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UNCERTAIN CONVEX PROGRAMS∗
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Abstract. Many optimization problems are naturally delivered in an uncertain framework, and
one would like to exercise prudence against the uncertainty elements present in the problem. In pre-
vious contributions, it has been shown that solutions to uncertain convex programs that bear a high
probability to satisfy uncertain constraints can be obtained at low computational cost through con-
straint randomization. In this paper, we establish new feasibility results for randomized algorithms.
Specifically, the exact feasibility for the class of the so-called fully-supported problems is obtained.
It turns out that all fully-supported problems share the same feasibility properties, revealing a deep
kinship among problems of this class. It is further proven that the feasibility of the randomized
solutions for all other convex programs can be bounded based on the feasibility for the prototype
class of fully-supported problems. The feasibility result of this paper outperforms previous bounds
and is not improvable because it is exact for fully-supported problems.
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1. Introduction. Uncertain convex optimization [21, 24, 25] deals with convex
optimization in which the constraints are imprecisely known:

UP : min
x∈X⊆Rd

cT x

subject to: x ∈ Xδ, δ ∈ Δ,(1)

where UP stands for uncertain program, δ ∈ Δ is an uncertain parameter, and X
and Xδ are convex and closed sets. Oftentimes, Δ is a set of infinite cardinality. The
fact that the optimization objective is linear and does not carry any dependence on
δ, that is, it is certain, is without loss of generality.

UP encompasses as special cases uncertain linear programs (LP), uncertain quad-
ratic programs (QP), uncertain second-order cone programs (SOCP), and uncertain
semi-definite programs (SDP) and plays a central role in many design endeavors such
as [1, 15, 17, 14, 9, 24, 11, 6].

Dealing with uncertainty can be done along two distinct approaches. The first
one consists in enforcing satisfaction of all constraints; that is, one optimizes the
cost cT x over the set

⋂
δ∈Δ Xδ (see [2, 16, 3, 4]). Alternatively, one may want to

satisfy the constraints with “high probability.” Along this second approach one sees
the uncertainty parameter δ as a random element with a probability P and seeks
a solution that violates at most a fraction of constraints having small P-probability
(chance-constrained solution). Depending on the optimization problem at hand, P
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1212 M. C. CAMPI AND S. GARATTI

can have different interpretations. Sometimes, it is the actual probability with which
the uncertainty parameter δ takes on value in Δ. Other times, it simply describes the
relative importance attributed to different instances of δ. The use of a probabilistic
description of uncertainty has a long history in optimization theory and dates back
to the work [10] of Charnes and Cooper in the 1950s that in effect gave birth to
the chance-constrained approach. See also [21, 22, 12, 25] for more information and
[5] for a more in-depth comparison between deterministic and probabilistic uncertain
optimization.

It is a fact that finding a solution carrying a high probability of constraint satisfac-
tion is in general a very difficult task to achieve [21]. To circumvent this computational
issue, recently, methodologies relying on the randomization over the set of constraints
have been introduced [11, 5, 20, 6, 13]. Specifically, in [5, 6], the following randomized
program RPN is introduced, where N constraints δ(1), . . . , δ(N) randomly extracted
according to P in an independent fashion are simultaneously enforced:

RPN : min
x∈X⊆Rd

cT x

subject to: x ∈
⋂

i∈{1,...,N}
Xδ(i) .

RPN is also known as “scenario program.”
The distinctive feature of RPN is that it is a program with a finite number of

constraints, and, as such, it can be solved at low computational cost provided that N
is not too large;1 it is indeed a fact that RPN has opened up new resolution avenues
in uncertain optimization. On the other hand, the obvious question to ask is how
feasible the solution of RPN is; that is, how large the fraction of original constraints
in Δ that are possibly violated by the solution x∗

N of RPN is. Papers [5, 6] have
pioneered a feasibility theory showing that x∗

N is feasible for the vast majority of the
other unseen constraints—those that have not been used when optimizing according
to RPN—and this result holds in full generality, independently of the structure of the
set of constraints Δ and the probability P. So the vast majority of constraints take
care of themselves, without explicitly accounting for them.

To allow for a sharper comparison with the results presented in this paper, we
feel advisable to first recall in some detail the results in [5, 6]. The following notion
of violation probability from [5] is central.

Definition 1 (violation probability). The violation probability of a given x ∈ X
is defined as V (x) = P{δ ∈ Δ : x /∈ Xδ}.

The problem addressed in [5, 6] is to evaluate if and when the violation probability
of x∗

N , namely, V (x∗
N ), is below a satisfying level ε. To state the result precisely, note

that V (x∗
N ) is a random variable since the solution x∗

N of RPN is, due to the fact
that it depends on the random extractions δ(1), . . . , δ(N). Thus, V (x∗

N ) ≤ ε may hold
for certain extractions δ(1), . . . , δ(N), while V (x∗

N ) > ε may be true for others. The
following quantification of the “bad” extractions where V (x∗

N ) > ε is the key result
of [6]:

(2) P
N{V (x∗

N ) > ε} ≤
(

N

d

)
(1 − ε)N−d.

1Depending on Δ and P, the generation of N randomly extracted scenarios δ(1) , . . . , δ(N) from
Δ can in itself be a nontrivial problem, and the reader is referred to [27, 8, 7] for further discussion
on this issue.
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Moving a fundamental step forward with respect to [6], in this paper we establish the
validity of relation

(3) P
N{V (x∗

N ) > ε} =
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i

(note that (3) holds with “=”; that is, it is not a bound) for the prototype class
of fully-supported problems according to Definition 3 in section 2. This result sheds
new light on a deep kinship among all fully-supported problems, proving that their
randomized solutions share the same violation properties, and writes a final word on
the violation assessment for this type of problems.

It is further proven in this paper that the right-hand side of (3) is an upper bound
for all convex problems; that is,

(4) P
N{V (x∗

N ) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i

holds for all convex problems. Thus, in a real optimization problem one does not need
to verify whether the problem is fully-supported or not, and

∑d−1
i=0

(
N
i

)
εi(1 − ε)N−i

can always be used as an upper bound for P
N{V (x∗

N ) > ε}. This result (4) (i) cannot
be improved (being tight for the prototype class of fully-supported problems) and (ii)
outperforms the previous bound from [6] at times by a huge extent (note that when
ε → 0, the previous bound (2) tends to

(
N
d

)
, while the new bound (4) goes naturally

to 1!).

2. Main result. The technical result of this paper is precisely stated in this
section, followed by a discussion on the significance of the result.

For a fixed integer m and fixed given constraints δ(1), . . . , δ(m), program

Pm : min
x∈X⊆Rd

cT x

subject to: x ∈
⋂

i∈{1,...,m}
Xδ(i)(5)

is called a finite instance with m constraints of the uncertain optimization program
UP in (1). For the time being, we make the following assumption.

Assumption 1. Every Pm is feasible, and its feasibility domain has a nonempty
interior. Moreover, the solution x∗

m of Pm exists and is unique.
The existence and uniqueness of x∗

m are here assumed to streamline the presen-
tation. The reader is referred to point 5 in the discussion in section 2.1 to see how
these assumptions can be removed.

We recall the following fundamental definition and proposition. Definition 2 was
introduced in [5], while Proposition 1 was originally stated in a slightly different but
equivalent way in [18].

Definition 2 (support constraint). Constraint δ(r), r ∈ {1, . . . , m}, is a support
constraint for Pm if its removal changes the solution of Pm.

Proposition 1. The number of support constraints for Pm is at most d, the size
of x.

Suppose now that Δ is endowed with a σ-algebra D and that a probability P

over D is assigned. Further assume that m constraints δ(1), . . . , δ(m) are randomly
extracted from Δ according to P in an independent fashion. Differently stated, the
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optimization
direction

Δm

(δ(1), . . . , δ(m))

X

x∗
m

RPm

Pm

Fig. 1. RPm, a map from constraint multiextractions to finite instances Pm of the optimization
problem.

multiextraction (δ(1), . . . , δ(m)) is a random element from the probability space Δm

equipped with the product probability P
m. Each multiextraction (δ(1), . . . , δ(m)) gen-

erates a program Pm, and the map from Δm to Pm programs is a randomized program
RPm; see Figure 1. Note that this is the same as RPN in section 1 with the only
difference being that we have used here m to indicate the number of constraints, a
choice justified by the fact that in this section m plays the role of a generic running ar-
gument taking on any integer value, while N represents in section 1 the fixed number
of constraints picked by the user for the implementation of the randomized scheme.

We are now ready to introduce the notion of a fully-supported problem.
Definition 3 (fully-supported problem). A finite instance Pm, with m ≥ d, is

fully-supported if the number of support constraints of Pm is exactly d. Problem UP
is fully-supported if, for any m ≥ d, RPm is fully-supported with probability 1.

The main result of this paper is now stated in the following theorem.
Theorem 1. Under Assumption 1,2 it holds that

(6) P
N{V (x∗

N ) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i;

moreover, the bound is tight for all fully-supported uncertain optimization problems;
that is,

(7) P
N{V (x∗

N ) > ε} =
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i.

The proof is given in section 3. The measurability of {V (x∗
N ) > ε}, as well as the

measurability of other sets, is assumed in this paper.
One interpretation of Theorem 1 is that the randomized solution is, with high

probability, a feasible solution for a chance-constrained problem; see [21].

2.1. Discussion. The following comments are in order.
1. Equation (7) delivers the exact probability distribution of the violation V (x∗

N )
for all fully-supported problems. Since (7) holds independently of the nature and
characteristics of the fully-supported problem, it establishes a fundamental kinship
among problems of this prototype class.

2See point 5 in section 2.1 for relaxations of this assumption.
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Table 1

β vs. βold for different values of N (ε = 0.05, d = 10).

N 150 300 450 600 750

β 0.78 0.06 8.8 10−4 4.8 10−6 1.5 10−8

βold 8.8 1011 4.8 1011 1.3 1010 1.1 108 4.8 105

N 900 1050 1200 1350 1500

β 3.5 10−11 6.2 10−14 9.2 10−17 1.2 10−19 1.4 10−22

βold 1.3 103 2.9 5.1 10−3 7.5 10−6 9.9 10−9

Table 2

N vs. Nold for different values of ε (β = 10−5, d = 10).

ε 0.1 0.05 0.025 0.01 0.005 0.0025 0.001

N 285 581 1171 2942 5895 11749 29513
Nold 579 1344 3035 8675 18943 41008 112686

Bound (6) further asserts that all possible sources of non-fully-supportedness can
only improve the feasibility properties of the problem.

2. The quantity β :=
∑d−1

i=0

(
N
i

)
εi(1− ε)N−i in the right-hand side of (6) and (7)

is the tail of a binomial distribution and goes rapidly (exponentially) to zero as N
increases. Letting βold :=

(
N
d

)
(1 − ε)N−d (bound in (2) from [6]), Table 1 provides a

comparison between β and βold.
3. A typical use of Theorem 1 consists in selecting ε (violation parameter) and

β (confidence parameter) in (0, 1) and then computing the smallest number N of
constraints to be extracted in order to guarantee that P

N{V (x∗
N ) > ε} ≤ β by solving

equation β =
∑d−1

i=0

(
N
i

)
εi(1 − ε)N−i for N . In Table 2, the values of N and of Nold

obtained by using the bound in (2) are displayed for different values of ε, β = 10−5

and d = 10.
4. A simple example illustrates Theorem 1.
N = 1650 points are independently extracted in R

2 according to an unknown
probability density P, and the strip of smaller vertical width that contains all of the
points is constructed; see Figure 2.

In mathematical terms—letting the points be (u(i), y(i)), i = 1, . . . , N , where u
is the horizontal coordinate and y is the vertical coordinate—this amounts to solving
the following program:

PN : min
x1,x2,x3∈R3

x1

subject to:
∣∣y(i) − [x2u

(i) + x3]
∣∣ ≤ x1, i = 1, . . . , N,

where [x2u
(i) +x3] is the median line of the strip and x1 is the semiwidth of the strip.

What guarantee do we have that the strip contains at least 99% of the probability
mass of P?

One can easily recognize that this question is the same as asking for a guarantee,
or a probability, that the violation is less than ε = 0.01, and the answer can be found
in Theorem 1: this probability is no less than 1 − ∑2

i=0

(
1650

i

)
0.01i(1 − 0.01)1650−i ≈

1−10−5. As a matter of fact, this probability is exact since, as it can be verified, this
problem is fully-supported.

We can further ask for a different geometrical construction and look for the disk
of smaller radius that contains all points; see Figure 3. Again, we are facing a finite
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y = x∗
2u + x∗

3

x∗
1

Fig. 2. Strip of smaller vertical width.

x∗
2, x∗

3

x∗
1

Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,
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we would find that this probability is no smaller than 1 − 48.4 = −47.4, a nega-
tive number clearly devoid of any meaning and that does not allow us to draw any
conclusion as far as the confidence is concerned.

5. Here we discuss the assumption of the existence and uniqueness of the solution
of Pm. Suppose first that the solution exists but it may be nonunique. Then, the tie
can be broken by selecting among the optimal solutions the one with the minimum
Euclidian norm, and one can prove that Theorem 1 holds unchanged.

If we further relax the assumption that the solution exists (note that the solution
may not exist even if Pm is feasible since the solution can drift away to infinity),
extending Theorem 1 we can show that

P
N{x∗

N exists, and V (x∗
N ) > ε} ≤

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i,

where x∗
N is unique after applying the tie-break rule as above. In words, this result

says that, when a solution is found, its violation exceeds ε with small probability only.
In normal problems the nonexistence of the solution is a rare event whose probability
exponentially vanishes with N .

3. Proof of Theorem 1. We first prove that P
N{V (x∗

N ) > ε} =
∑d−1

i=0

(
N
i

)
εi(1−

ε)N−i for fully-supported problems and then that P
N{V (x∗

N ) > ε} ≤ ∑d−1
i=0

(
N
i

)
εi(1 −

ε)N−i for every problem.

PART 1: P
N{V (x∗

N) > ε} =
∑∑∑d−1

i=0

(N
i

)
εi(1 − ε)N−i FOR FULLY-

SUPPORTED PROBLEMS. Consider the solution x∗
d of RPd (recall that d is

the size of x), and let

(8) F (α) := P
d{V (x∗

d) ≤ α}
be the probability distribution of the violation of x∗

d. It is a remarkable fact that this
distribution is

(9) F (α) = αd,

independent of the problem type.
To prove (9), we have to consider multiextractions of m elements, where m is a

generic integer greater than or equal to d. To each multiextraction (δ(1), . . . , δ(m)) ∈
Δm, associate the indexes of the corresponding d support constraints (this is al-
ways possible except for a probability 0 set because the problem is fully-supported).3

Further, group all multiextractions having the same indexes. In this way,
(

m
d

)
sets

SI are constructed forming a partition (up to a probability 0 set) of Δm, where
I ⊂ {1, . . . , m} is a set of cardinality d containing the indexes of the support con-
straints. We claim that the probability of each of these sets is

(10) P
m{SI} =

∫ 1

0

(1 − α)m−dF (dα),

where F (α) is defined in (8); using (10), later on in the proof, we shall show that
F (α) must have the expression in (9).

3The fact that a fully-supported problem is one where the RPm are fully-supported with proba-
bility 1, as opposed to always fully-supported, is a source of a bit of complication in the proof. On
the other hand, requiring always fully-supportedness is too limitative since, e.g., extracting the same
constraint m times results in a non-fully-supported Pm.
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To establish (10) in a more concrete way, consider one of the sets SI , e.g., the set
SĪ where the support constraints indexes are 1, . . . , d. Also let S̃Ī be the set where
δ(d+1), . . . , δ(m) are not violated by the solution generated by δ(1), . . . , δ(d). It is an
intuitive fact that SĪ and S̃Ī are the same up to a probability 0 set. To streamline the
presentation, we accept in the following this fact for granted; however, the interested
reader can find full details at the end of this Part 1 of the proof.

We next compute P
m{S̃Ī}, which is the same as P

m{SĪ}.
Select fixed values for δ̄(1), . . . , δ̄(d), and let α be the violation of the solution

with these d constraints only. Then, the probability that δ(d+1), . . . , δ(m) fall in the
nonviolated set, that is, (δ̄(1), . . . , δ̄(d), δ(d+1), . . . , δ(m)) ∈ S̃Ī , is (1 − α)m−d.

Integrating over the domain Δd for (δ̄(1), . . . , δ̄(d)), we then have

P
m

{
S̃Ī

}
= [letting x∗̄

I be the solution with constraints δ̄(1), . . . , δ̄(d) only]

=
∫

Δd

(1 − α(x∗̄
I))m−d

P
d(dδ̄(1), . . . , dδ̄(d))

=
∫ 1

0

(1 − α)m−dF (dα),

where the third equality is a change of variables from the domain (δ̄(1), . . . , δ̄(d)) to
that of the violation of the corresponding solution.

Since P
m{SĪ} = P

m{S̃Ī} and this probability is the same for any other set SI ,
(10) remains proven.

Now turn back to (9). Recalling that the sets SI form a partition of Δm up to a
probability 0 set and that P

m{Δm} = 1, (10) yields

(11)
(

m

d

)∫ 1

0

(1 − α)m−dF (dα) = 1 ∀m ≥ d.

Expression F (α) = αd in (9) is indeed a solution of (11) (integration by parts); on
the other hand, no other solutions exist since determining an F satisfying (11) is a
moment problem for a distribution with finite support, and its solution is unique; see,
e.g., Chapter II, section 12.9, Corollary 1 of [26]. Thus, it remains proven that F (α)
must have the expression (9).

To conclude the proof of Part 1, consider now the problem with N constraints and
partition set {(δ(1), . . . , δ(N)) : V (x∗

N ) > ε} by intersecting it with the
(
N
d

)
sets SI

grouping multiextractions such that the d support constraints have the same indexes.
We then have

P
N{V (x∗

N ) > ε}
= P

N
{ ∪I {V (x∗

N ) > ε and x∗
N is supported by the constraints

with indexes in I}}
= [IA is the indicator function of set A; i.e., IA = 1 over A, and IA = 0 otherwise]

=
(

N

d

) ∫
Δd

(1 − α(x∗̄
I))N−d

I{α(x∗̄
I)>ε}Pd(dδ̄(1), . . . , dδ̄(d))

=
(

N

d

) ∫ 1

ε

(1 − α)N−d F (dα)
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= [since F (dα) = dαd−1 dα]

=
(

N

d

) ∫ 1

ε

[
(1 − α)N−ddαd−1

]
dα

= [integrating by parts]

=
(

N

d

) [
− (1 − α)N−d+1

N − d + 1
dαd−1

∣∣∣∣1

ε

+
∫ 1

ε

(1 − α)N−d+1

N − d + 1
d(d − 1)αd−2 dα

]

=
(

N

d − 1

)
εd−1(1 − ε)N−d+1 +

(
N

d − 1

) ∫ 1

ε

(1 − α)N−d+1(d − 1)αd−2 dα

= · · ·

=
(

N

d − 1

)
εd−1(1 − ε)N−d+1 + . . . +

(
N

1

)
ε(1 − ε)N−1 +

(
N

1

) ∫ 1

ε

(1 − α)N−1 dα

=
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i.

Proof of the fact that SĪ = S̃Ī up to a probability zero set.
SĪ ⊆ S̃Ī : Take a (δ(1), . . . , δ(m)) ∈ SĪ and eliminate a constraint among δ(d+1),

. . . , δ(m). Since this constraint is not of support, the solution remains unchanged;
moreover, it is easy to see that the first d constraints are still the support constraints
for the problem with m − 1 constraints. If we now remove another constraint among
those which are not of support, the conclusion is similarly drawn that the solution
remains unchanged and that the first d constraints are still the support constraints
for the problem with m − 2 constraints. Proceeding this way until all constraints
but the first d are removed, we obtain that the solution with the sole d support
constraints δ(1), . . . , δ(d) in place is the same as the solution with all m constraints.
Since no constraint among δ(d+1), . . . , δ(m) can be violated by the solution with all m
constraints and such a solution is the same as the one with only the first d constraints,
it follows that (δ(1), . . . , δ(m)) ∈ S̃Ī .

S̃Ī ⊆ SĪ up to a probability 0 set: Suppose now that δ(d+1), . . . , δ(m) are
not violated by the solution generated by δ(1), . . . , δ(d), i.e., (δ(1), . . . , δ(m)) ∈ S̃Ī . A
simple reasoning reveals that (δ(1), . . . , δ(m)) does not belong to any one of sets SI ,
I 
= Ī. In fact, adding nonviolated constraints to δ(1), . . . , δ(d) does not change the
solution, and each of the added constraints can be removed back without altering the
solution. Therefore, none of the constraints δ(d+1), . . . , δ(m) can be of support, and
hence the multiextraction is not in SI , I 
= Ī. It follows that S̃Ī is a subset of the
complement of ∪I,I�=ĪSI , which is SĪ up to a probability 0 set.

PART 2: P
N{V (x∗

N) > ε} ≤ ∑∑∑d−1
i=0

(N
i

)
εi(1 − ε)N−i FOR EVERY

PROBLEM. A non-fully-supported problem admits with nonzero probability ran-
domized instances where the number of support constraints is less than d. A support
constraint has to be an active constraint, and the typical reason for a lack of support
constraints is that at the optimum the active constraints are less than d; see Figure
4. To carry on a proof along lines akin to those for the fully-supported case, we are
well-advised to generalize the notion of solution to that of ball-solution; a ball-solution
has always at least d active constraints. For simplicity, we henceforth assume that
constraints are not trivial, i.e., Xδ 
= R

d ∀δ ∈ Δ.
Roughly speaking, given an optimization problem whose solution is x∗

m, its ball-
solution is a ball centered in x∗

m and whose radius has been enlarged until the ball
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Fig. 4. A two-dimensional problem with only one active constraint which is of support.

Fig. 5. Ball-solution.

touches the frontier of d constraints. See Figure 5 for an example of a ball-solution.
The mathematical definition of a ball-solution is as follows.

Definition 4 (ball-solution). Consider a finite instance Pm of UP with m ≥ d,
and let x∗

m be its solution. The ball-solution B(x∗
m, r∗m) of Pm is the largest closed

ball centered in x∗
m fully contained in the feasibility domain of all constraints, with

the exception of at most d− 1 of them; i.e., Xδ(i) ∩B(x∗
m, r∗m) = B(x∗

m, r∗m) for all i’s,
except at most d − 1 of them.

Note also that, when active constraints are d or more, r∗m = 0 and B(x∗
m, r∗m)

reduces to the standard solution x∗
m. Moreover, a ball-solution B(x∗

m, r∗m) need not
be contained in X , although its center x∗

m does.
The notion of active constraint can be generalized to balls by saying that a con-

straint is active for a ball if the ball touches the frontier of the constraint. If in
addition the ball is fully contained in the constraint, then the constraint is said to be
strictly active. See Figure 6 for a graphical illustration of active and strictly active
constraints for a ball, while the precise definition is as follows.
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δδ

B(x, r)
B(x, r)

Fig. 6. Active and strictly active constraints for a ball.

δ(1)

δ(2)

δ(3)

Fig. 7. Only δ(1) is a ball-support constraint.

Definition 5 (active constraint for a ball). A constraint δ is active for a ball
B(x, r) if Xδ ∩ B(x, r) 
= ∅ and Xδ ∩ B(x, r + h) 
= B(x, r + h) ∀h > 0. If in addition
Xδ ∩ B(x, r) = B(x, r), Xδ is said to be strictly active.

If the ball is a single point, active and strictly active are the same and reduce to
the standard notion of active.

By construction, a ball-solution has at least d active constraints. To go back to
the track of the proof in Part 1, however, we need d support constraints, not just
active constraints. The following definition naturally extends the notion of support
constraint to the case of ball-solutions.

Definition 6 (ball-support constraint). Constraint δ(r), r ∈ {1, . . . , m}, is a
ball-support constraint for Pm if its removal changes the ball-solution of Pm.

An active constraint is not necessarily a ball-support constraint, nor does a Pm

necessarily have to have d ball-support constraints (see Figure 7, where δ(2) and δ(3)

are not of support). It is clear that the number of ball-support constraints is less
than or equal to d. The case with less than d ball-support constraints is regarded as
degenerate and needs to be treated separately. We thus split the remaining part of
the proof in two sections: Part 2a (fully-ball-supported problems) and Part 2b (de-
generate problems). Before proceeding, we are well-advised to give a formal definition
of fully-ball-supported problems.
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Definition 7 (fully-ball-supported problem). A finite instance Pm, with m ≥ d,
is fully-ball-supported if the number of ball-support constraints of Pm is d. Problem
UP is fully-ball-supported if, for any m ≥ d, RPm is fully-ball-supported with proba-
bility 1.

PART 2a: FULLY-BALL-SUPPORTED PROBLEMS. We start by in-
troducing the notion of a constraint violated by a ball: a constraint δ is violated
by B(x, r) if Xδ ∩ B(x, r) 
= B(x, r). The definition of probability of violation then
generalizes naturally to the ball case.

Definition 8 (violation probability of a ball). The violation probability of a
ball B(x, r), x ∈ X , is defined as VB(x, r) = P{δ ∈ Δ : Xδ ∩ B(x, r) 
= B(x, r)}.

Clearly, for any x, VB(x, r) ≥ V (x). Hence, if B(x∗
N , r∗N ) is the ball-solution of

RPN , we have

(12) P
N{V (x∗

N ) > ε} ≤ P
N{VB(x∗

N , r∗N ) > ε}.
Below, we show that a result similar to (7) holds for fully-ball-supported problems,
namely,

(13) P
N{VB(x∗

N , r∗N ) > ε} =
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i,

and this result together with (12) leads to the thesis

P
N{V (x∗

N ) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i.

The proof of (13) is verbatim the same as the proof of Part 1 provided that one
substitutes

- solution with ball-solution,
- support constraint with ball-support constraint,
- violation probability V with violation probability of a ball VB,

with only one exception: the part where we proved that SĪ ⊆ S̃Ī has to be modified
in a way that we spell out in the following.

The first rationale to conclude that “the solution with only the d support con-
straints δ(1), . . . , δ(d) in place is the same as the solution with all m constraints” is still
valid and leads in our present context to the fact that the ball-solution with only the
d ball-support constraints δ(1), . . . , δ(d) in place is the same as the ball-solution with
all m constraints. Instead, the last argument with which we concluded that SĪ ⊆ S̃Ī
is no longer valid since ball-solutions can violate constraints.

To amend it, suppose for the purpose of contradiction that a constraint among
δ(d+1), . . . , δ(m), say, δ(d+1), is violated by the ball-solution with d constraints. Two
cases can occur: (i) the ball-solution has only one strictly active constraint among
δ(1), . . . , δ(d); or (ii) it has more than one. In case (i), d − 1 constraints among
δ(1), . . . , δ(d) are violated by the ball-solution so that, with the extra δ(d+1) violated
constraint, the number of violated constraints of the ball-solution with m constraints
would add up to at least d, and this contradicts the definition of ball-solution. If
instead (ii) is true, a simple thought reveals that, with one more constraint δ(d+1)

violated by the ball-solution, the strictly active constraints (which, in this case, are
more than one) cannot be of ball-support for the problem with m constraints, and
this contradicts the fact that (δ(1), . . . , δ(m)) ∈ SĪ .
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PART 2b: DEGENERATE PROBLEMS. For not being fully-ball-supported,
a finite problem Pm needs to have more than one strictly active constraint, a circum-
stance which requires that constraints are not “generically” distributed. This obser-
vation is at the basis of the rather technical proof of Part 2b, which proceeds along
the following steps:

Step 1. A constraint “heating” is introduced; heating scatters constraints around,
and the resulting heated problem is shown to be fully-ball-supported;
by resorting to the result in Part 2a, conclusions are derived about the
violation properties of the heated problem.

Step 2. It is shown that the solution of the original problem is recovered by
cooling the heated problem down.

Step 3. The violation properties of the original (nonheated) problem are deter-
mined from the violation properties of the heated problem by a limiting
process.

Step 1 (heating). Let Δ′ := Δ × Bρ, where ρ > 0 is the heating parameter and
Bρ ⊂ R

d is the closed ball centered in the origin with radius ρ, and let P
′ := P×U be

the probability in Δ′ obtained as the product probability between P and the uniform
probability U in Bρ. Each z ∈ Bρ represents a constraint translation, and the heated
uncertain program (HUP) is defined as

HUP : min
x∈X⊆Rd

cT x

subject to: x ∈ [Xδ + z], (δ, z) ∈ Δ′,

where [Xδ +z] is set Xδ translated by z, and the new uncertain parameter (δ, z) allows
for different selections of Xδ constraints as well as for any translation z in Bρ. We
show that HUP is fully-ball-supported.

To start with, consider a given deterministic ball B(x, r). We first prove that the
strictly active constraints δ′ ∈ Δ′ for B(x, r) form a set of zero-probability P

′, and
later on from this we shall conclude that HUP is fully-ball-supported.

Let δ′ = (δ, z), and IA indicate the indicator function of set A, and write

P
′{δ′ is strictly active for B(x, r)}

=
∫

Δ′
I{δ′ is strictly active for B(x,r)}P′(dδ′)

= [by Fubini’s theorem [23]]

=
∫

Δ

[∫
Bρ

I{(δ,z) is strictly active for B(x,r)}
dz

Vol(Bρ)

]
P(dδ).(14)

The result that

(15) P
′{δ′ is strictly active for B(x, r)} = 0

is established by showing that the term within square brackets in (14) is null for all
δ’s.

Fix a δ, and let C = {z ∈ Bρ : B(x, r) ⊆ [Xδ + z]} be the set of transla-
tions not violating B(x, r). We show that C is convex and that the set {z ∈ Bρ :
(δ, z) is strictly active for B(x, r)} belongs to ∂C, the boundary of C. Since the
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boundary of a convex set has zero Lebesgue measure,4 the desired result that the term
within square brackets in (14) is null follows, viz.

(16)
∫
Bρ

I{(δ,z) is strictly active for B(x,r)}
dz

Vol(Bρ)
= 0.

The convexity of C is immediate: let z1, z2 ∈ C, that is, B(x, r) ⊆ [Xδ + z1] and
B(x, r) ⊆ [Xδ + z2], or, equivalently, B(x, r) − z1 ⊆ Xδ and B(x, r) − z2 ⊆ Xδ. From
the convexity of Xδ, it follows that B(x, r)−αz1 − (1−α)z2 ⊆ Xδ ∀α ∈ [0, 1]; that is,
αz1 + (1 − α)z2 ∈ C and C is convex.

Consider now an interior point z of C (if any); i.e., there exists a ball centered in
z all contained in C. This means that [Xδ + z] can be moved around in all directions
by a small quantity, and B(x, r) remains contained in it. It easily follows that (δ, z)
cannot be strictly active, and, thus, {z ∈ Bρ : (δ, z) is strictly active for B(x, r)} has
to belong to ∂C.

Wrapping up, (16) is established and, substituting in (14), (15) is obtained.
We next prove that (15) entails the fact that HUP is fully-ball-supported.
Consider a finite instance HPm of HUP with m ≥ d. One by one, eliminate

m − d constraints choosing at any time a constraint among those nonviolated by the
ball-solution in such a way that the ball-solution does not change. This is certainly
possible because the ball-support constraints are at most d. In the end, we are left
with d constraints, say, the first d δ′(1), . . . , δ′(d). A simple thought reveals that these
d constraints are actually of ball-support for HPm, provided that none of the other
m − d constraints that have been removed were strictly active.

Repeat the same above procedure for every m-ple of constraints (that is, for every
HPm generated by HUP), and group together all of the m-ples for which the procedure
returns in the end the first d constraints δ′(1), . . . , δ′(d). Call this group of m-ples G.
We shall show that the probability of the m-ples in G such that HPm is not fully-
ball-supported is zero, and from this—by the observation that only a finite number(
m
d

)
of groups of m-ples can be similarly constructed—the final conclusion that HUP

is fully-ball-supported will be secured.
Select fixed values δ̄′(1), . . . , δ̄′(d) for the first d constraints, and consider the ball-

solution B that these constraints generate. Let the other m − d constraints vary
in such a way that the m-ple δ̄′(1), . . . , δ̄′(d), δ′(d+1), . . . , δ′(m) belongs to G. For one
such m-ple to correspond to a non-fully-ball-supported HPm, at least one among the
m − d constraints δ′(d+1), . . . , δ′(m) must be strictly active for B, but we have proven
in (15) that this happens with probability zero. Integrating over all possible values
δ̄′(1), . . . , δ̄′(d) for the first d constraints, the conclusion is drawn that the non-fully-
ball-supported HPm in G have zero probability.

Hence, by the above observation that there are only a finite number
(
m
d

)
of groups

and by the fact that
(
m
d

)
times zero is zero, we obtain that HUP is fully-ball-supported.

To conclude Step 1, note that if we suppose to extract N constraints δ′(1), . . . , δ′(N)

from Δ′, according to probability P
′ and in an independent fashion, and we denote

by x′∗
N the corresponding solution, the result of Part 2a can be invoked to establish

4This simple fact follows from the observation that a convex set C in R
d either belongs to a flat

of dimension d−1—and therefore C has zero R
d Lebesgue measure—or admits an interior point z̄,

and every half-line from z̄ crosses the boundary of C in only one point (see, e.g., Propositions 1.1.13
and 1.1.14 in [19]).
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that

(17) (P′)N{V ′(x′∗
N ) > ε} ≤

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i,

where V ′(x) is the probability of violation for the heated problem (i.e., V ′(x) =
P
′{(δ, z) ∈ Δ′ : x /∈ [Xδ + z]}). Equation (17) is the final result to which we wanted

to arrive in this heating Step 1.
Step 2 (cooling). Fix a multiextraction (δ̄(1), . . . , δ̄(N)) ∈ ΔN , and consider x∗

N ,
the solution of the original optimization problem PN with such constraints. We
remark that in all of Step 2 the multiextraction (δ̄(1), . . . , δ̄(N)) is kept fixed and
never changed throughout. Consider a closed ball B(xf , rf ), rf > 0, in the feasibility
domain of PN , which exists because the feasibility domain of PN has a nonempty
interior. Further, let ρk ↓ 0 be a sequence of heating parameters monotonically
decreasing to zero (cooling of the heating parameter) and such that ρ1 <

rf

2 . For all ρk,
consider the heated versions of (δ̄(1), . . . , δ̄(N)), namely, ((δ̄(1), z

(1)
k ), . . . , (δ̄(N), z

(N)
k ))

where z
(1)
k , . . . , z

(N)
k ∈ Bρk

, and let x′∗
N (z(1)

k , . . . , z
(N)
k ) be the solution of the heated

optimization problem HPN with heated constraints (δ̄(1), z
(1)
k ), . . . , (δ̄(N), z

(N)
k ). The

goal of Step 2 is to prove that

(18) sup
z
(1)
k ,...,z

(N)
k ∈Bρk

∥∥∥x′∗
N

(
z

(1)
k , . . . , z

(N)
k

)
− x∗

N

∥∥∥ −→ 0 as k → ∞;

that is, the solution of the original problem is recovered by cooling the heated problem
down.5

For brevity, from now on we omit the arguments z
(1)
k , . . . , z

(N)
k and write x′∗

N for
x′∗

N (z(1)
k , . . . , z

(N)
k ).

We first show that

(19) lim sup
k→∞

sup
z
(1)
k ,...,z

(N)
k ∈Bρk

cT x′∗
N ≤ cT x∗

N .

Following Figure 8, consider the convex hull co[B(xf , rf ) ∪ x∗
N ] generated by the

feasibility ball B(xf , rf ) and the solution x∗
N of the original problem with constraints

δ̄(1), . . . , δ̄(N). By convexity, co[B(xf , rf )∪x∗
N ] is feasible for the original problem PN .

Construct the closed ball B(xk, ρk) ⊂ co[B(xf , rf )∪ x∗
N ] with radius ρk, whose center

xk is as close as possible to x∗
N and lies on the line segment connecting xf with x∗

N

(this ball exists since ρ1 < rf ; the assumed stricter condition that ρ1 <
rf

2 is required
in the next construction). Clearly, xk → x∗

N as k → ∞. Since xk is in the feasibility
domain of PN at a distance at least ρk from where δ̄(1), . . . , δ̄(N) are violated, xk is
also in the feasibility domain of every heated problem HPN with heating parameter
ρk. Thus,

lim sup
k→∞

sup
z
(1)
k ,...,z

(N)
k ∈Bρk

cT x′∗
N ≤ lim sup

k→∞
cT xk = cT x∗

N ;

that is, (19) holds.

5Although result (18) has an intuitive appeal, its proof is rather technical. The reader not
interested in these technical details can jump to Step 3 from here without loss of continuity.
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rf

ρk

xf

xk

x∗
N

Fig. 8. Convex hull of B(xf , rf ) and x∗
N , and construction of B(xk, ρk).

rf

rf −ρk

ρk

xf

xk

xN

Fig. 9. Convex hull of B(xf , rf −ρk) and x′∗
N , and construction of B(x′

k , ρk).

Next, we construct a new convex hull which will allow us to reformulate goal (18)
in a different, handier, way. Based on this reformulation, (18) will then be established
in light of (19).

The new convex hull is co[B(xf , rf −ρk) ∪ x′∗
N ]; see Figure 9. Note that, for a

given k, B(xf , rf−ρk) is a fixed ball, while instead x′∗
N depends on the specific choice

of z
(1)
k , . . . , z

(N)
k ∈ Bρk

; this means that there are actually as many convex hulls as
choices of z

(1)
k , . . . , z

(N)
k . Moreover, co[B(xf , rf−ρk)∪x′∗

N ] is feasible for problem HPN

with constraints translated by z
(1)
k , . . . , z

(N)
k since B(xf , rf−ρk) and x′∗

N are. Construct
then the closed ball B(x′

k, ρk) ⊆ co[B(xf , rf −ρk) ∪ x′∗
N ] with radius ρk, whose center

x′
k is as close as possible to x′∗

N and lies on the line segment connecting xf with x′∗
N

(this ball exists since ρ1 <
rf

2 ). Note that x′
k depends on z

(1)
k , . . . , z

(N)
k , too.
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Since x′
k is in the feasibility domain of HPN with constraints translated by

z
(1)
k , . . . , z

(N)
k at a distance at least ρk from where these translated constraints are

violated, x′
k is also in the feasibility domain of PN .

What is different from the previous convex hull construction is that we cannot
here easily conclude that x′

k → x′∗
N as k → ∞ since x′∗

N is not a fixed point (it depends
on z

(1)
k , . . . , z

(N)
k ∈ Bρk

, a ball that changes with k). We can still, however, secure a
result that goes along a similar line, namely, that

(20) x′
k = αkxf + (1 − αk)x′∗

N , where αk =
ρk

rf − ρk
−→ 0 as k → ∞,

as it results from Figure 9 by a simple proportion argument.6 Reorganizing terms in
this equation, we obtain x′∗

N − x∗
N = − αk

1−αk
(xf − x∗

N ) + 1
1−αk

(x′
k − x∗

N ), from which

‖x′∗
N − x∗

N‖ ≤ αk

1 − αk
‖xf − x∗

N‖ +
1

1 − αk
‖x′

k − x∗
N‖ .

We are now ready to reformulate goal (18) in a different way.
Note that the norm in (18) is the same as the left-hand side of the latter equation.

On the right-hand side, ‖xf − x∗
N‖ is a fixed quantity multiplied by scalar αk

1−αk
which

goes to zero. So, this first term vanishes. In the second term, scalar 1
1−αk

→ 1, and
hence (18) is equivalent to

(21) sup
z
(1)
k

,...,z
(N)
k

∈Bρk

‖x′
k − x∗

N‖ −→ 0 as k → ∞.

The goal of establishing (18) is finally achieved by proving (21) by contradiction.
Suppose that (21) is false; then, for a given μ > 0, we can choose translations

z̄
(1)
k , . . . , z̄

(N)
k ∈ Bρk

, k = 1, 2, . . . , such that∥∥∥x′
k

(
z̄

(1)
k , . . . , z̄

(N)
k

)
− x∗

N

∥∥∥ > μ ∀k,

where we have here preferred to explicitly indicate dependence of x′
k on z̄

(1)
k , . . . , z̄

(N)
k .

Note that x′
k(z̄(1)

k , . . . , z̄
(N)
k ) is asymptotically superoptimal for problem PN :

lim sup
k→∞

cT x′
k

(
z̄

(1)
k , . . . , z̄

(N)
k

)
≤ [using (20) and since αk → 0]
≤ lim sup

k→∞
sup

z
(1)
k ,...,z

(N)
k

cT x′∗
N

≤ [using (19)]
≤ cT x∗

N .(22)

The line segment connecting x′
k(z̄(1)

k , . . . , z̄
(N)
k ) with x∗

N intersects the surface of the
ball with center x∗

N and radius μ in a point that we name x′S
k . x′S

k is still feasible for
PN being a convex combination of x∗

N and x′
k(z̄(1)

k , . . . , z̄
(N)
k ), both feasible points for

PN . In addition, since x′
k(z̄(1)

k , . . . , z̄
(N)
k ) is asymptotically superoptimal for PN (see

(22)) and x∗
N is the solution of PN , x′S

k is asymptotically superoptimal for PN , too,
i.e., lim supk→∞ cT x′S

k ≤ cT x∗
N . Finally, since x′S

k belongs to a compact, it admits
a convergent subsequence to, say, x′S∞, a point which is still feasible for PN due to

6Note that (20) does not imply that x′
k → x′∗

N since x′∗
N could in principle escape to infinity.
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the fact that the feasibility domain of PN is closed. x′S
∞ would thus be feasible and

superoptimal for PN , so contradicting the uniqueness of the solution of PN .
This concludes Step 2.
Step 3 (drawing the conclusions). The theorem statement that P

N{V (x∗
N ) > ε} ≤∑d−1

i=0

(
N
i

)
εi(1 − ε)N−i is established in this Step 3 along the following lines: by the

convergence result (18) in Step 2, a bad multiextraction (δ̄(1), . . . , δ̄(N)) (i.e., one such
that V (x∗

N ) > ε) is shown to generate bad heated multiextractions ((δ̄(1), z
(1)
k ), . . . ,

(δ̄(N), z
(N)
k )) for k large enough; we thus have that the probability of bad multiex-

tractions can be bounded by the probability of bad heated multiextractions; by then
using the bound for the probability of bad heated multiextractions derived in Step 1,
the thesis follows.

Fix a bad multiextraction (δ̄(1), . . . , δ̄(N)) ∈ ΔN , and consider x∗
N , the solution

of the optimization problem PN with constraints δ̄(1), . . . , δ̄(N). For an additional
constraint δ ∈ Δ to be violated by x∗

N , x∗
N must belong to the complement of Xδ,

i.e., X c
δ . Since X c

δ is open, we then have the fact that there exists a small enough ball
centered in x∗

N fully contained in X c
δ . Thus,

(23) {δ ∈ Δ : x∗
N /∈ Xδ} =

⋃
n=1,2,...

{δ ∈ Δ : B(x∗
N , 1/n) ⊆ X c

δ },

and

ε < [since
(
δ̄(1), . . . , δ̄(N)

)
is bad]

< V (x∗
N )

= P{δ ∈ Δ : x∗
N /∈ Xδ}

= [using (23)]

= P

{ ⋃
n=1,2,...

{δ ∈ Δ : B(x∗
N , 1/n) ⊆ X c

δ }
}

= lim
n→∞ P{δ ∈ Δ : B(x∗

N , 1/n) ⊆ X c
δ },

from which there exists a n̄ such that

(24) P{δ ∈ Δ : B(x∗
N , 1/n̄) ⊆ X c

δ } > ε.

Let us now heat the constraints δ̄(1), . . . , δ̄(N) up by translation parameters z
(1)
k , . . . ,

z
(N)
k ∈ Bρk

and ask the following question: is it true that the heated multiextraction
((δ̄(1), z

(1)
k ), . . . , (δ̄(N), z

(N)
k )) is bad for HUP with heating parameter ρk? It turns out

that the answer is positive for k large enough, a fact that is proven next.
Recall that x′∗

N is the solution with constraints (δ̄(1), z
(1)
k ), . . . , (δ̄(N), z

(N)
k ), and

define dk := sup
z
(1)
k ,...,z

(N)
k ∈Bρk

‖x′∗
N − x∗

N‖ which, by (18), goes to 0 as k → ∞. Pick
a k̄ such that

dk + ρk < 1/n̄ ∀k ≥ k̄.

All heated solutions x′∗
N are apart from x∗

N by at most dk, and all heated constraints
(δ, z) ∈ Δ×Bρk

are apart from the corresponding unheated constraint δ by at most ρk.
Thus, if k ≥ k̄, all heated versions of a constraint δ in the set {δ ∈ Δ : B(x∗

N , 1/n̄) ⊆
X c

δ } on the left-hand side of (24) are violated by x′∗
N . That is,

(25) {δ ∈ Δ : B(x∗
N , 1/n̄) ⊆ X c

δ }×Bρk
⊆ {(δ, z) ∈ Δ×Bρk

: x′∗
N /∈ [Xδ+z]} ∀k ≥ k̄.
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Then, for any z
(1)
k , . . . , z

(N)
k ∈ Bρk

and for any k ≥ k̄, we have

V ′(x′∗
N ) = P

′{(δ, z) ∈ Δ × Bρk
: x′∗

N /∈ [Xδ + z]}
≥ [using (25)]

≥ P
′
{
{δ ∈ Δ : B(x∗

N , 1/n̄) ⊆ X c
δ } × Bρk

}
= [recalling that P

′ = P × U]
= P{δ ∈ Δ : B(x∗

N , 1/n̄) ⊆ X c
δ } · U{Bρk

}
> [since U{Bρk

} = 1 and using (24)]
> ε,

i.e., ((δ̄(1), z
(1)
k ), . . . , (δ̄(N), z

(N)
k )) is bad for HUP with heating parameter ρk for any

z
(1)
k , . . . , z

(N)
k ∈ Bρk

when k ≥ k̄. In turn, this entails that

(26)
∫
BN

ρk

I{V ′(x′∗
N )>ε}

dzN

Vol(BN
ρk

)
= 1 ∀k ≥ k̄.

Finally,

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i

≥ [using (17)]
≥ (P′)N{V ′(x′∗

N ) > ε}

=
∫

ΔN

[∫
BN

ρk

I{V ′(x′∗
N )>ε}

dzN

Vol(BN
ρk

)

]
P

N (dδN )

≥
∫
{V (x∗

N )>ε}

[∫
BN

ρk

I{V ′(x′∗
N)>ε}

dzN

Vol(BN
ρk

)

]
P

N (dδN )

−−−−→
k → ∞[recalling (26) and by the dominated convergence theorem [26]]
−−−−→
k → ∞

∫
{V (x∗

N )>ε}
P

N (dδN )

= P
N{V (x∗

N ) > ε}.
This concludes the proof.
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