proven NP-hard in

some cases, [3], [4], [5], [6].

In [7], [8], an innovative technology called ‘scenario

approach’ has been introduced to deal with semi-infinite

convex programming at a very general level. The main thrust
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of this technology is that solvability can be obtained through

random sampling of constraints provided that a probabilis-

tic relaxation of the worst-case robust paradigm of (1) is

accepted. Here, we propose to use the scenario technology

for determining a solution to control design problems that

would otherwise be hard to solve because of the presence

of constraints and of uncertain signals/disturbances affecting

the system. No extensions of the scenario approach itself are

developed. Randomized algorithms for system analysis and

control design have recently become a topic of great interest

for the control community (see [9] for a comprehensive

survey on the subject). Our contribution consists in the

introduction of a novel randomized algorithm for robust

control design in presence of constraints, which is based on

the scenario approach.

In our control set-up where the uncertain parameter δ

represents the disturbance realization, the implementation

of the scenario optimization requires to randomly extract a

certain number of disturbance realizations and to simulate the

system behavior with the extracted realizations as input. This

justifies the terminology we adopt to describe the proposed

approach to control design as a ‘simulation-based method’.

The problem of disturbance rejection has been addressed

in the literature based on the dynamic programming approach

[10], [11], [12], the l1-optimal control theory [13], [14],

the use of an upper bound on the l1-norm (the star-norm)

[15], and, more recently, through the invariant ellipsoids

technique [16]. In all these approaches, the disturbance is

only assumed to be bounded. Further possible knowledge on

the disturbance signal (such as, for example, its correlation

in time and main frequency components) is not exploited

in the design process, which may lead to sub-optimal and

conservative solutions for the problem at hand. Also, in the

approaches based on dynamic programming and l1-optimal

control, the order of the controller cannot be fixed a-priori

and the complexity of the resulting ‘optimal’ compensator

may be high.

Other methodologies for solving quite general control

design problems for linear systems affected by uncertain

signals/disturbances and subject to constraints are present

in the literature of receding horizon and model predictive

control, [17], [18], [19], [20]. Differently from what we

propose here, no structure is imposed to the feedback con-

troller in these papers and design is carried out by directly

optimizing over the control input samples in a time horizon

of interest. The resulting feedback controller suffers from

the problem to be difficult to implement, but it secures high

performance under certain hypotheses. Moreover, applicabil-

ity of standard methods in receding horizon model predictive
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control requires that uncertainty is quite structured (typically,

the uncertain signals/disturbances are characterized through

some polytopic or ellipsoidal bound on their instantaneous

value), a limitation which is largely overcome by the ap-

proach proposed here.

The rest of the paper is organized as follows. In Section

II, we precisely describe the control problem addressed and

its reformulation as a semi-infinite convex optimization pro-

gram. The application of the scenario technology to solve this

optimization program is then explained in Section III, and a

numerical example is provided in Section IV to illustrate the

effectiveness of the resulting randomized method for control

design. Some concluding remarks are drawn in Section V.

II. CONTROL PROBLEM FORMULATION

We consider a discrete time linear system with scalar input

and scalar output, u(t) and y(t), governed by the following

equation:

y(t) = G(z)u(t) + d(t), (2)

where G(z) is a stable transfer function and d(t) is an

additive disturbance.

Our objective is to determine a feedback control law

u(t) = C(z)y(t) (3)

(see Figure 1) such that the disturbance d(t) is optimally

attenuated for every realization of d(t) in some set of

possible realizations D, and such that the control input keeps

within certain saturation limits. For example, D can be the set

of step functions with specified maximum amplitude or the

set of sinusoids with frequency in a certain range. A precise

formalization of the optimization problem is next given.

Fig. 1. The feedback disturbance compensation scheme.

Consider the finite-horizon 2-norm
∑M

t=1 y(t)2 of the

closed-loop system output. This norm quantifies the effect of

the disturbance d(t). For simplicity, we here consider (2) and

(3) initially at rest, namely G(z)u(t) represents an infinite

backwards expansion
∑∞

j=1 gju(t − j) where u(t − j) = 0
for t − j ≤ 0, and similarly for C(z)y(t).

The goal is to minimize the worst-case disturbance effect

max
d(t)∈D

M
∑

t=1

y(t)2, (4)

while maintaining the control input u(t) within a saturation

limit ubound:

max
1≤t≤M

|u(t)| ≤ ubound, ∀d(t) ∈ D. (5)

Controller C(z) is expressed in terms of an Internal Model

Control (IMC) parametrization, [21]:

C(z) =
Q(z)

1 + Q(z)G(z)
, (6)

where G(z) is the system transfer function and Q(z) is a

free-to-choose transfer function (see Figure 2).

Fig. 2. The IMC parameterization of the controller.

Expression of C(z) in (6) is totally generic, in that, given

a C(z), a Q(z) can be always found generating that C(z)
through expression (6). The advantage of (6) is that the set

of all controllers that closed-loop stabilize G(z) is simply

obtained from (6) by letting Q(z) vary over the set of all

stable transfer functions (see [21] for more details).

With (6) in place, the control input u(t) and the controlled

output y(t) are given by:

u(t) =
C(z)

1 − C(z)G(z)
d(t) = Q(z)d(t) (7)

y(t) = G(z)u(t) + d(t) = [G(z)Q(z) + 1]d(t). (8)

The distinctive feature of these expressions is that u(t)
and y(t) are affine in Q(z). Consequently, if Q(z) is selected

from a family of stable transfer functions linearly parame-

terized in γ := [γ0 γ1 . . . γk]T ∈ ℜk+1, i.e.

Q(z) = γ0β0(z)+ γ1β1(z)+ γ2β2(z)+ · · ·+ γkβk(z), (9)

where βi(z)’s are pre-specified stable transfer functions, then

the cost (4) and the constraints (5) are convex in γ.

A common choice for the βi(z)’s functions is to set them

equal to pure ‘delays’: βi(z) = z−i, leading to

Q(z) = γ0 + γ1z
−1 + γ2z

−2 + · · · + γkz−k.

Another possibility is to let βi(z)’s be Laguerre polynomials,

[22], [23].

The control design problem can now be precisely formu-

lated as follows:

min
γ,h∈ℜk+2

h subject to: (10)

M
∑

t=1

y(t)2 ≤ h, ∀d(t) ∈ D, (11)

max
1≤t≤M

|u(t)| ≤ ubound, ∀d(t) ∈ D. (12)

Due to (11), h represents an upper bound to the output 2-

norm
∑M

t=1 y(t)2 for any realization of d(t). Such an upper
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bound is minimized in (10) under the additional constraint

(12) that u(t) does not exceed the saturation limits.

We now rewrite problem (10)–(12) in a more explicit form.

By (7) and (8) and the parametrization of Q(z) in (9),

the input and the output of the controlled system can be

expressed as

u(t) =
(

γoβ0(z) + . . . + γkβk(z)
)

d(t) (13)

y(t) = G(z)
(

γoβ0(z) + . . . + γkβk(z)
)

d(t) + d(t). (14)

Let us define the following vectors containing filtered

versions of the disturbance d(t):

φ(t) :=











β0(z)d(t)
β1(z)d(t)

...

βk(z)d(t)











and ψ(t) =











G(z)β0(z)d(t)
G(z)β1(z)d(t)

...

G(z)βk(z)d(t)











. (15)

Then, (13) and (14) can be re-written as

u(t) = φ(t)T γ

y(t) = ψ(t)T γ + d(t),

and
∑M

t=1 y(t)2 = γT Aγ + Bγ + C, where

A =
M
∑

t=1

ψ(t)ψ(t)T , B = 2
M
∑

t=1

d(t)ψ(t)T , C =
M
∑

t=1

d(t)2

(16)

are matrices that depend on d(t) only.

With all these positions, (10)–(12) rewrites as

min
γ,h∈ℜk+2

h subject to: (17)

γT Aγ + Bγ + C ≤ h, ∀d(t) ∈ D

− ubound ≤ φ(t)T γ ≤ ubound, ∀t ∈ {1, 2, . . . ,M},

∀d(t) ∈ D.

Compared with the general form (1), the optimization

variable θ is here (γ, h) and has size n = k + 2, and

the uncertain parameter δ is the disturbance realization d(t)
taking value in the set ∆ = D. Note that, given d(t),
quantities A, B, C, and φ(t) are fixed so that the first

constraint in (17) is quadratic, while the others are linear.

Typically, the set D of disturbance realizations has infinite

cardinality. Hence, problem (17) is a semi-infinite convex

optimization problem.

III. RANDOMIZED SOLUTION THROUGH THE SCENARIO

TECHNOLOGY

As already pointed out in the introduction, semi-infinite

convex optimization problems like (17) are difficult to solve.

The idea of the scenario approach is that solvability can

be recovered if some relaxation in the concept of solution

is accepted. In the context of our control design problem,

this means requiring that the constraints in (17) are satisfied

for all disturbance realizations but a small fraction of them

(chance-constrained approach).

The scenario approach goes as follows. Since we are

unable to deal with the wealth of constraints in (17), we

concentrate attention on just a few of them and extract at

random N disturbance realizations d(t) according to some

probability distribution P introduced over D. This proba-

bility distribution should reflect the likelihood with which

the disturbance realizations occur or the relative importance

that is attributed to different disturbance realizations. If no

hint is available on which realization is more likely to occur

and none of them is more critical than the others, then the

uniform distribution can be adopted. A discussion on the

use of the uniform distribution in randomized methods can

be found in [24].

Only the extracted instances (‘scenarios’) are considered

in the scenario optimization:

SCENARIO OPTIMIZATION

extract N independent identically distributed realizations

d(t)1, d(t)2, . . . , d(t)N from D according to P . Then,

solve the scenario convex program (SCPN ):

min
γ,h∈ℜk+2

h subject to: (18)

γT Aiγ + Biγ + Ci ≤ h, i = 1, . . . , N,

− ubound ≤ φ(t)T
i γ ≤ ubound,

∀t ∈ {1, 2, . . . ,M}, i = 1, . . . , N,

where Ai, Bi, Ci, and φ(t)i are as in (16) and (15) for

d(t) = d(t)i.

Letting (γ∗
N , h∗

N ) be the solution to SCPN , γ∗
N returns

the designed controller parameter, whereas h∗
N quantifies the

performance of the design compensator over the extracted

disturbance realizations d(t)1, d(t)2, . . . , d(t)N .

The implementation of the scenario optimization requires

that one picks N realizations of the disturbance and com-

putes Ai, Bi, Ci, and φ(t)i in correspondence of the

extracted realizations. Since these quantities are artificially

generated (that is they are not actual measurements coming

from the system, but, instead, they are computer-generated),

the proposed control design methodology can as well be seen

as a simulation-based approach.

SCPN is a standard convex optimization problem with a

finite number of constraints, and therefore easily solvable.

On the other hand, it is spontaneous to ask: what kind of

solution is one provided by SCPN ? Specifically, what can we

claim regarding the behavior of the designed control system

for all other disturbance realizations, those we have not taken

into consideration while solving the control design problem?

Answering this question is necessary to provide performance

guarantees.

The above question is of the ‘generalization’ type in a

learning-theoretic sense: we want to know how the solution

(γ∗
N , h∗

N ) generalizes in constraints satisfaction, from seen

disturbance realizations to unseen ones. Certainly, any gener-

alization result calls for some structure as no generalization

is possible if no structure linking what has been seen to
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what has not been seen is present. The formidable fact in

the context of convex optimization is that the solution of

SCPN always generalizes well, with no extra assumptions.

We have the following theorem (see Corollary 1 in [8]).

Theorem 1: Select a ‘violation parameter’ ǫ ∈ (0, 1) and

a ‘confidence parameter’ β ∈ (0, 1). Let n = k + 2.

If

N =

⌈

2

ǫ
ln

1

β
+ 2n +

2n

ǫ
ln

2

ǫ

⌉

(19)

(⌈·⌉ denotes the smaller integer greater than or equal to the

argument), then, with probability no smaller than 1− β, the

solution (γ∗
N , h∗

N ) to (18) satisfies all constraints of problem

(17) with the exception of those corresponding to a set of

disturbance realizations whose probability is at most ǫ. ¤

Let us read through the statement of this theorem in some

detail. If we neglect the part associated with β, then, the

result simply says that, by sampling a number of disturbance

realizations as given by (19), the solution (γ∗
N , h∗

N ) to (18)

violates the constraints corresponding to other realizations

with a probability that does not exceed a user-chosen level

ǫ. This corresponds to say that – for other, unseen, d(t)’s
– constraints (11) and (12) are violated with a probability

at most ǫ. From (11) we therefore see that the found h∗
N

provides an upper bound for the output 2-norm
∑M

t=1 y(t)2

valid for any realizations of the disturbance with exclusion of

at most an ǫ-probability set, while (12) guarantees that, with

the same probability, the saturation limits are not exceeded.

As for the probability 1−β, one should note that (γ∗
N , h∗

N )
is a random quantity because it depends on the randomly

extracted disturbance realizations. It may happen that the

extracted realizations are not representative enough (one can

even stumble on an extraction as bad as selecting N times the

same realization!). In this case no generalization is certainly

expected, and the portion of unseen realizations violated by

(γ∗
N , h∗

N ) is larger than ǫ. Parameter β controls the probabil-

ity of extracting ‘bad’ realizations, and the final result that

(γ∗
N , h∗

N ) violates at most an ǫ-fraction of realizations holds

with probability 1 − β.

In theory, β plays an important role and selecting β = 0
yields N = ∞. For any practical purpose, however, β has

very marginal importance since it appears in (19) under the

sign of logarithm: we can select β to be such a small number

as 10−10 or even 10−20, in practice zero, and still N does

not grow significantly.

It is worth mentioning that improved bounds on the sample

complexity N have been developed very recently in [25] and

[26]. In particular, the bound derived in [26] is exact for the

class of the so-called fully-supported problems.

IV. NUMERICAL EXAMPLE

A simple example illustrates the controller design proce-

dure.

With reference to (2), let

G(z) =
0.2

z − 0.8
,

and let the additive output disturbance be a piecewise con-

stant signal that varies from time to time, at a low rate, of

an amount bounded by some given constant. Specifically,

let the set of admissible realizations D consists of piecewise

constant signals changing at most once over any time interval

of length 50, and taking value in [−1, 1].
As for the IMC parametrization Q(z) in (9), we choose

k = 1 and Q(z) = γ0 + γ1z
−1.

A control design problem (10)–(12) is considered with

M = 300, and for two different values of the saturation

limit ubound: 10 and 1. Probability P is implicitly assigned

by the recursive equation

d(t + 1) =
(

1 − µ(t)
)

d(t) + µ(t)v(t + 1),

initialized with d(1) = v(1), where µ(t) is a {0, 1}-valued

process (µ(t) = 1 at times where a jump occurs), and v(t) is

a sequence of i.i.d. random variables uniformly distributed

in [−1, 1] (v(t) is the new d(t) value). µ(t) is generated

according to

µ(t) = α(t)
50
∏

k=1

(

1 − µ(t − k)
)

,

initialized with µ(0) = µ(−1) = · · · = µ(−49) = 0,

where α(t) is a sequence of i.i.d. {0, 1}-valued random

variables taking value 1 with probability 0.01. An admissible

realization of d(t) in D is reported in Figure 3.

1 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3. A disturbance realization.

In the scenario approach we let ǫ = 5 · 10−2 and β =
10−10. Correspondingly, N given by (19) is N = 1370.

From Theorem 1, with probability no smaller than 1 −
10−10, the obtained controller achieves the minimum of
∑M

t=1 y(t)2 over all disturbance realizations, except a frac-

tion of them of size smaller than or equal to 5%. At the

same time, the control input u(t) is guaranteed not to exceed

the saturation limit ubound except for the same fraction of

disturbance realizations.

A. Simulation results

For ubound = 10, we obtained Q(z) = −4.993+4.024z−1

and, correspondingly, the transfer function F (z) = 1 +

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 WeA17.1

533



Q(z)G(z) between d(t) and y(t) (closed-loop sensitivity

function) was

F (z) = 1 + (−4.993 + 4.024z−1)
0.2

z − 0.8
≃ 1 − z−1.

The pole-zero plot of F (z) is in Figure 4.

−1  −0.8 −0.6 −0.4 −0.2 0   0.2 0.4 0.6 0.8 1   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Pole-zero plot of F (z) when ubound = 10. The poles are plotted
as x’s and the zeros are plotted as o’s.

Since y(t) = F (z)d(t) ≃ d(t) − d(t − 1), then, when

d(t) has a step variation, y(t) changes of the same amount

and, when the disturbance gets constant, y(t) is immediately

brought back to zero and maintained equal to zero until

the next step variation in d(t) (see Figure 5). The obtained

solution that F (z) is approximately a FIR (Finite Impulse

Response) of order 1 with zero DC-gain is not surprising

considering that d(t) varies at a low rate.

1 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

d(t)

y(t)

Fig. 5. Disturbance realization and corresponding output of the controlled
system for ubound = 10.

In the controller design just described, the limit ubound =
10 played no role in that constraints −ubound ≤ φ(t)T

i γ ≤
ubound in problem (18) were not active at the found solution.

As ubound is decreased, the saturation limits become more

stringent and affect the solution.

For ubound = 1, the following scenario solution was found

Q(z) = −0.991 + 0.011z−1, which corresponds to the

sensitivity function:

F (z) = 1 + (−0.991 + 0.011z−1)
0.2

z − 0.8
≃

z − 0.996

z − 0.8
.

The pole-zero plot of F (z) is in Figure 6, while Figure 7

represents y(t) obtained through this new controller for the

same disturbance realization as in Figure 5. Note that the

time required to bring y(t) back to zero after a disturbance

jump is now longer than 1 time unit, owing to saturation

constraints on u(t).

 

−1  −0.8 −0.6 −0.4 −0.2 0   0.2 0.4 0.6 0.8 1   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6. Pole-zero plot of F (z) when ubound = 1. The poles are plotted as
x’s and the zeros are plotted as o’s.

1 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

d(t)

y(t)

Fig. 7. Disturbance realization and corresponding output of the controlled
system for ubound = 1.

The optimal control cost value h∗
N is h∗

N = 9.4564 for

ubound = 10 and h∗
N = 27.4912 for ubound = 1. As expected,

the control cost increases as ubound becomes more stringent.

The numerical example of this section is just one instance

of application of the scenario approach to controller selec-

tion. The introduced methodology is of general applicability

to diverse situations with constraints of different type, pres-

ence of reference signals, etc.
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V. CONCLUSIONS

In this paper, we considered an optimal disturbance re-

jection problem with limitations on the control action and

showed how it can be effectively addressed by means of

the so-called scenario technology. This approach basically

consists of the following main steps:

- reformulation of the problem as a robust (usually with

infinite constraints) convex optimization problem;

- randomization over constraints and resolution (by

means of standard numerical methods) of the so ob-

tained finite optimization problem;

- evaluation of the constraint satisfaction level of the

obtained solution through Theorem 1.

Extensions to tracking of some class of reference signals, and

to control problems where the initial condition is uncertain

or the output of the system is subject to some constraint are

quite straightforward.

The applicability of the scenario methodology is not

limited to optimal control problems with constraints and,

indeed, this same methodology has been applied to a number

of different endeavors in systems and control, [27], [28], [29],

[30].
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