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Abstract
The scenario optimisation approach is amethodology for finding solutions to uncertain
convex problems by resorting to a sample of data, which are called “scenarios”. In
a min–max set-up, the solution delivered by the scenario approach comes with tight
probabilistic guarantees on its risk defined as the probability that an empirical cost
threshold will be exceeded when the scenario-based solution is adopted. While the
standard theory of scenario optimisation has related the risk of the data-based solution
to the number of optimisation variables, a more recent approach, called the “wait-
and-judge” scenario approach, enables the user to assess the risk of the solution in a
data-dependent way, based on the number of decisive scenarios (“support scenarios”).
The aim of this paper is to illustrate the potentials of the wait-and-judge approach for
min–max sample-based design and we shall consider to this purpose an antenna array
design problem.

Keywords Scenario approach · Data-driven optimisation · Min–max design

1 Introduction

A fundamental approach to make decisions consists in choosing the values of the
decision variables so as to minimise a cost function. Although sometimes the value of
the cost function can be considered to be fully determined by the decision variables, in
most of the situations it is more realistic to assume that the cost function depends also
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on an uncertain variable. In this case, optimising the cost function only with respect
to one fixed value of the uncertain variable generates decisions that are fragile with
respect to real world situations.

Traditional ways to deal with an uncertain variable require modelling the uncer-
tainty: as a preliminary step in the decision problem, one models either the set of
possible values that the uncertain variable can take or the probability according to
which these values are distributed. Once a model of the uncertainty is available, the
decision variables are chosen by re-casting the decision problem as a suitable opti-
misation problem. For example, one can (1) minimise the value of the cost function
by averaging over the distribution of the uncertain variable, (see e.g. Dantzig 1955;
Shapiro et al. 2009); (2) solve a robust optimisation problem, where the maximum of
the cost function with respect to all the values of the uncertain variable is minimised,
(see e.g. Soyster 1973; El Ghaoui and Lebret 1998; Bertsimas and Sim 2004; Ben-
Tal et al. 2009; Bertsimas et al. 2017); (3) solve a chance-constrained problem, (see
e.g. Charnes and Cooper 1959; Prékopa 2003; Dentcheva 2006; Shapiro et al. 2009;
Hanasusanto et al. 2015, 2017); etc.

In this paperwe focus on the so-called “scenario approach”which is a directmethod
to make a decision in the presence of uncertainty. The scenario approach is a direct
method in the sense that it does not require any modelling of the uncertain variable.
As a preliminary step, the scenario approach prescribes only to collect a set of N
instances of the uncertain variable, which are called “scenarios”. By instantiating the
cost function with the N realisations of the uncertain variable, N different instances
of the cost function are obtained, and the prescribed decision (scenario solution) is
the one that minimises the worst-case cost, i.e., the highest cost value among the
N available costs. Said more briefly, the scenario approach prescribes to adopt a
solution that is robust with respect to the data that have been observed. In principle,
the data-based solution might perform bad on new instances of the uncertain variable.
In order to characterise this eventuality, we define the risk of the scenario solution as
the probability that the maximum observed cost value (that is computed with respect
to the N observed scenarios) is exceeded when a new realisation of the uncertain
variable is considered. A reliable assessment of the risk is crucial in whether to accept
and adopt the decision or to further refine it. In a little bit more sophisticated decision
processes, the assessment of the risk can also guide the pricing of data-based designed
products or even the subscription of quality-of-service agreements on the outcome
of the design process, in such a way that the probability of refunding a client is kept
under control and no loss is incurred on average over the sold design solutions.

We show that, from the mathematical point of view, the event that the empirical
cost of the scenario solution is exceeded is the event that a random constraint (suitably
parametrised in the uncertain variable) is violated by the scenario solution. Character-
ising the probability of such “constraint violation” is themain focus of the theory of the
scenario approach. This theory was initiated in Calafiore and Campi (2005), and has
ever since attracted an increasing interest, (see e.g. Calafiore and Campi 2006; Campi
and Garatti 2008; Pagnoncelli et al. 2009; Vayanos et al. 2012; Tempo et al. 2013;
Campi and Carè 2013; Schildbach et al. 2013; Carè et al. 2015; Zhang et al. 2015;
Alamo et al. 2015). We refer also to Calafiore and Campi (2006), Campi et al. (2009),
Shapiro et al. (2009), Tempo et al. (2013), de Mello and Bayraksan (2014), Petersen
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and Tempo (2014), Margellos et al. (2014) for a comparison of scenario optimisa-
tion with other methods in stochastic optimisation. This paper aims at illustrating the
potentials of a new assessment methodology introduced in Campi and Garatti (2018)
that is called the “wait-and-judge” scenario approach.

Building upon the results in Campi and Garatti (2018), we show in this paper how
the “wait-and-judge” theory can be used in practice to characterise the risk of the
data-based decision in a data-dependent way, without any knowledge on the proba-
bility distribution of the uncertain variable. The risk is evaluated using the same data
(scenarios) that are used during the optimisation process, that is, no independent val-
idation set is required to assess the value of the risk. This is of great importance in
data-driven design when scenarios are a costly and limited resource. The punchline of
the “wait-and-judge” approach is that the risk depends on how many scenarios among
those that have been observed were really decisive in determining the scenario solu-
tion: when the solution depends only on a few scenarios its risk is likely (in a sense
that is rigorously defined) to be small.

Although a quick reference to data-driven decision-making can be found in Campi
and Garatti (2018), no further explanations and no examples were provided therein.
This paper aims at complementing the mathematical theory of Campi and Garatti
(2018) with an illustration of its potentials for safe decision-making, where real data
are used to robustify a decision. The approach is illustrated on an antenna array design
problem. Antenna array design is a traditional testbed domain for uncertain optimi-
sation methods, in particular for robust optimisation, (see Ben-Tal and Nemirovski
2001, 2002; Ben-Tal et al. 2009), and has recently gained popularity for its role in
modern wireless communication systems, (see e.g. Matyjas et al. 2015).

In the following Sect. 2, the main concepts of antenna array design are introduced
and made concrete by resorting to a numerical instance of the problem. This set-up
works as an ongoing example throughout the paper. In the same section, we show that
neglecting the uncertainty on the actuation errors leads to dramatic design failures.
Section 3 is devoted to the scenario approach. First, we illustrate a simple data-based
optimisation procedure that takes uncertainty into account by resorting to a collection
of scenarios. Then, the main results from the theory of the scenario approach, and
in particular the recent “wait-and-judge” approach, are recalled and reformulated for
convex min–max problems. The scenario-based optimisation procedure is revisited in
the light of the theory, and guarantees are issued on the quality of our scenario-based
design for the antenna array. Finally, the guaranteed bounds on the risk computed
according to the “wait-and-judge” approach are validated by resorting to Monte Carlo
simulations. Conclusions are drawn in Sect. 4.

2 Antenna array design

In this paper, we follow the formulation of the antenna array design problem provided
in Ben-Tal and Nemirovski (2002). The reader is also referred to Ben-Tal et al. (2009)
for more details.

An antenna is characterised by its sensitivity diagram, which describes the capa-
bility of the antenna to receive signals from different directions; the importance of the
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sensitivity diagram can also be understood in relation to a relevant theorem in elec-
tromagnetism, the reciprocity theorem, according to which the sensitivity diagram is
equivalent to the far-field radiation pattern of the antenna when used for transmitting.

Mathematically, the sensitivity diagram can be written as a function of a vector
v, which represents a direction in the three-dimensional space, and is proportional to
|D(v)|2, where D(v) is a complex function of v, simply called the diagram of the
antenna. D(v), for each v, returns the antenna receiving gain and phase shift for an
electromagnetic wave propagating along the direction v.

An antenna array is just a set of multiple antennas that work together. From the
electromagnetic point of view, the antenna array can also be thought of as a single
antenna with its own sensitivity diagram. Since the diagram of the overall array can
vary considerably depending on the locations of the individual component antennas
and their exciting currents, combining antennas into an array is an easy and flexible
way to design an antenna with a desired sensitivity diagram.

For the sake of concreteness and simplicity of presentation, we consider here
antenna arrays consisting of n coplanar and concentric ring-shaped antennas. Due
to circular geometry, the diagram of a ring-shaped antenna depends only on the lat-
itude angle θ between a given direction in the 3D space and the plane to which the
antenna belongs. Moreover, such a diagram turns out to be real-valued (which means
that the phase shift is either 0 or π ) and can be written as

D�(θ) = 1

2

∫ 2π

0
cos(2πν� cos(θ) cos(φ))dφ, (1)

where � = 1, 2, . . . , n denotes the identification number of the antenna, and ν� is
a technical parameter representing the ratio of the ring radius over the wavelength.
The diagram of the antenna array, Da(θ), can be obtained by a weighted sum of the
individual components according to the formula Da(θ) = ∑n

�=1 x�D�(θ), where each
x� is a user-chosenweight (in general, a complex number) that determines the actuation
that excites the �-th antenna in the array. These weights are our design parameters.

The objective of antenna array design is that of

choosing the weights x1, . . . , xn in such a way that the diagram of the array
Da(θ) is as close as possible to a desired diagram T (θ).

In what follows, the array design problem is cast as an optimisation problem, and is
illustrated on a numerical instance. Although the weights x1, . . . , xn can be complex
numbers in general, following (Ben-Tal and Nemirovski 2002) we restrict ourselves
to the case where they are real. As we shall notice, this is without loss of generality
for the problem that we consider in this paper.

2.1 Naive set-up—without uncertainty

Given a target diagram T (θ), a naive solution to the antenna array design problem can
be found by minimising the cost function
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max
θ∈[0,π/2]

∣∣∣∣∣
n∑

�=1

x�D�(θ) − T (θ)

∣∣∣∣∣ (2)

that penalises the uniform distance between the target diagram and the designed dia-
gram. More precisely, we solve the problem

min
h,x1,...,xn

h

subject to: maxθ∈[0,π/2]
∣∣∑n

�=1 x�D�(θ) − T (θ)
∣∣ ≤ h,

|x�| ≤ c, � = 1, . . . , n,

(3)

where c is a bound on theweights, which is introduced to take into account the physical
actuation limits. Denoting by (h∗, x∗

1 , . . . , x
∗
n ) the solution to (3), we note that h∗ is

the cost incurred when the optimal design (x∗
1 , . . . , x

∗
n ) replaces the generic vector

(x1, . . . , xn) in (2).

2.1.1 Numerical instance

Concretely, we work under the following specifications.
Individual antennas: We have at our disposal n = 100 individual antennas with
diagrams as in (1), with parameter ν� = �

10 (this can be phrased by saying that our
antennas are equally spaced). In Figs. 1a, 2a, 3a the values of the diagram functions
D�(θ) for � = 5, 10, 15 are shown. The corresponding diagrams of |D�(θ)| in a polar
coordinate frame are in Figs. 1b, 2b, 3b. These diagrams represent how the antenna
radiates in different directions, where 0 corresponds to the plane of the array and
90 to the direction orthogonal to the plane of the array. It should be noted that the
diagrams of the individual antennas exhibit various extra “lobes” (maxima) besides
the main one, showing that radiation tends to be dispersed in different directions or,
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Fig. 1 The diagram D5(θ), (a), and the corresponding polar diagram (|D5(θ)|), (b)
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Fig. 2 The diagram D10(θ), (a), and the corresponding polar diagram (|D10(θ)|), (b)
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Fig. 3 The diagram D15(θ), (a), and the corresponding polar diagram (|D15(θ)|), (b)

equivalently, that these antennas will be sensitive to signals coming from secondary
directions and are prone to interferences.
Target diagram T (θ): As for the target diagram, we take

T (θ) =
{
0, if θ ∈ [

0, π
2 − π

12

]
cos

(
6
(
θ − π

2

))
, otherwise;

(4)

see Fig. 4. Note that, differently from the diagrams of individual antennas in Figs. 1b,
2b, 3b, the target diagram has no side lobes, and is concentrated in the small cone
π
2 − π

12 ≤ θ ≤ π
2 + π

12 , that is, we have a directional target diagram. Directionality
has several advantages, as it reduces the power consumption by avoiding dispersion of
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(a) (b)

Fig. 4 The target diagram T (θ), (a), and the corresponding polar diagram (|T (θ)|), (b)

the signal in directions that are not necessary, and minimises interferences with other
devices.
Weights:Weights are subject to actuation constraints as represented by a bound c = 5
in (3). We also observe that restricting the weights to real values is a natural choice
in the context of the above specifications. In fact, the target function and the individ-
ual antennas are real-valued, so that adding imaginary parts to the weights can only
increase the value of the cost function.

2.1.2 Results and comments

Problem (3) was solved numerically by using the CPLEX (IBM-ILOG 2012) function
“cplexlp” in MATLAB (2013), where the maximum over [0, π/2] was approximated
by the maximum over a grid of 240 equally spaced points on the same interval.1

After solving Problem (3), we used the obtained weights x∗
1 , . . . , x

∗
n to compute the

diagram of the antenna array according to the formula Da(θ) = ∑n
�=1 x

∗
� D�(θ), and

we obtained the diagram in Fig. 5. In the same figure, the target diagram is also shown.
As it can be seen, the approximation is very good: the cost h∗, which measures the
distance between Da(θ) and the target diagram T (θ), turns out to be h∗ = 0.0138. On
the other hand, this design procedure is naive because in real world situations there
are always actuation errors that modify the effect of the designed weights x∗

1 , . . . , x
∗
n

on the array diagram. One might hope that small actuation error do not affect the
performance significantly. However, this is not the case, and the fragility of the naive
design is a well-known problem. In the following, we show that our naive design is
no exception, which implies that uncertainty has to be taken into account.

1 The same approximation was used for solving all the other numerical instances throughout the paper.
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Fig. 5 Diagram of the antenna (continuous line) obtained by solving (3) under the specifications provided
in Sect. 2.1.1. The target diagram is also shown (dashed line)

2.1.3 Actuation uncertainty

We describe actuation errors as multiplicative errors so that each term

x�D�(θ) is replaced by (1 + δ�)x�D�(θ)

in the definition of the antenna array diagram. Corresponding to the naive solution
x∗
1 , . . . , x

∗
100, the array diagram can therefore be written as D̃a(θ) = ∑n

�=1(1 +
δ�)x∗

� D�(θ). In Fig. 6 we show the diagrams of the antenna array in the presence of
actuation errors. It is worth remarking that, in a data-based perspective, the actuation
errors (1 + δ1), . . . , (1 + δ100) have to be measured on the field. Here, however, for
the sake of reproducibility of our numerical results, we have simulated their values by
generating artificially 500 instances of the vector δ = (δ1, . . . , δ100), according to the
formula δ = (0.05r105 · u1, . . . , 0.05r105 · u100) where each u�, � = 1, . . . , 100 was
independently uniformly sampled from [−1, 1] and r was independently uniformly
sampled from [0, 1]. Note that r is a common factor that affects all the actuation errors
in a vector δ, thus accounting for common environmental phenomena, coupling, etc.,
and the exponent 105 makes small values of r highly probable. From Fig. 6, the
conclusion is clear: neglecting actuation errors results in a dramatic design failure, a
fact previously noted by other authors, (see, e.g., Ben-Tal and Nemirovski 1998).

3 Data-driven design through the scenario approach

The scenario approach requires that we make our design decision based on a
set of experiments that represent possible uncertainty instances. These uncertainty
instances are called scenarios. In the antenna array design of Sect. 2, a scenario
is a vector of n = 100 actuation errors, i.e., an instance of the 100-valued vector
δ = (δ1, . . . , δ100). We collected N = 500 scenarios, and we denoted the i-th sce-
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Fig. 6 Instances of the diagram D̃a(θ) when the naive design is applied in the presence of actuation errors
(500 instances)

nario by δ(i) = (δ
(i)
1 , . . . , δ

(i)
100). The scenario-based design is obtained by solving the

min-max scenario program (in epigraphic form)

min
h,x1,...,xn

h

subject to: maxθ∈[0,π/2]
∣∣∣∣

n∑
�=1

x�(1 + δ
(i)
� )D�(θ) − T (θ)

∣∣∣∣ ≤ h, i = 1, . . . , N

|x�| ≤ c, � = 1, . . . , n.

(5)

Using the specifications in Sect. 2.1.1 and the N = 500 scenarios that were used
in Sect. 2.1.3 for testing the robustness of the naive design, see Fig. 6, we solved
(5) and found the corresponding scenario-based design x∗

1 , . . . , x
∗
100. We obtained

h∗ = 0.0144. The idea is that we chose the design variables in a way that is robust
over data, by minimising (w.r.t. x = (x1, . . . , xn)) the cost function

f (x, δ) = max
θ∈[0,π/2]

∣∣∣∣∣
n∑

�=1

x�(1 + δ�)D�(θ) − T (θ)

∣∣∣∣∣ (6)

in the worst-case with respect to the 500 observed instances (scenarios) of the vector
(δ1, . . . , δ100). Note that the interpretation of the optimal value h∗ of h in the solution of
the scenario program (5) is different from h∗ in the solution of (3), where it was simply
the value of the cost function (6) evaluated at the naive design variables with no actu-
ation errors (δ = 0). In the scenario program, instead, h∗ is the highest value incurred
by the cost functions f (x∗, δ(1)), . . . , f (x∗, δ(500)), where x∗ = (x∗

1 , . . . , x
∗
n ) is the

scenario design and δ(1), . . . , δ(500) are the observed uncertainty instances. It is appro-
priate to call the scenario-based h∗ an empirical cost as it has been obtained from data.
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Fig. 7 Diagram of the scenario-based antenna array (solid line)
∑n

�=1 x
∗
�
D�(θ) with the weights obtained

by solving (5) with 500 scenarios, under the specifications provided in Sect. 2.1.1. The target diagram is
also shown (dashed line)

So, in short, we can say that h∗ in the context of (5) is the empirical worst-case cost
of the scenario solution.

Considering theway inwhich it was obtained, the h∗ value delivered by the scenario
program is certainly expected to be higher than the h∗ value in the solution of the naive
program (3). However, the former turns out to be only 4% higher than the latter, which
was 0.0138. This small increase in the cost suggests that the price of robustness is low
in this design problem.

The diagram of the antenna array obtained using the scenario approach and evalu-
ated in the absence of actuation errors is in Fig. 7.

Figure 8 confirms that the performance of the scenario solution is excellent simul-
taneously for all the observed scenarios that have been taken into account during
optimisation. The striking difference between Figs. 6 and 8 can be made quan-
titative by comparing the values of f (x∗, δ(i)) for i = 1, . . . , 500 in the case
where x∗ is the naive solution to the case where x∗ is the scenario solution. In the
first case (naive design), the cost function f (x∗, δ) has a sample average value of
0.035 and a sample standard deviation of 0.16; in the second case (scenario design)
the sample average is 0.0144 and the sample standard deviation is in the order
of 10−6.

However, since these latter values were computed using the same 500 scenar-
ios that were used in optimising the decision, they might not be representative of
what will happen when instances of the actuation errors that have not been mea-
sured so far occur. Therefore, it is crucial to evaluate the probability that the diagram
of the designed antenna degrades and deviates from the target diagram more than
the empirical worst-case cost h∗ = 0.0144 for new realisations of the actuation
uncertainty.

The theory of the scenario approach allows us to assess rigorously the reliabil-
ity of a scenario-based design without resorting to any other data besides those that
have been considered during the optimisation step. The fundamental facts about
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Fig. 8 Instances of the diagram of the scenario-based array when it is applied to the 500 scenarios that were
used for computing the weights x∗

�
according to (5) and under the specifications provided in Sect. 2.1.1.

The scenarios are the same that were used to test the naive design in Fig. 6. Here, the 500 instances of the
diagram are shown simultaneously by using thin lines, but are still very hardly distinguishable. The target
diagram is also shown (dashed line)

this theory are recalled, and then applied to our scenario solution, in the following
section.

3.1 The theory of the scenario approach

In this section we introduce the mathematical theory that allows us to evaluate the
performance of the scenario-based design with respect to the infinite amount of unseen
uncertainty instances, without availing of extra experiments or knowledge of the data-
generating distribution. This theory is obtained by adapting to the present set-up the
results from (Campi and Garatti 2008, 2018). The theory works under the condition
that the cost function f (x, δ) is convex in x for every given value of δ, and that the
scenarios are independently sampled. Precisely, the essential working assumption for
our purposes is that

there is a probability measure P over the space of the uncertain actuation error
vectors δ, and each vector δ is generated independently according to P.

We remark that independence is postulated among sampled vectors δ(1), . . . , δ(N ),
but the components δ

(i)
1 , . . . , δ

(i)
n of a vector δ(i) can be (even strongly) dependent:

no assumption is made with respect to the distribution P according to which single
scenarios are generated. Note also that,

while the existence of P is postulated, no knowledge of P is required in what
follows.
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This is a crucial point for the general applicability of the scenario approach to data-
driven designs, where assuming knowledge of P is usually unrealistic. We remark also
that although in this paper the uncertain element δ is a random vector of size n, in
general δ is allowed to be a generic random element, e.g., a process belonging to an
infinite-dimensional space.

Denoting by

z∗N = (h∗, x∗) = (h∗, x∗
1 , . . . , x

∗
n )

the solution2 to problem (5) with N scenarios, we can now define the risk of z∗N ,
denoted by R(z∗N ), as the probability that a new instance of the uncertain actuation
errors will lead to an antenna array diagram that differs from the target diagram more
than the empirical cost h∗, that is,

R(z∗N ) = P
{
δ : f (x∗, δ) > h∗} . (7)

In (7), P refers to the occurrence of δ only, so that the risk R(z∗N ) is a function of z∗N ,
which in turn depends on the scenarios δ(1), δ(2), . . . , δ(N ). Hence, R(z∗N ) can be also
interpreted as the conditional probability given δ(1), δ(2), . . . , δ(N ) that a new instance
of the uncertain actuation error δ incurs a cost higher than h∗, that is, it holds that

R(z∗N ) = P
N+1{ f (x∗, δ) > h∗|δ(1), δ(2), . . . , δ(N )},

wherePN+1 = P×P×· · ·×P is the probability distribution of (δ(1), δ(2), . . . , δ(N ), δ),
which is a product probability due to independence.

In a real problem, the value of R(z∗N ) is unknown because the probability measure
P is not available to the user, who has access only to a limited amount of samples from
P. However, as a function of the random scenarios δ(1), . . . , δ(N ), the risk R(z∗N ) is a
random variable, and a fundamental theorem of the scenario approach states that the
distribution of the random variable R(z∗N ) is always dominated by a Beta probability
distribution function whose parameters depend only on N and the number of design
variables, which is n.3 Precisely, it holds that

P
N {R(z∗N ) > ε} ≤

n∑
i=0

(
N

i

)
εi (1 − ε)N−i , (8)

2 We assume that the solution is unique. Otherwise, a convex tie-break rule can be used, (Campi and Garatti
2018).
3 By “design variables” we mean “real design variables”. In this paper, x1, . . . , xn are real, therefore there
are n (real) design variables. On the other hand, if the weights x1, . . . , xn were allowed to take complex
values, then, in order to apply the theoretical results in this section, problem (5) should be first reformulated
as an optimization problem over (Re(x1), Im(x1), . . . ,Re(xn), Im(xn)), that is, as a problem with 2n (real)
design variables.
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where the probability P
N is with respect to the N scenarios δ(1), . . . , δ(N ).4 It is a

fact that the upper tail of the Beta distribution (i.e., the right-hand side of (8)) decays
exponentially fast with N , so that the risk can be kept under control by choosing N
large enough; for example, it can be proven that if

N ≥ 1

ε

(
n + ln

1

β
+

√
2n ln

1

β

)
(9)

then

P
N {R(z∗N ) > ε} ≤ β,

where ε ∈ (0, 1) is an upper-bound to the risk, andβ ∈ (0, 1) is a confidence parameter
that can be easily made very small as it affects N only through logarithmic dependence
(see Campi and Garatti 2008; Alamo et al. 2015). In Campi and Garatti (2008) it is
further proved that the distribution of the probability of R(z∗N ) is invariant, and indeed
completely determined by N and n, for a class of problems that is called the class of
fully supported problems. In order to characterise this important class of problems,
we need the following definition.

Definition 1 (support scenario) A scenario in the program (5) is a support scenario if
its removal changes the solution z∗N .

It is a fact that

the number of support scenarios in (5) is always bounded by n + 1.

A problem is fully supported if, for every N ≥ n+1, the number of support scenarios
is n+1 with probability 1. In this case, the inequality in (8) is actually an equality, and
there is no way to improve the upper-bound on the risk (at a given confidence level).

However, it is not rare that scenario programs with many variables are not fully
supported, and way fewer support scenarios are found than there are optimization
variables, (see e.g. Welsh and Rojas 2009; Welsh and Kong 2011; Schildbach et al.
2013; Carè et al. 2014). In these cases, if it were known a priori that the number
of support scenarios is smaller than n + 1, a smaller value than n could be used in
formulae (8) and (9), and, as a consequence, a tighter upper-bound on the risk could be
used. However, investigating the existence of tighter bounds on the number of support
scenarios requires an ad-hoc analysis of the specific problem at hand. Moreover, even
assuming that we can find a tighter bound, the actual number of support scenarios
might still be smaller than the upper-bound, thus making our mathematical efforts
practically useless. In Campi and Garatti (2018), a new approach, called wait-and-
judge, has been introduced, which allows the user to issue claims about the risk of the

4 This result holds true as a direct consequence of interpreting the risk of z∗N as the violation probability of
z∗N according to the terminology of Campi andGaratti (2018). The interpretation of the violation probability
as the risk that the cost h∗ is exceeded is possible here because of the separation between design variables
(x1, . . . , xn ) and the additional variable h in the min–max scenario program (5). See also (Carè et al. 2015)
for more details.
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scenario solution that are made a-posteriori, based on the number of support scenarios
that have been counted in the scenario program at hand.5

Concretely, the user is provided before any data is observed with a set of statements
about the risk of the solution. These statements are of the kind “R(z∗N ) ≤ εk”, for
k = 0, 1, . . . , n+1, where ε0, . . . , εn+1 is a sequence of increasing numbers between
0 and 1. After data have been used to compute the scenario solution z∗N and the number
of support scenarios s∗

N has been counted, the user issues the statement

“R(z∗N ) ≤ εs∗N ”,

which depends on s∗
N , the number of support scenarios. The theory in Campi and

Garatti (2018) explains how to choose ε0, . . . , εn+1 in such a way that the overall
probability that the user observes N scenarios, computes z∗N and s∗

N , and issues a
false claim is practically negligible. In short, the theory explains how to issue reliable
data-dependent claims.

A valid rule to select ε0, . . . , εn+1 is provided by Theorem 1 below. The theorem
holds true under two technical conditions, which will be made precise and discussed
for the antenna array design problem in Sect. 3.3. As we shall see, the evaluations
of the risk that are provided by Theorem 1 turn out to be very tight in spite of the
distribution-free nature (the value of the bound does not depend on P) of the theorem.

Theorem 1 (Campi and Garatti 2018) Given β ∈ (0, 1), for any k = 0, 1, . . . , n + 1,
let εk be the unique solution in (0, 1) of the polynomial equation in the v variable

β

N + 1

N∑
m=k

(
m

k

)
(1 − v)m−k −

(
N

k

)
(1 − v)N−k = 0. (10)

It holds that

P
N {R(z∗N ) > εs∗N } ≤ β.

Figure 9 shows the values of ε0, . . . , ε101 computed for β = 10−6, N = 500 and
n = 100 according to Theorem 1.

If the values in Fig. 9 are used as data-dependent bounds on the risk, the probability
of issuing a false post-optimisation claim on the risk of the solution is no bigger than
10−6. In other words, if many designs are performed using the scenario approach on
independently sampled scenarios, and the corresponding post-optimisation claims are
issued by selecting the s∗

N -th ε-value from Fig. 9, only one claim out of 106 issued
claims is expected to be wrong (at most).

In concluding, the standard theory of the scenario approach provides a way to
compute an upper-bound on the risk that is tight (not improvable) for the class of
fully-supported problems, but that can be conservative for general problems. In fact,
in order to guarantee that the risk is below a certain threshold, one has to collect a

5 Computing the number of support scenarios requires removing one by one the active constraints and
verifyingwhether the solution changes, an operation that can be carried out at reasonably low computational
cost.
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Fig. 9 ε0, . . . , ε101 when N = 500, n = 100 and for β = 10−6

number of scenarios that depends on the number of decision variables and is often
larger than necessary. This is penalising especially when scenarios represent a costly
and limited resource. The “wait-and-judge” approach, on the other hand, allows one
to assess the risk of a data-based solution in a data-dependent way, and the message
is that

the number of support scenarios among the observed scenarios is a solid indicator
of the risk, no matter how many decision variables are used in the problem.

3.2 Application to the antenna array scenario-based design

We are now ready to examine our scenario-based design in the light of the “wait-
and-judge” theory. We consider the solution to (5) and we count how many scenarios
among the 500 that were used to compute the solution are support scenarios. The
number of support scenarios, s∗

N , turns out to be equal to 17. We retrieve the value of
the corresponding ε17 in Fig. 9, and we get ε17 = 0.099. Therefore, we can claim that

R(z∗N ) ≤ 9.9%,

that is, we can be practically sure that for more than the 90% of the possible actuation
errors the diagram of our scenario-based antenna array will not differ more than h∗ =
0.0144 from the desired target diagram.

3.2.1 Validation of the bound on the risk

In principle, the risk of a scenario-based solution can always be estimated by Monte
Carlo methods, by resorting to a (very) large number of new realisations of the actu-
ation errors. However, unless a lot of data are available (e.g., a reliable model of the
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uncertainty is available and simulations can be run based on it in a reasonable amount
of time), this is impractical. When data are expensive measurements, they should be
used to robustify the decision rather than used for estimating the risk: this is the reason
why data-dependent bounds computed according to the “wait-and-judge” approach
are so important.

In this paper, contrary to what happens in real world situations, we can use the
same simulation set-up that was used to compute the numerical solutions above (see
Sect. 2.1.3) in order to estimate the true risk of our data-based design and validate the
upper-bound of 9.9%. Hence, we simulated 106 new instances of the actuation error
vector δ and we evaluated the cost function f (x∗, δ) for all of them. The empirical cost
threshold h∗ = 0.0144 was exceeded in the 4.3% of the cases, so that the computed
threshold of 9.9% was satisfied, as expected from the application of Theorem 1. On
average, the value of f (x∗, δ)was 0.0145 with a sample standard deviation of 0.0013.
The gap between the actual value of the risk (4.3%) and the estimated value (9.9%)
is motivated by the stochastic fluctuation of the risk and the fact that the bound was
required to be valid with very high confidence 1–10−6.

3.2.2 Experiments for different values of N

So far, we have considered the scenario program (5) with N = 500 scenarios. Here
we report the results of other simulations for other values of N . In particular, we
solved an instance of the scenario program (5) for N = 100, 250, 1000, 2500. In
Table 1, we give for each case the values of the worst-case empirical cost h∗, the
number of support constraints s∗

N , and the guaranteed theoretical bound on the risk
εs∗N , which is computed using (10) for the corresponding value of N and β = 10−6.

Finally, by using a Monte Carlo sample of new 106 instances of the actuation errors
δ, we estimated the true risk R(z∗N ) of exceeding h∗. We computed also the sample
average value of f (x∗, δ) (denoted by μ f ) and its sample average standard deviation
(denoted by σ f ). These three values, R(z∗N ), μ f , σ f , which were obtained by using
the additional Monte Carlo samples, are reported in the right-hand side of the table.
The value of μ f initially decreases when N is increased because with a small N
the value of f (x∗, δ) is subject to a large uncertainty and its erratic nature inflates
its mean; later, for larger values of N , μ f slightly increases, while the variability as
described by σ f becomes progressively smaller. We remark again that while the left
side of the table was computed by resorting only to the observed scenarios that were
used in optimising the decision, the right side of the table was obtained by using the
knowledge of the distribution of the uncertain variable δ in order to simulate a large
amount of new validation instances. Therefore, the right side is not available in real
world situations.

The results reported in each row of Table 1 characterise the outcome obtained by
applying the wait-and-judge approach to a single set of data δ(1), . . . , δ(N ). The next
Table 2 shows statistics that are obtained by applying the wait-and-judge approach to
3000 different sets of randomly sampled data δ(1), . . . , δ(N ). In particular, the table
shows the minimum, the maximum and the average number of support scenarios
over the 3000 runs (denoted respectively by min{s∗N }, max{s∗N } and μ{s∗N }); the sample
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Table 1 Results of the
wait-and-judge approach for
different N . The first row
(N = 0) refers to the nominal
program (3)

N h∗ s∗N εs∗N R(z∗N ) μ f σ f

0 0.0138 N.A. N.A. 100% 0.0519 0.3098

100 0.0140 9 32.2% 10.2% 0.0364 0.1876

250 0.0142 15 14.0% 5.9% 0.0144 0.0019

500 0.0144 17 9.9% 4.3% 0.0145 0.0013

1000 0.0148 28 6.7% 2.7% 0.0147 8 × 10−4

2500 0.0153 42 3.5% 1.6% 0.0148 6 × 10−4

Table 2 Results of the wait-and-judge approach from 3000 samples of data (for N = 250, 500, 1000)

N min{s∗N } max{s∗N } μ{s∗N } μ{εs∗N } σ{εs∗N } μ{εs∗N −R(z∗N )} σ{εs∗N −R(z∗N )}

250 9 23 16 18.2% 1.2 % 12.1% 1.9 %

500 14 30 21 11.2% 0.7 % 6.9% 1.1 %

1000 20 39 29 6.8% 0.4 % 3.9% 0.7 %

average of the upper-bound εs∗N (denoted by μ{εs∗N }) and its sample standard deviation

(denoted by σ{εs∗N }); finally, in the last two columns we have reported results related to

the difference between the upper-bound εs∗N and the true risk R(z∗N ): the penultimate
column gives the sample average (μ{εs∗N −R(z∗N )}) and the last column gives the standard

deviation (σ{εs∗N −R(z∗N )}). We also remark that in all the experiments we had εs∗N >

R(z∗N ) as is expected because the probability of underestimating the true risk was
set to a very small value 10−6. This choice explains also the presence of an average
“safety gap” between εs∗N and R(z∗N ).

3.3 Technical assumptions for the validity of Theorem 1

Theorem 1 holds true under two technical assumptions. The first is the existence and
the uniqueness of the solution z∗N , with probability 1 with respect to the sample δ(i),
i = 1, . . . , N , for all N . In the present context of antenna array design, existence is
ensured by the fact that the scenario program (5) is a min–max problem with closed
optimisation domain, while uniqueness can always be ensured by introducing a convex
tie-break rule, e.g., by choosing the solution that minimises the sum

∑n
�=1 x

2
� . The

second assumption under which the theorem is stated in Campi and Garatti (2018)
is a non-degeneracy condition: for every N , with probability 1 with respect to the
sample δ(i), i = 1, . . . , N , the solution to program (5) with all the constraints in
place coincides with the solution to the program where only the support constraints
(which are the constraints in (5) that correspond to the scenarios δ(i) that are support
scenarios) are kept. In the present context of antenna array design, this corresponds to
requiring that all the active constraints in (5) be support constraints. However, we here
anticipate that more recent results have shown that this condition can be dropped and
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that the statement of Theorem 1 holds true in general, provided that s∗
N is redefined as

the number of active constraints.

4 Conclusions

In this paper, we have shown how the recently developed “wait-and-judge” approach
for scenario optimisation can be applied to scenario-based min–max design problems
in order to issue certificates about the cost incurred by the output of the designing
process. The approach has been illustrated and validated on an antenna array design
problem.
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