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Abstract In this paper, we study the link between a Chance-Constrained optimiza-
tion Problem (CCP) and its sample counterpart (SP). SP has a finite number, say N ,
of sampled constraints. Further, some of these sampled constraints, say k, are dis-
carded, and the final solution is indicated by x∗

N,k . Extending previous results on the
feasibility of sample convex optimization programs, we establish the feasibility of
x∗
N,k for the initial CCP problem.

Constraints removal allows one to improve the cost function at the price of a de-
creased feasibility. The cost improvement can be inspected directly from the opti-
mization result, while the theory here developed permits to keep control on the other
side of the coin, the feasibility of the obtained solution. In this way, trading feasibility
for performance is put on solid mathematical grounds in this paper.

The feasibility result here obtained applies to a vast class of chance-constrained
optimization problems, and has the distinctive feature that it holds true irrespective
of the algorithm used to discard k constraints in the SP problem. For constraints
discarding, one can thus, e.g., resort to one of the many methods introduced in the
literature to solve chance-constrained problems with discrete distribution, or even use
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a greedy algorithm, which is computationally very low-demanding, and the feasibility
result remains intact.

We further prove that, if constraints in the SP problem are optimally removed—
i.e., one deletes those constraints leading to the largest possible cost improvement—,
then a precise optimality link to the original chance-constrained problem CCP in
addition holds.

Keywords Chance-constrained optimization · Stochastic optimization · Convex
optimization · Sample-based optimization · Randomized methods

1 Introduction

Letting X ⊆ R
d be a convex and closed domain of optimization, consider a family of

constraints x ∈ Xδ parameterized in δ ∈ �, where the sets Xδ are convex and closed.
Convexity of the sets Xδ is an assumption in effect throughout this paper. δ is the
uncertain parameter and it describes different instances of an uncertain optimization
scenario. Adopting a probabilistic description of uncertainty, we suppose that the
support � for δ be endowed with a σ -algebra D and that a probability measure P

be defined over D. P describes the probability with which the uncertain parameter δ

takes value in �. Then, a chance-constrained optimization program is written as:

CCPε : min
x∈X

cT x

s.t. P{δ : x ∈ Xδ} ≥ 1 − ε.
(1)

Here, the σ -algebra D is large enough, so that {δ : x ∈ Xδ} ∈ D, that is {δ : x ∈
Xδ} is a measurable set. Also, linearity of the objective function is without loss of
generality, since any objective of the kind minx∈X c(x), where c(x) : X → R is a
convex function, can be re-written as minx∈X ,y≥c(x) y, where y is a scalar variable.

In CCPε , constraint violation is tolerated, but the violated constraint set must be
no larger than ε. This parameter ε allows one to trade robustness for performance:
the optimal objective value J ∗

ε of CCPε is a decreasing function of ε and provides
a quantification of such a trade-off. Depending on the application at hand, which
can cover a wide range from control to prediction and from engineering design to
financial economics, ε can take different values and has not necessarily to be thought
of as a “small” parameter.

Chance-constrained programming has been around for a long time, at least since
the work of Charnes, Cooper and Symonds in the fifties, see [1]. In [1], however, only
individual chance-constraints were considered. Joint probabilistic constraints, as in
(1), were first considered by Miller and Wagner, [2], in an independent context, while
a general theory is due to the work of Prèkopa, see [3, 4]. Prèkopa also introduced the
convexity theory based on logconcavity, a fundamental step toward solvability of a
large class of chance-constrained problems. References [5–7] are excellent contribu-
tions providing a broad overview on logconcavity theory in stochastic programming,
and related results. Yet another study about the convexity of chance-constrained prob-
lems is [8], while convex approximations of chance-constrained problems are consid-
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ered in [9–12]. Stability of the solution under perturbation of the chance-constrained
problem is studied in [13, 14]. The case of discrete distribution is dealt with using
efficient points in [15–20], see also [21–23] for other studies.

Though chance-constrained problems can be efficiently solved in some notable
cases as outlined above, it remains true that the feasible set of CCPε is in general
non-convex in spite of the convexity of the sets Xδ . Consequently, an exact numerical
solution of CCPε is in general hard to find.

1.1 Contribution of this Paper

In this paper, we consider sample-based approximations of chance-constrained op-
timization problems. Precisely, by replacing � with a finite sample of independent
instances δ(1), δ(2), . . . , δ(N) ∈ � distributed according to P, an optimization program
with a finite number of constraints is obtained (the sample optimization program), and
we further allow one for removal of constraints from this finite set to improve the cost
value.1 Our main objective is to quantitatively relate the sample-based approxima-
tion to the initial chance-constrained optimization program and to provide sample
size results on the number of constraints to sample to make the solution of the former
a feasible solution of the latter.

Sample-based approximations are chance-constrained problems with discrete dis-
tribution. Chance-constrained problems with discrete distribution have been previ-
ously considered in many papers, e.g. [15–23], where effective resolution methods
have been introduced. Our standpoint here is that one can use anyone of these res-
olution methods, or even any other method, e.g., based on a greedy removal of the
constraints, and our feasibility Theorem 2.1 always holds true to establish the feasi-
bility of the solution with respect to the initial CCPε problem. This theorem precisely
establishes that:

if N constraints are sampled and k of them are eliminated according to any
arbitrary rule, then the solution that satisfies the remaining N −k constraints is,
with high confidence, feasible for the chance-constrained optimization program
CCPε in (1), provided that N and k satisfy a certain condition (3).

This theorem justifies, at a very deep theoretical level, the use of sampling in chance-
constrained. Its strength is that it applies to all chance-constrained problems with
convex Xδ . Moreover, condition (3) is very tight, in the sense that it returns values for
N and k close to the best possible values guaranteeing feasibility, a fact also shown
in this paper.

Theorem 2.1 opens up practical routes to address chance-constrained optimiza-
tion problems: after sampling, constraints are removed according to any procedure,
and, at the end of the elimination process, the actually incurred optimization cost is
inspected for satisfaction, while Theorem 2.1 allows one to keep control on the fea-
sibility of the obtained solution. To illustrate the result in more concrete terms, we

1These δ(i) can have in applications one of the following two interpretations: (1) they are artificially ex-
tracted by the user from �; (2) they come as observations. Section 4.1 provides a more detailed discussion
of these interpretations.
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Fig. 1 Optimization cost (curve with circled markers) and constraints violation (curve with squared mark-
ers) against the number of the removed constraints in the x-axis

anticipate here in Fig. 1 a graph referring to a numerical example that we shall de-
velop in full later in Sect. 3. In the figure, the curve with circled markers represents
the optimization cost of the sample-based solution as a function of the number k of
removed constraints, while the curve with squared markers represents the constraints
violation of the sample-based solution as guaranteed by the theory developed in this
paper. Based on an assessment of the two curves, the user can choose his favorite
compromise between performance and violation.

Depending on the elimination rule, the incurred objective value can be close or less
close to the optimal objective value J ∗

ε of the CCPε optimization program. Working
on this aspect, we further prove in Theorem 6.1 that, when k constraints are opti-
mally removed, the objective value gets close to J ∗

ε in a sense precisely stated in the
theorem.

1.2 Connection with Other Results on Sample-Based Methods

Sample-based techniques, also known as Monte Carlo methods, have been around
for decades, but only recently they have started to spread in the context of stochas-
tic optimization due to the increase of computing capabilities, see e.g. [24–35], and
sample-based optimization has also been used in connection of various application
domains, see e.g. [36–40]. We here give a brief resume of previous results about the
feasibility of sample-based optimization programs, that have a close relation to the
present paper.

Chapter 5 in [34] provides a thorough presentation of the conditions for the
sample-based approximation to asymptotically reconstruct the original chance-
constrained problem. Unlike Chap. 5 in [34], the present paper deals with a finite-
sample analysis, in that we want to determine the sample size N guaranteeing a
given level of approximation. Finite-sample properties are also the topic of the inter-
esting paper [41], which presents an analysis applicable in a set-up complementary to
that of the present paper. Specifically, feasibility results are established for possibly
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non-convex constraints, provided that the optimization domain has finite cardinal-
ity or in situations that can be reduced to this finite cardinality set-up. An excellent
contribution with many results for possibly non-convex constraints is also [42].

The approach of the present paper builds on the so-called “scenario” approach
of [43–45]. The fundamental progress over [43–45] here made is that the results in
[43–45] do not allow one for constraints removal, a possibility which is of crucial
importance any time one wants to trade feasibility for performance.

1.3 Structure of the Paper

In Sect. 2, we formally introduce the sample-based approach with constraints elim-
ination to prepare the terrain for the feasibility Theorem 2.1 given at the end of the
same section. To avoid breaking the flow of discourse, the proof of Theorem 2.1 is
postponed to Sect. 5, while Sect. 3 presents how to trade feasibility for performance
and Sect. 4 provides complimentary theoretical material. Finally, optimality results
are given in Sect. 6.

2 Sample-Based Chance-Constrained Optimization: Feasibility Results

Suppose that N samples δ(1), δ(2), . . . , δ(N) independent and identically distributed
according to the probability measure P are available. The idea behind the scenario
approach of [43–45] is to substitute the vast multitude of constraints in the infinite
initial domain � with these N constraints only, and to find the optimal solution that
satisfies all of these N constraints. If all the N constraints are enforced, however,
one cannot expect that good approximations of chance-constrained solutions are ob-
tained.2 Thus, we allow in this paper for violating part of the sampled constraints
to improve the optimization value. A general removal procedure is formalized in the
following definition.

Definition 2.1 Let k < N . An algorithm A for constraints removal is any rule by
which k constraints out of a set of N constraints are selected and removed. The out-
put of A is the set A{δ(1), . . . , δ(N)} = {i1, . . . , ik} of the indexes of the k removed
constraints.

The fact that A can be any removal algorithm provides us with an opportunity to
pick the most suitable algorithm for the situation at hand, selecting from a range that
goes from a handy greedy algorithm to the optimal algorithm where k constraints are
eliminated to best improve the cost objective. All methods in [15–23] can be used
and thus this paper leverages on these previous contributions. Another choice is a
recursive optimal elimination of groups of p, with p � k, constraints at a time (when
p = 1 the greedy algorithm is recovered). Yet another choice consists in progressively

2The fundamental role of constraint removal can be fully appreciated by way of a simple 1-dimensional
example. We provide such an example in Appendix A, part A.1, for the benefit of the reader who is
interested to gain more insight.
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updating the solution by eliminating all the active constraints at the currently reached
solution.

The sample-based optimization program where k constraints are removed as indi-
cated by A is expressed as

SPA
N,k: min

x∈X
cT x

s.t. x ∈ Xδ(i) , i ∈ {1, . . . ,N} − A{δ(1), . . . , δ(N)},
and its solution will be hereafter indicated as x∗

N,k .
We introduce the following assumptions.

Assumption 2.1 Every optimization problem subject to only a finite subset F of
constraints from �, i.e.

min
x∈X

cT x s.t. x ∈ Xδ, δ ∈ F ⊆ �, (2)

is feasible, and its feasibility domain has a nonempty interior. Moreover, the solution
of (2) exists and is unique.

Assumption 2.1 requires that problems with finitely many constraints be feasible.
It applies to most situations of practical interest, notably in all chance-constrained
minmax problems where one minimizes the maximum value of an uncertain cost
cδ(x), with maximum taken with respect to all δ ∈ �ε and minimum with respect to
x ∈ X and to the choice of the subset �ε ⊆ � among sets whose probability is at
least 1 − ε, viz. minx∈X ,�ε

maxδ∈�ε cδ(x). This problem can be rewritten within the
formalism of (1) as minx∈X ,h∈R h s.t. P{δ : cδ(x) ≤ h} ≥ 1 − ε. One example of this
type of problems is provided in Sect. 3.

We also introduce the following assumption on algorithm A.

Assumption 2.2 Almost surely with respect to the multi-sample (δ(1), . . . , δ(N)), the
solution x∗

N,k of the sample-based optimization program SPA
N,k violates all the k con-

straints that A has removed.

This assumption requires that A chooses constraints whose removal improves the
solution by violating the removed constraints, and it rules out for example algorithms
that remove inactive constraints only. Thus, this assumption is very natural and re-
flects the fact that constraints are removed for the purpose of improving the optimiza-
tion value. In general, Assumption 2.2 can be made true by simply incorporating in A
a test to verify if the removed constraints are indeed violated and, if not, by further al-
lowing the algorithm to remove other constraints. The “almost surely” specification at
the beginning of the assumption is introduced because for non-generic δ(1), . . . , δ(N)

samples, that e.g. cluster together (δ(1) = δ(2) = · · · = δ(N)), removal of k constraints
so that they are violated may be impossible.

Finally, we introduce the following definition.

Definition 2.2 (Violation Probability) The violation probability of a given x ∈ X is
defined as V (x) = P{δ ∈ � : x /∈ Xδ}.
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The next Theorem 2.1 provides theoretical guarantees that V (x∗
N,k) ≤ ε, i.e. that

the solution x∗
N,k of the optimization program SPA

N,k is feasible for problem CCPε .
Note that x∗

N,k is a random variable because it depends on the random multi-sample

(δ(1), . . . , δ(N)), so that its violation probability V (x∗
N,k) is a random variable too

defined over the product space �N = � × · · · × � endowed with the product σ -
algebra DN = D ⊗ · · · ⊗ D and the probability measure P

N = P × · · · × P, where
the probability is a product probability because the samples δ(i) are independent.
Thus, V (x∗

N,k) can be less than ε for some multi-samples (δ(1), . . . , δ(N)) and not for
others, and the theorem establishes the condition under which V (x∗

N,k) > ε has any
arbitrarily small probability β .

Theorem 2.1 Let β ∈ (0,1) be any small confidence parameter value. If N and k are
such that (

k + d − 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i ≤ β (3)

(recall that d is the number of optimization variables), then P
N {V (x∗

N,k) ≤ ε} ≥
1 − β .

In the theorem the measurability of set {V (x∗
N,k) ≤ ε} is taken as an assumption;

the same convention applies elsewhere to other subsets of �N . The theorem holds
true for any optimization problem with convex Xδ , any constraints removal algorithm
A, and any probability measure P. To avoid breaking the flow of presentation, the
proof is given in the next Sect. 5.1.

Theorem 2.1 is a feasibility theorem and says that the solution x∗
N,k obtained by

inspecting N constraints only is a feasible solution for CCPε with high probability
1 − β , provided that N and k fulfill condition (3).

Formula (3) establishes a relation among variables N , k, ε, and β . A typical use
of this formula consists in selecting an N within the computational limit of the used
solver, ε according to the acceptable level of risk, and β small enough to be negligi-
ble, e.g. β = 10−10, and computing from (3) the largest number k of constraints that
can be discarded.

For an easy visualization of Theorem 2.1, we have represented in Fig. 2 the region
in the N,k space such that condition (3) is satisfied when ε = 0.1, β = 10−10 and
d = 5. The interpretation is that, if any pair (N, k) is picked from the grey region,
then, if N constraints are sampled and k of them are removed, the obtained solution
is, with high confidence 1–10−10, feasible for the chance-constrained problem with
parameter ε = 0.1. As we shall discuss in detail in Sect. 4.2, formula (3) provides a
tight evaluation for N and k.

3 Trading Feasibility for Performance

In some applications, one may want to reach a suitable compromise between violation
and performance, in which case one discards a progressively increasing number k of
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Fig. 2 Grey region: values of N and k satisfying condition (3) for ε = 0.1, β = 10−10 and d = 5

constraints, while inspecting the corresponding cost improvement for satisfaction.
Theorem 2.1 holds for given N and k; yet, by a repeated application of the theorem
for k = k1, k2, . . . , kM , one concludes that

P
N {V (x∗

N,ki
) ≤ εi, ∀i = 1, . . . ,M} ≥ 1 −

M∑
i=1

βi. (4)

This result permits one to keep simultaneous control on the obtained violations after
an increasing number of constraints are eliminated. Thus, after the user has com-
puted x∗

N,ki
, i = 1, . . . ,M , and the corresponding cost values cT x∗

N,ki
, he can select

his favorite violation/performance trade-off by assessing the εi ’s against the cT x∗
N,ki

values. We also note that having a sum of βi in (4) is not a hurdle since the βi can be
chosen to be very small in normal situations. To illustrate ideas, we provide next an
example taken from linear regression.

Example 3.1 (Minimax Regression) The N = 2000 points (ui, yi), i = 1, . . . ,2000,
displayed in Fig. 3 are independently generated in R

2 according to an unknown prob-
ability measure P. We want to construct an interpolating polynomial of degree 3,
y = x0 + x1u + x2u

2 + x3u
3, where x0, . . . , x3 are parameters to be chosen, so that

a strip of minimal vertical width centered around the polynomial contains all the
generated points. In mathematical terms, this problem can be cast as the following
optimization program

min
x0,...,x4

x4 s.t. |yi − [x0 + x1ui + x2u
2
i + x3u

3
i ]| ≤ x4, i = 1, . . . ,2000, (5)
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Fig. 3 (ui , yi ) data points

Fig. 4 Strip containing all points

and the optimal polynomial is named minimax regressor. Problem (5) is a sample
optimization program where δ(i) = (ui, yi). The solution we have obtained with the
data at hand is shown in Fig. 4.

The above problem can be interpreted as an identification problem where u is the
input, y is the output, P is the probability measure describing an underlying data gen-
eration mechanism, the N = 2000 points are the data, and the strip is a data-based
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Fig. 5 Strips with increasing points violation

Table 1 Strip widths vs. ki

ki 0 10 20 30 40 50 60 70 80 90

width 6.08 4.32 3.90 3.46 3.08 2.84 2.54 2.36 2.14 2.06

descriptor of the generator. Given the next input u, the interval in the strip corre-
sponding to that u provides a prediction of the associated unseen y. Correspondingly,
one would like to have a strip of small width so as to make a tight prediction, while
keeping low the probability of not capturing the next unseen y, that is the probability
that (u, y) falls outside the strip.

To make the strip width smaller, we further removed some of the sampled (ui, yi)

points. Figure 5 depicts, stacked one on top of the other, the strips obtained by a
greedy removal of ki = 10,20, . . . ,90 points. The corresponding strip widths are
displayed in Table 1.

Turning to consider the reliability of the various strips obtained for different ki

values, from (5) it is clear that each point corresponds to a constraint and the proba-
bility that (u, y) falls outside the i-th strip is the same as the probability of constraint
violation V (x∗

N,ki
). Using ki = 0,10,20, . . . ,90 and βi = 10−10, ∀i, in (3), this for-

mula is satisfied for the εi values given in Table 2. These εi are upper bounds to the
probability that (u, y) does not belong to the i-th strip and Table 2 should be assessed
by the user against Table 1 for his violation/width favorite compromise. Figure 1 vi-
sually depicts the values in the tables. According to (4), the confidence in the final
result will be 1 − ∑10

i=1 10−10 = 1–10−9.
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Table 2 εi vs. ki

ki 0 10 20 30 40 50 60 70 80 90

εi 0.017 0.031 0.041 0.051 0.059 0.068 0.075 0.083 0.090 0.097

4 Remarks on Theorem 2.1

4.1 Data-Based Optimization

The example of the previous section offers an opportunity to broaden the discussion
so far in relation to the interpretation and the applicability of the theoretical findings
of this paper.

In some applications, � and P represent a model we introduce to describe uncer-
tainty. Correspondingly, samples δ(i) are extracted by us along the process of replac-
ing the CCPε program with its sample counterpart SPA

N,k , having in mind the goal
of making the problem computationally tractable. This way of proceeding has been
sometimes called “randomization”, referring to the artificial process of sampling as
part of the algorithmic solution methodology.

On the other hand, the example of Sect. 3 offers a second interpretation of the
sampling scheme discussed in this paper: there δ(i) = (ui, yi) is an observation that
comes to us through a procedure of data acquisition. (ui, yi) is generated by an un-
derlying system, so that � and P exist but are not known to us. The achievements of
this paper find direct applicability to this context as well since all the optimization
program SPA

N,k uses are the samples δ(i) (so that if the δ(i) are available we do not
need to know � and P) and since applying the theoretical result of Theorem 2.1 does
not require any knowledge of � and P as well (distribution-free result). For these
reasons, we expect that the findings of this paper will have a significant impact in
all fields where data-based optimization is used including signal processing, system
identification, statistical learning, financial economics, and others.

4.2 A Remark on the Quality of Bound (3)

We discuss the bound (3) and its margin of improvement.
From Theorem 2.1, we have that

(
k+d−1

k

)∑k+d−1
i=0

(
N
i

)
εi(1 − ε)N−i is an upper

bound to P
N {V (x∗

N,k) > ε} valid for any removal algorithm A and for any optimiza-
tion problem P (that is for any set of constraints Xδ , δ ∈ �, probability measure P,
and cost function cT x). I.e.

sup
P,A

P
N {V (x∗

N,k) > ε} ≤
(

k + d − 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i . (6)

It is a fact that a lower bound to the same probability is

sup
P,A

P
N {V (x∗

N,k) > ε} ≥
k+d−1∑

i=0

(
N

i

)
εi(1 − ε)N−i , (7)
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Fig. 6 Grey region: values of N and k satisfying condition
∑k+d−1

i=0

(N
i

)
εi (1− ε)N−i ≤ β ; Light grey re-

gion: values of N and k satisfying condition
(k+d−1

k

)∑k+d−1
i=0

(N
i

)
εi (1−ε)N−i ≤ β ; ε = 0.1, β = 10−10

and d = 5

and this sets a limit to the margin of improvement of the bound in Theorem 2.1.
For a visual understanding of this result, in Fig. 6 we have represented the region
in the N,k space where condition

∑k+d−1
i=0

(
N
i

)
εi(1 − ε)N−i ≤ β is satisfied for ε =

0.1, β = 10−10 and d = 5 superimposed to the region obtained by using (6), i.e. by
imposing

(
k+d−1

k

)∑k+d−1
i=0

(
N
i

)
εi(1−ε)N−i ≤ β (this is the same region as in Fig. 2).

The proof of (7) is provided in Sect. 5.2.

4.3 An Explicit Formula for k

Using the Chernoff bound for the Binomial tail (see e.g. Sect. 2.3.1 in [46]) yields

k+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i ≤ e− (εN−k−d+1)2

2εN , for εN ≥ k + d − 1.

Moreover,
(

k + d − 1

k

)
= (k + d − 1)!

(d − 1)!k! ≤ (k + d − 1)(k + d − 2) · · · (k + 1)

≤ (k + d − 1)d−1 ≤ (εN)d−1,

where the last inequality follows from condition εN ≥ k + d − 1.
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Hence, the left-hand-side of (3) is bounded by (εN)d−1 · e− (εN−k−d+1)2
2εN . Given N ,

ε, β , and d , we compute a k such that

(εN)d−1 · e− (εN−k−d+1)2
2εN ≤ β.

This latter equation can be rewritten as

(εN − k − d + 1)2 ≥ 2εN ln
(εN)d−1

β
,

which, solved for k with the condition εN ≥ k + d − 1, gives

k ≤ εN − d + 1 −
√

2εN ln
(εN)d−1

β
. (8)

Equation (8) is an explicit handy formula for k which can be used to compute the
number of constraints that can be discarded. More precise evaluations can be obtained
by numerically solving (3).

4.4 A Remark on the Fact that, Although the Bound Is Problem-Independent, It Is
Non-Conservative

In [45], we showed that the only characteristic of an optimization problem that counts
in determining the violation properties of a solution that satisfies all the sampled
constraints is the number of support constraints of the sample-based optimization
program. This number of support constraints is further bounded in [45] by d , the
number of optimization variables, and this may introduce some conservatism. When
we allow for constraints removal, as we do here, we see from formula (3) that d does
not count as such, and it only appears summed to k: d + k, where k is the number of
removed constraints. The presence of k, which is deterministically known and chosen
by the user, levels out the differences among optimization problems, so that results
like those of this paper that hold true for any chance-constrained problem become
nonconservative.

To gain extra quantitative insight on this point, notice that, letting kmax(N) be the
maximum integer k such that (8) is satisfied for a given ε and β , we see from (8) that
limN→∞ kmax(N)

N
= ε. Indeed, the first term in the right hand side increases linearly in

N whereas the other terms are sublinear and vanish for N → ∞ when divided by N .
The interpretation is that the empirical violation kmax(N)

N
tends to the true violation

ε as N is let increase, and this is the best possible result one can expect. For finite
N , instead, random effects introduce a variability in the violation of the solution, so
that the number of constraints that can actually be removed need to be less than ε · N
to obtain high confidence that the solution violates less then ε. Inspecting e.g. Fig. 1
we see that to achieve a violation below 10% we have to eliminate no more that 90
constraints out of 2000, i.e. 4.5%, introducing a factor of approximately 2 between
the two percentages.
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4.5 A Further Comment on the Choice of N

In applications where the δ(i) are associated to observations and one has no active
role in designing the experiment, the number N is dictated by the size of the available
data record; this was e.g. the case in the example of Sect. 3. Other times, however,
N can be selected as part of the experiment design. If so, formula (8) offers practical
information for the selection of N : compatibly with other limitations, term

−d + 1 −
√

2εN ln (εN)d−1

β

N

should be made small enough by properly selecting N so that the mismatch between
empirical violation k

N
and the theoretical limit ε is kept below a desired level.

5 Proofs

5.1 Proof of Theorem 2.1

Introducing the notation δ := (δ(1), . . . , δ(N)), in this proof we shall write x∗
N,k(δ)

instead of x∗
N,k to emphasize the stochastic nature of the solution. The “bad” multi-

samples from �N leading to a solution x∗
N,k(δ) violating a portion of constraints

larger than ε form an event

B = {δ ∈ �N : V (x∗
N,k(δ)) > ε},

and, in these notations, the theorem statement can be rephrased as P
N {B} ≤ β .

Given a subset I = {i1, . . . , ik} of k indexes from {1, . . . ,N}, let x∗
I (δ) be the

optimal solution of the optimization problem where the constraints with index in I

have been removed, i.e.

x∗
I (δ) := arg min

x∈X
cT x s.t. x ∈ Xδ(i) , i ∈ {1, . . . ,N} − I. (9)

Moreover, let

�N
I = {δ ∈ �N : x∗

I (δ) violates the constraints δ(i1), . . . , δ(ik)}. (10)

Thus, �N
I contains the multi-samples such that removing the constraints with indexes

in I leads to a solution x∗
I (δ) that violates all the removed constraints.

Since the solution of SPA
N,k almost surely violates k constraints (Assumption 2.2),

it is clear that x∗
N,k(δ) = x∗

I (δ) for some I such that δ ∈ �N
I . Thus,

B = {δ ∈ �N : V (x∗
N,k(δ)) > ε} ⊆

⋃
I∈I

{δ ∈ �N
I : V (x∗

I (δ)) > ε} (11)

up to a zero probability set, where I is the collection of all possible choices of k

indexes from {1, . . . ,N}.
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A bound for P
N {B} is now obtained by first bounding P

N {δ ∈ �N
I :

V (x∗
I (δ)) > ε}, and then summing over I ∈ I .

Fix an I = {i1, . . . , ik}, and write

P
N {δ ∈ �N

I : V (x∗
I (δ)) > ε}

=
∫

(ε,1]
P

N {�N
I |V (x∗

I (δ)) = v}dFV (v)

=
∫

(ε,1]
P

N {x∗
I (δ) violates the constraints δ(i1), . . . , δ(ik)|V (x∗

I (δ)) = v} dFV (v),

(12)

where FV is the cumulative distribution function of the random variable V (x∗
I (δ)),

and P
N {�N

I |V (x∗
I (δ)) = v} is the conditional probability of the event �N

I under the
condition that V (x∗

I (δ)) = v (see (17), §7, Chap. II of [47]).
To evaluate the integrand in (12), remind that V (x∗

I (δ)) = v means that x∗
I (δ)

violates constraints with probability v; then, owing to that the δ(i) samples are inde-
pendent, the integrand equals vk . Substituting in (12) yields

P
N {δ ∈ �N

I : V (x∗
I (δ)) > ε} =

∫
(ε,1]

vk dFV (v). (13)

To proceed, we have now to appeal to a result on FV from [45]: FV (v) ≥ F̄V (v) :=
1 − ∑d−1

i=0

(
N−k

i

)
vi(1 − v)N−k−i , see Theorem 1 in [45] and recall that FV (v) is the

cumulative distribution function of the violation of a solution obtained with N − k

constraints. This inequality is tight, i.e. it holds with equality for a whole class of
optimization problems, that called “fully-supported” in [45], Definition 3.

Now, the integrand vk in (13) is an increasing function of v, so that FV (v) ≥
F̄V (v) implies that

∫
(ε,1] v

k dFV (v) ≤ ∫
(ε,1] v

k dF̄V (v). This can be verified by the
calculation: ∫

(ε,1]
vk dFV (v) = [Theorem 11, §6, Chap. II of [47]]

= 1 − εkFV (ε) −
∫

(ε,1]
FV (v)kvk−1 dv

≤ 1 − εkF̄V (ε) −
∫

(ε,1]
F̄V (v)kvk−1 dv

=
∫

(ε,1]
vk dF̄V (v).

Hence, P
N {δ ∈ �N

I : V (x∗
I (δ)) > ε} can finally be bounded as follows:

P
N {δ ∈ �N

I : V (x∗
I (δ)) > ε} ≤

∫
(ε,1]

vk dF̄V (v)

=
[

the density of F̄V is d

(
N − k

d

)
vd−1(1 − v)N−k−d

]
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=
∫

(ε,1]
vk · d

(
N − k

d

)
vd−1(1 − v)N−k−d dv

= [integration by parts]

= d
(
N−k

d

)
(k + d)

(
N

k+d

)
k+d−1∑

i=0

(
N

i

)
εi(1 − ε)N−i . (14)

To conclude the proof, go back to (11) and note that I contains
(
N
k

)
choices. Thus,

P
N {B} ≤

∑
I∈I

P
N {δ ∈ �N

I : V (x∗
I (δ)) > ε}

=
(

N

k

)
P

N {δ ∈ �N
I : V (x∗

I (δ)) > ε}

≤ [use (14)]

≤
(

N

k

)
d
(
N−k

d

)
(k + d)

(
N

k+d

)
k+d−1∑

i=0

(
N

i

)
εi(1 − ε)N−i

=
(

k + d − 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i

≤ β,

where the last inequality follows from (3).

5.2 Proof of (7)

Consider a fully-supported problem P (see Definition 3 in [45]). Equation (14) in the
proof of Theorem 2.1 holds true in this case with equality, that is

P
N {δ ∈ �N

I : V (x∗
I (δ)) > ε} = d

(
N−k

d

)
(k + d)

(
N

k+d

)
k+d−1∑

i=0

(
N

i

)
εi(1 − ε)N−i , (15)

with x∗
I (δ) and �N

I defined as in (9) and (10).
For a multi-sample δ, let # be the number of solutions of level k (that is solutions

that violate exactly k of the sampled constraints) whose violation is more than ε.
From (9) and (10), one easily sees that

# =
∑
I∈I

1{δ∈�N
I : V (x∗

I (δ))>ε},

where 1A denotes the indicator function of set A. We now have that
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E�N [#] =
∫

�N

∑
I∈I

1{δ∈�N
I : V (x∗

I (δ))>ε} P
N {dδ}

=
∑
I∈I

P
N {δ ∈ �N

I : V (x∗
I (δ)) > ε}

=
[

use (15) and recall that I contains

(
N

k

)
choices

]

=
(

N

k

)
d
(
N−k

d

)
(k + d)

(
N

k+d

)
k+d−1∑

i=0

(
N

i

)
εi(1 − ε)N−i

=
(

k + d − 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i . (16)

Now, letting S(#) be the set in �N where # �= 0, that is the set of multi-samples such
that at least one solution of level k violates more than ε, the algorithm A that always
selects the solution x∗

N,k(δ) of level k with the largest violation leads to the fact that

V (x∗
N,k(δ)) > ε holds on S(#), that is with a probability P

N {S(#)}. Nobody to date

knows the exact value of P
N {S(#)}, but it turns out that we can compute a lower

bound to it. In fact, a fully supported problem has
(
k+d−1

k

)
solutions of level k, see

e.g. [48], so that # ≤ (
k+d−1

k

)
. Using this fact in (16) yields:

(
k + d − 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i = E�N [#] ≤

(
k + d − 1

k

)
· P

N {S(#)},

from which P
N {S(#)} ≥ ∑k+d−1

i=0

(
N
i

)
εi(1 − ε)N−i . Since P

N {S(#)} is the proba-
bility that the solution of algorithm A violates more than ε, the found number∑k+d−1

i=0

(
N
i

)
εi(1 − ε)N−i represents a lower bound to supP,A P

N {V (x∗
N,k(δ)) > ε}.

6 Optimality Results

In this section we establish the result that the objective value of CCPε can be ap-
proached at will, provided that sampled constraints are optimally removed. Though
at the present state of knowledge optimal removal can be impractical due to the ensu-
ing high computational burden, this study has a theoretical interest and sheds further
light on the relation between chance-constrained optimization and its sample coun-
terpart.

Let Aopt be the optimal constraints removal algorithm which leads—among all
possible eliminations of k constraints out of N—to the best possible improvement in
the cost objective; further, let x∗

N,k opt and J ∗
N,k opt = cT x∗

N,k opt be the corresponding
optimal solution and cost value. We have the following theorem.
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Theorem 6.1 Let β ∈ (0,1) be any small confidence parameter value, and let ν ∈
(0, ε) be a performance degradation parameter value. If N and k are such that

(
k + d − 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i +

N∑
i=k+1

(
N

i

)
(ε − ν)i(1 − ε + ν)N−i ≤ β,

(17)
then

(i) V (x∗
N,k opt) ≤ ε

(ii) J ∗
N,k opt ≤ J ∗

ε−ν

simultaneously hold with probability at least 1 − β .

As in Theorem 2.1, point (i) is a feasibility result. Instead, point (ii) states that the
performance achieved by x∗

N,k opt is no worse than the performance of CCPε−ν , where
ν is a degradation margin. A result similar to (ii) has also been independently estab-
lished in [41]. A simple example illustrating Theorem 6.1 is provided in Appendix A,
part A.2.

Proof Let

Bi = {δ ∈ �N : V (x∗
N,k opt(δ)) > ε},

Bii = {δ ∈ �N : J ∗
N,k opt(δ) > J ∗

ε−ν}.

We have to prove that P
N {Bi ∪ Bii} ≤ β .

Write P
N {Bi ∪ Bii} ≤ P

N {Bi} + P
N {Bii}. By Theorem 2.1, P

N {Bi} is bounded
by

(
k+d−1

k

)∑k+d−1
i=0

(
N
i

)
εi(1 − ε)N−i . We here bound P

N {Bii}.
For the sake of simplicity, in what follows we assume that a solution x∗

ε−ν of
CCPε−ν exists. If not, the result is similarly established by a limit reasoning.

Let �ε−ν be the subset of � formed by those constraints which are violated by
x∗
ε−ν . Call R(δ) the number of constraints among the N sampled ones that fall in

�ε−ν . The objective value obtained by eliminating the R(δ) constraints in �ε−ν ,
say J (δ), cannot be worse than J ∗

ε−ν : J (δ) ≤ J ∗
ε−ν . Thus, if J ∗

N,k opt(δ) > J ∗
ε−ν , then

R(δ) > k for, otherwise, J ∗
N,k opt(δ) ≤ J (δ) ≤ J ∗

ε−ν . Therefore,

P
N {Bii} = P

N {J ∗
N,k opt(δ) > J ∗

ε−ν}
≤ P

N {R(δ) > k}
= [probability that more than k among N samples fall in �ε−ν]

=
N∑

i=k+1

(
N

i

)
(P{�ε−ν})i(1 − P{�ε−ν})N−i

≤
N∑

i=k+1

(
N

i

)
(ε − ν)i(1 − ε + ν)N−i ,
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where the last inequality follows from observing that P{�ε−ν} ≤ ε − ν. Wrapping up
the above results, we finally have

P
N {Bi ∪ Bii} ≤ P

N {Bi} + P
N {Bii}

≤
(

k + d − 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i

+
N∑

i=k+1

(
N

i

)
(ε − ν)i(1 − ε + ν)N−i

≤ β,

where the last inequality is given by (17). �

6.1 Existence of N and k

In Theorem 6.1, ν measures the performance mismatch between x∗
N,k opt and the so-

lution of CCPε . For any small ν, N and k satisfying condition (17) always exist, a
result shown in this section. As expected, N and k increase as ν approaches zero.

To start with, consider (17) and split β evenly between the two terms in the left-
hand-side of this equation, that is impose that both terms are less than β/2. A condi-
tion for the first term to be less than β/2 has been already established in (8) (substitute
β/2 for β in that equation). We here work on the second term.

Similarly to (17), we use a Chernoff bound for the Binomial tail, this time the right
tail Chernoff bound (see e.g. Sect. 2.3.1 in [46]) stating that

N∑
i=k+1

(
N

i

)
(ε − ν)i(1 − ε + ν)N−i ≤ e

− ((ε−ν)N−k−1)2

3(ε−ν)N ,

for (k + 1)/2 ≤ (ε − ν)N ≤ k + 1.

Further, imposing that e
− ((ε−ν)N−k−1)2

3(ε−ν)N is less than β/2 and solving for k yields

k ≥ (ε − ν)N − 1 +
√

3(ε − ν)N ln
2

β
. (18)

In (8), the term linear in N has slope ε, while the other terms are sub-linear. Instead,
in (18) the slope is (ε − ν). Since ε > (ε − ν), for N large enough there is a gap
between the bounds expressed by (8) and (18), and, consequently, an N and a k can
be found that simultaneously satisfy (8) and (18).

7 Conclusions

In this paper, we have presented results linking a chance-constrained optimization
problem to its sample counterpart, and have further developed a general paradigm to
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solve chance-constrained problems in practice. The introduced method is grounded
on a solid and deep theory, but its practical use is very simple and consists of sampling
and discarding of the uncertainty. The potential applications domain is truly vast and
includes problems in control, system identification and learning, signal processing,
and finance.

Appendix A: Illustration of the Theoretical Results via a Simple Example

The following simple 1-dimensional example illustrates the theoretical nature of the
results contained in this paper.

Let us consider the chance-constrained problem:

min
x∈[0,1]x

s.t. P{δ : x ≥ δ} ≥ 1 − ε,

where δ ∈ � = [0,1] and P is uniform over �.
In this simple setting, the CCPε optimum is achieved by removing the set [1−ε,1]

from �, leading to the optimal solution x∗
ε = 1 − ε = J ∗

ε . Throughout we take ε =
0.2.

Turn now to consider the sample-based optimization program where k constraints
are removed. Given a multi-sample (δ(1), . . . , δ(N)), x∗

N,k is obtained by removing

the k largest δ(i)’s and by letting x∗
N,k = the (k + 1)th largest δ(i) value. Also, P{δ :

x∗
N,k < δ} = 1 − x∗

N,k and J ∗
N,k = x∗

N,k , and all these quantities are random variables

as they depend on the multi-sample (δ(1), . . . , δ(N)). To ease the notation, let in the
following V (x∗

N,k) = P{δ : x∗
N,k < δ}.

A.1 The Need for Constraints Removal

Figure 7 depicts the probability density function of V (x∗
N,k) when N = 15 and k = 0,

that is, no constraints are removed. One sees that V (x∗
N,k) ≤ ε = 0.2 with high proba-

bility. On the other hand, the density concentrates near the zero value. This means that
the violation of x∗

N,k will be much less than that for x∗
ε with high probability, entailing

that the objective value of x∗
N,k will be poor as compared to the chance-constrained

solution.
Selecting N = 552 and k = 93 leads instead to the probability density function

in Fig. 8. Constraints discarding generated solutions for which V (x∗
N,k) > ε has the

same probability as for N = 15 and k = 0, but the violation approaches the desired
violation level ε = 0.2 of the chance-constrained problem with high probability. This
is the beneficial effect of constraints removal.

A.2 Optimality Results

In this subsection we illustrates the results in the optimality Theorem 6.1. Observe
first that, in this 1-dimensional example, the considered removal algorithm coincides
with the optimal removal algorithm Aopt , i.e. x∗

N,k = x∗
N,k opt.
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Fig. 7 The probability density function of V (x∗
N,k

) for N = 15 and k = 0; grey area represents the

probability that V (x∗
N,k

) > ε

Fig. 8 The probability density function of V (x∗
N,k

) for N = 552 and k = 93; grey area represents the

probability that V (x∗
N,k

) > ε

Again referring to N = 552 and k = 93, Fig. 9 further displays the region Bi where
V (∗N,k opt) > ε along with region Bii where J ∗

N,k opt = 1−V (x∗
N,k opt) > 1− (ε −ν) =

J ∗
ε−ν for ν = 0.05. Here, P

N {Bi ∪ Bii} = 0.1352.
Thus, N = 552 and k = 93 suffice to simultaneously guarantee that V (x∗

N,k opt) ≤
0.2 and J ∗

N,k opt ≤ J ∗
0.15 with probability 0.8648. Interestingly enough, applying The-

orem 6.1 provides in general upper-bounds for N and k; however, in the present
1-dimensional case, substituting ε = 0.2, ν = 0.05, and β = 1 − 0.8648 = 0.1352
in (17) just returns N = 552 and k = 93.



278 J Optim Theory Appl (2011) 148: 257–280

Fig. 9 The probability density function of V (x∗
N,k opt

) for N = 552 and k = 93; Bi is the region where

V (x∗
N,k opt) > ε, while Bii where J ∗

N,k opt > J ∗
ε−ν
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