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Abstract. The scenario optimization method developed in

[1] is a theoretically sound and practically effective technique

for solving in a probabilistic setting robust convex optimiza-

tion problems arising in systems and control design, that

would otherwise be hard to tackle via standard deterministic

techniques. In this note, we further explore some aspects of

the scenario methodology, and present two results pertaining

to the tightness of the sample complexity bounds. We also

state a new theorem that enables the user to make a-priori

probabilistic claims on the scenario solution, with one level

of probability only.
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I. PRELIMINARIES

Techniques based on uncertainty randomization recently

gained increasing favor among both control theoreticians

and practitioners, the firsts being appealed by the solid

foundations of these methods, rooting in the theory of

probability, optimization and stochastic processes, and the

seconds being attracted by their relative simplicity of prac-

tical implementation. An up-to-date description of this body

of techniques, along with applications to control analysis and

design problems and many pointers to the literature, can be

found in the texts [3], [12]. Among these techniques, the so-

called scenario design method developed in [1] permits to

solve effectively control design problems that can be cast in

the form of a convex optimization program with uncertain

constraints. A significant class of control problems indeed

fall in this framework, see for instance the discussion and

examples in [1]. First, we briefly review the essential points

of the scenario optimization approach of [1] in order to

prepare the terrain for our further discussion.
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l’Automazione, Università di Brescia, Via Branze 38, 25123 Brescia – Italy.
marco.campi@ing.unibs.it

Giuseppe C. Calafiore (corresponding author) is with the Dipartimento di
Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi
24, 10129 Torino – Italy. giuseppe.calafiore@polito.it

Consider an uncertain convex optimization problem

min
θ∈Θ

cT θ subject to: (1)

f(θ, δ) ≤ 0, δ ∈ ∆,

where θ ∈ Θ ⊆ R
nθ is the decision variable, Θ is convex and

closed, δ ∈ ∆ ⊆ R
nδ is an uncertain parameter, c ∈ R

nθ is a

given vector, and f(θ, δ) : Θ×∆ → [−∞,∞] is continuous

and convex in θ, for any fixed value of δ ∈ ∆.

A robust solution associated to (1) is obtained when

f(θ, δ) ≤ 0 is required to hold ∀δ ∈ ∆, while different scales

of robustness can be achieved by imposing that f(θ, δ) ≤ 0
holds for only a fraction of the δ’s in ∆. The scenario

optimization described below is a technology to attain at

low computational cost a solution that is robust to a level as

specified by the user.

If “Prob” is a probability measure on ∆, the scenario

solution θ̂N for (1) is the optimal solution of the following

convex program

min
θ∈Θ

cT θ subject to: (2)

f(θ, δ(i)) ≤ 0, i = 1, . . . , N,

where δ(i), i = 1, . . . , N , are independent samples,

identically distributed according to Prob. Note that the

optimal solution θ̂N of this program is a random variable

that depends on the random extractions (δ (1), . . . , δ(N)).

Let ǫ ∈ (0, 1), β ∈ (0, 1) be given (small) probability levels.

A key result in [1] (Theorem 1 and Corollary 1) states that

if N ≥ N(ǫ, β) samples are taken in (2), where N(ǫ, β) is

some explicitly given function (see (4) below), then it holds

that

ProbN{(δ(1), . . . , δ(N)) ∈ ∆N : V (θ̂N ) ≤ ǫ}
≥ 1 − β, (3)

being V (θ) a measure of violation of the constraints in (1)

for a given θ, i.e.

V (θ)
.
= Prob{δ ∈ ∆ : f(θ, δ) > 0}.

In other words, with high probability 1 − β, the scenario

solution is feasible for all the constraints in (1), except

possibly for those in a set having probability measure smaller

than ǫ, that is, this solution is “almost robustly feasible.” A
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fundamental point here is that N(ǫ, β) is computed a-priori,

before any constraint is extracted, according to the formula 1

N(ǫ, β) =

⌈

2

ǫ
ln

1

β
+ 2nθ +

2nθ

ǫ
ln

2

ǫ

⌉

. (4)

(⌈·⌉ = smallest integer greater than or equal to the

argument). This bound holds in full generality for any

uncertain convex program, and any probability distribution

on the uncertainties. Since in (4) β is under the sign of

logarithm, in practice the β level can be fixed to a very

small value (10−10 or even 10−20), without increasing too

much the required number of samples.

Content of this note

In the next sections we provide further results and discussion

that are useful for clarifying the scope of the results in [1] and

for defining possible margins of improvement. In particular,

Section II elaborates on the possibility of improving the

dependence on ǫ and β appearing in the sample complexity

(4), and provides an essentially negative answer. Section III

discusses sequential implementations of the scenario method,

and gives a fundamental limit for the expected value of

the stopping time of this version of the scenario algorithm.

Finally, Section IV gives a new bound for probabilistic

assessments on the scenario solution involving a single level

of probability.

II. DEPENDENCE ON ǫ AND β OF THE SAMPLE

COMPLEXITY

We show that no general sample complexity bound can

be found that scales below O
(

ǫ−1 lnβ−1
)

. Comparing with

(4), we thus see that the fundamental dependence on ǫ and

β appearing in (4) is intrinsic and cannot be improved.

Proposition 1: The number N of samples guaranteeing

that, in any given problem instance and for any probability

distribution, the solution of (2) satisfies (3) must scale at

least as

O

(

1

ǫ
ln

1

β

)

.

Proof. A proof is obtained by producing a simple instance

of problem (2) in which the minimum N satisfying (3) can

be computed exactly, and showing that this number scales as

O
(

ǫ−1 lnβ−1
)

. To this end, consider the uncertain convex

program

min
θ∈R

θ subject to:

δ − θ ≤ 0, δ ∈ [0, 1],

1Note that a bound better than (4) is given in Theorem 1 of [1]. To fix
ideas, we use here the simplified bound (4) in our discussion.

with a uniform probability distribution on ∆ = [0, 1], and

the corresponding scenario solution

θ̂N = arg min
θ∈R

θ subject to: (5)

δ(i) − θ ≤ 0, i = 1, . . . , N.

Clearly, in this case θ̂N = maxi=1,...,N δ(i), and

V (θ) = Prob{δ ∈ ∆ : δ − θ > 0} = 1 − θ.

Therefore, we have that

V (θ̂N ) = 1 − θ̂N = 1 − max
i=1,...,N

δ(i),

and hence

ProbN
{

(δ(1), . . . , δ(N)) ∈ ∆N : V (θ̂N ) > ǫ
}

= ProbN
{

(δ(1), . . . , δ(N)) ∈ ∆N :

max
i=1,...,N

δ(i) < 1 − ǫ
}

= ProbN
{

(δ(1), . . . , δ(N)) ∈ ∆N :

δ(i) < 1 − ǫ, i = 1, . . . , N
}

= (1 − ǫ)N .

It follows that (3) is satisfied with equality, that is

ProbN
{

(δ(1), . . . , δ(N)) ∈ ∆N : V (θ̂N ) ≤ ǫ
}

= 1 − β,

with β = (1−ǫ)N . Making this formula explicit with respect

to N gives N = lnβ−1/ ln(1 − ǫ)−1. Since ln(1 − ǫ)−1 is

convex in [0, 1), considering the chord from the origin to

point (1/2, ln 2) we have that ln(1 − ǫ)−1 ≤ 2ǫ ln 2, for

ǫ ∈ [0, 1/2]; hence, for ǫ ∈ [0, 1/2],

N = lnβ−1/ ln(1 − ǫ)−1 ≥ 1

2 ln 2

1

ǫ
ln

1

β
.

Since this specific scenario problem has a sample complexity

that grows at least as O
(

ǫ−1 lnβ−1
)

, we have proved that

no general sample complexity bound may exist for scenario

optimization that scales better than O
(

ǫ−1 lnβ−1
)

. �

A couple of remarks are in order.

1. Notice that in the proof of Proposition 1 a simple uncertain

linear program with just one variable is produced, whose

sample complexity grows indeed as O
(

ǫ−1 lnβ−1
)

. The fact

that the general bound (4) scales similarly to how it scales

in this extremely simple example, and yet the bound applies

to all convex problems and all possible distributions, shows

that all convex problems share unexpected similarities, as far

as sample complexity is concerned.

2. Although Proposition 1 states that there is not much room

for improvement upon the a-priori general bound (4), better
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bounds can still be found for properly modified scenario-like

approaches exploiting a-priori knowledge on the structure of

uncertainty. For instance, Nemirovski and Shapiro in [7], [8]

achieved a O
(

ln ǫ−1 lnβ−1
)

sample complexity bound by

considering a special situation of linear matrix inequality

constraints, affinely perturbed by independent parameters

having “light-tailed” distributions.

III. A-PRIORI AND ON-THE-GO VIOLATION

It is worth underlining once more that bound (4) works

a-priori, in the sense that the user knows a-priori (i.e. before

seeing the actual constraints) that, if N(ǫ, β) samples will

be used in the scenario optimization, the resulting solution

will satisfy (3).

The violation V (θ̂N ) is a random variable that depends on

the to-be-extracted constraints, and (3) says that this random

variable is concentrated around small values. Considering

for instance the example in (5), setting N = 20, we can

plot the a-priori violation level ǫ versus the probability of

the event {V (θ̂N ) ≤ ǫ}, see Figure 1. Note then that, once

the constraints have been extracted, the resulting constraint

violation can be much lower than the limit ǫ imposed

a-priori. In the example, if we fix a-priori ǫ = 0.2, there

is a 0.9885 a-priori probability of achieving a violation

smaller than ǫ. The actual violation achieved a-posteriori

can however be significantly smaller than 0.2.
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Fig. 1. Allowed violation level ǫ versus probability for the scenario example
(5) with N = 20.

This observation might suggest that there could be room for

improving the sample complexity, if the number of scenarios

is chosen “on-the-go” instead of a-priori.

By “on-the-go” we mean that optimization might be

performed by a sequential algorithm that, by checking a

current optimal solution obtained on the basis of the samples

accrued so far, detects whether the violation is above ǫ and,

in the positive case, extracts a new sample and iterates;

otherwise, the algorithm stops and returns the current

solution, which guarantees the desired violation level. In

other words, the algorithm possesses a stopping-rule to

decide when to stop introducing new constraints.

Recently, many sequential randomized methods have been

proposed, see [2], [4], [5], [9], [10]. These methods work

quite satisfactorily for probabilistic feasibility problems, i.e.

for design problems where the goal is to find a solution

that satisfies (3), whereas, to the best of these authors’

knowledge, they still cannot deal satisfactorily with the

problem of optimizing an objective subject to (3). We be-

lieve that sequential probabilistic methods (here also named

“incremental” methods) for optimization under uncertainty

should be a main research topic for researchers interested in

randomized design techniques. Our contribution here limits

to define an “abstract” scheme for incremental optimization,

followed by a general result on the best expected value that

can possibly be achieved for the stopping-time of a general

incremental method.

Definition 1 (Incremental scenario scheme): Define

θ̂k = arg min
θ∈Θ

cT θ subject to:

f(θ, δ(i)) ≤ 0, i = 1, . . . , k,

Let k0 > 0 be a given integer, and set k = k0.

1) Extract k samples δ(1), . . . , δ(k);

2) Compute θ̂k;

3) Check if V (θ̂k) ≤ ǫ. If yes, stop and return the current

solution; otherwise set k = k+1, extract a new sample

δ(k), and go to 2. �

Mathematically speaking, the stopping-rule of an incremental

scheme is a stopping-time, that is, a discrete random variable

that depends on the algorithm history up to the current time,

and the sample complexity of an incremental method can

be assessed by providing an a-priori bound on its expected

value. The following proposition establishes that there exist a

fundamental limit to the achievable expected stopping time,

and shows that it cannot scale below O(1/ǫ). We thus find

the same dependence on ǫ we had for a-priori evaluations.

Proposition 2: The stopping-time of an incremental op-

timization scheme applicable to general uncertain convex

optimization problems must exhibit at best an expected value

that scales as O(1/ǫ).

Proof. A proof of this statement is obtained by considering

again the example in (5). Suppose this problem is solved

incrementally according to the scheme in Definition 1, with

k0 = 1. Define the stopping-time

N
.
= number of iterations executed upon exit,

and notice that the event {N = k} happens if the sequential

scheme actually fails to find a good solution for the first
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k− 1 iterations, and then it stops at the k-th iteration with a

good solution. Let us compute the probability of this event

(this probability is technically computed in ∆∞, the set of

infinite extractions, since the number of extractions is not

a-priori defined):

Prob∞{N = k} (6)

= Probk
{

(δ(1), . . . , δ(k)) : V (θ̂1) > ǫ, V (θ̂2) > ǫ,

. . . , V (θ̂k−1) > ǫ, V (θ̂k) ≤ ǫ
}

.

In problem (5) we have that V ( θ̂ℓ) > ǫ if and only if

maxi=1,...,ℓ δ(i) < (1 − ǫ), i.e. if and only if δ(i) < (1 − ǫ)
for i = 1, . . . , ℓ. The joint event {V (θ̂1) > ǫ, V (θ̂2) >
ǫ, . . . , V (θ̂k−1) > ǫ} is thus equivalent to the event {δ(i) <
(1 − ǫ), for i = 1, . . . , k − 1}, and the event considered in

(6) is the event

{δ(i) < (1 − ǫ), i = 1, . . . , k − 1, and δ(k) ≥ (1 − ǫ)}.

Thus,

Prob∞{N = k} = ǫ(1 − ǫ)k−1.

We can now compute exactly the expectation for the

stopping-time:

E{N} =

∞
∑

k=1

kProb∞{N = k} =

∞
∑

k=1

kǫ(1 − ǫ)k−1

= ǫ
∞
∑

k=1

k(1 − ǫ)k−1 = ǫ
1

ǫ2
=

1

ǫ
.

Since at least a problem instance exists in which the ex-

pected stopping-time grows as 1/ǫ, we have proved that no

incremental scheme can have an expected stopping-time that

scales better than O(1/ǫ) uniformly over all possible problem

instances. �

IV. ASSESSMENTS WITH A SINGLE LEVEL OF

PROBABILITY

In the usual approach to probabilistic robustness, results

are given in the form of a statement involving a double level

of probability. For instance, (3) states that the probability

of violation V (θ̂N ) is less than or equal to ǫ, with

probability at least 1−β. This nested probabilistic statement

may cause some confusion to the uninitiated reader. We

next show that an alternative result can be obtained for

scenario design, which involves one level of probability only.

To make things concrete, let us consider a problem of

Lyapunov quadratic state feedback stabilization, and let us

ask the following question: What is the probability that we

extract N plants, do a scenario design, and then another

plant (the “real” plant) picked at random according to the

same probability distribution does not satisfy the designed

Lyapunov inequality? Note that there is only one level of

probability here. In the notation of this paper, this question

amounts to assessing the probability with which a scenario

solution θ̂N (which we recall is computed on the basis of the

randomly extracted samples δ (1), . . . , δ(N)) fails to satisfy

the constraint f(θ̂N , δ) ≤ 0 on a newly extracted δ ∈ ∆.

That is, we need to evaluate the probability

PB
.
= ProbN+1{(δ(1), . . . , δ(N), δ) ∈ ∆N × ∆ :

f(θ̂N , δ) > 0}

or, equivalently, the probability

PG
.
= 1 − PB (7)

= ProbN+1{(δ(1), . . . , δ(N), δ) ∈ ∆N × ∆ :

f(θ̂N , δ) ≤ 0}.

The following theorem shows that an explicit lower bound

for PG can be determined in full generality.

Theorem 1: Consider the scenario solution θ̂N of problem

(2), with N ≥ nθ. The a-priori probability (7) with which

the design inequality f(θ̂N , δ) ≤ 0 is satisfied is

PG ≥ N − nθ

N − nθ + 1

(

N

nθ

)−
1

N−nθ

(8)

≥ N − nθ

N − nθ + 1

( nθ

eN

)

nθ

N−nθ (2πnθ)
1

2(N−nθ) .

Proof. Let I {·} be indicator function. We have

PB =

Prob{(δ(1), . . . , δ(N), δ) ∈ ∆N × ∆ : f(θ̂N , δ) > 0}
=

∫

∆N×∆

I

{

f(θ̂N , δ) > 0
}

· dProbN (δ(1), . . . , δ(N)) dProb(δ)

=

∫

∆N

(
∫

∆

I

{

f(θ̂N , δ) > 0
}

dProb(δ)

)

· dProbN (δ(1), . . . , δ(N)).

The inner integral in the expression above is nothing but

Prob{δ ∈ ∆ : f(θ̂N , δ) > 0}, which is V (θ̂N ); hence

PB =

∫

∆N

V (θ̂N )dProbN (δ(1), . . . , δ(N)).

Note now that for any V ∈ [0, 1] it holds that V =
∫ 1

0
I {V > ξ} dξ, whence

PB =

∫

∆N

V (θ̂N )dProb
N (δ(1)

, . . . , δ
(N))

=

∫

∆N

(
∫ 1

0

I

{

V (θ̂N) > ξ
}

dξ

)

dProb
N (δ(1)

, . . . , δ
(N))

=

∫ 1

0

(
∫

∆N

I

{

V (θ̂N) > ξ
}

dProb
N (δ(1)

, . . . , δ
(N))

)

dξ

=

∫ 1

0

Prob
N{(δ(1)

, . . . , δ
(N)) ∈ ∆N : V (θ̂N ) > ξ} dξ.

(9)
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From a result in equation (11) of [1] it follows that the

probability inside the last integral can be upper-bounded by

the following function β̃(ξ):

β̃(ξ)
.
=

{

1, if ξ ≤ ξ
(

N

nθ

)

(1 − ξ)N−nθ , if ξ > ξ,

where ξ is the value of ξ for which

(

N

nθ

)

(1 − ξ)N−nθ = 1,

that is

ξ
.
= 1 −

(

N

nθ

)−
1

N−nθ .

Thus,

PB ≤
∫ 1

0

β̃(ξ) dξ

=

∫ ξ

0

dξ +

∫ 1

ξ

(

N

nθ

)

(1 − ξ)N−nθ dξ

= ξ +
(

N

nθ

) (1 − ξ)N−nθ+1

N − nθ + 1

= 1 − N − nθ

N − nθ + 1

(

N

nθ

)−
1

N−nθ ,

from which

PG = 1 − PB ≥ N − nθ

N − nθ + 1

(

N

nθ

)−
1

N−nθ ,

thus proving the first inequality in (8). The second inequality

is then obtained by observing that

(

N

nθ

)

≤ Nnθ

nθ!
, and nθ! ≥

(nθ

e

)nθ √
2nθπ.

�

Formula (8) returns the probability that, if we solve a

scenario optimization problem on the basis of N plant

samples, the obtained solution is also feasible for another

plant extracted according to the same probability. Relation

(8) can also be used to design an experiment, where one

wishes to a-priori fix a desired level for PG, and then

determine the number N of scenarios necessary for achieving

this level of probability. To this end, the least integer N that

satisfies (8) is determined via numerical computation. For

the purpose of illustration, a plot of N as a function of PG

for various values of nθ is given in Figure 2.

A. A special case: Estimation of extrema via sampling

A problem that arises frequently in the analysis of ro-

bustness of uncertain control systems is that of computing

the worst-case value (with respect to the uncertainty) of a

function f(δ) representing some performance or cost index

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
1.5
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3.5
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4.5
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5.5

6

PG

lo
g 1

0 N

n =1

n =2

n =10θ

θ

θ

Fig. 2. Logarithmic plot of N satisfying (8) as a function of PG, for
nθ = 1, . . . , 10 .

of the system, that is one wants to evaluate the maximum

value of f(δ), for δ ∈ ∆. Exact computation of the maximum

is in general NP-hard, but randomized techniques may be

employed to compute an estimate of the maximum. A

well known approach (see [6], [11]) is to use the sample

maximum as an estimate:

θ̂N
.
= max

i=1,...,N
f(δ(i)), (10)

where δ(i), i = 1, . . . , N , are independent, identically

distributed samples.

We note that (10) is a special instance of the general problem

family (2), where θ is one-dimensional, and f(θ, δ)
.
= f(δ)−

θ. Indeed, problem (10) can be rewritten equivalently in the

form (2) as:

θ̂N
.
= argmin

θ∈R

θ subject to: (11)

f(δ(i)) − θ ≤ 0, i = 1, . . . , N.

Given the simple structure of this problem, the single-level

of probability PG in (7) can be computed explicitly in this

case.

Proposition 3: Consider the sample maximum estimate

θ̂N resulting from problem (11). The a-priori probability (7)

with which f(δ) ≤ θ̂N holds is

PG ≥ N

N + 1
(12)

(relation (12) is actually valid with equality if the distribution

of f(δ) is continuous).

Notice that making explicit (12) with respect to N , we have

that PB ≤ ε holds whenever the following (strikingly simple)

sample size bound holds:

N ≥ 1

ε
− 1.

Proof. Let f(θ, δ)
.
= f(δ)− θ, V (θ)

.
= Prob{δ ∈ ∆ : f(δ) > θ},

and follow the proof of Theorem 1 up to equation (9). Now, from
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the proof of Theorem 3.1 in [11], we have that

Prob
N{(δ(1)

, . . . , δ
(N)) ∈ ∆N : V (θ̂N) > ξ} ≤ (1 − ξ)N

,

with equality actually holding if the distribution of f(δ) is contin-
uous. Using this inequality in (9) yields

PB ≤

∫ 1

0

(1 − ξ)N
dξ =

1

N + 1
,

and PG = 1 − PB ≥ N

N+1
, which concludes the proof. �

Interestingly, applying the result in Theorem 1 to the present
setup gives

PG ≥
N − 1

N

(

N

1

)

−

1
N−1

=
N

N + 1

[

N2 − 1

N2
·

1

N
1

N−1

]

.

The factor within square brackets approaches 1 rapidly for

increasing N , showing the tightness of the general bound in

(8).
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