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Adaptive control is about constructing controllers formed

by two parts, where the first part (estimation unit) is aimed

at estimating relevant plant characteristics, and the second

part (control unit) exercises the control action by exploiting

the outcomes of the estimation part. Adaptation, i.e. control

unit tuning, can take place continuously during the normal

operation of the system (on-line adaptation), or it can be per-

formed every now and then. The limit case when information

is first accrued and used to tune the control unit, which is

otherwise kept fixed afterward, is called off-line adaptation.

Concentrating on off-line adaptive schemes, suppose that

we can perform experiments on a system and, based on the

collected data, we are asked to tune a control unit. One

fundamental question to ask is:

How extensively we need to experiment

to be able to come up with a controller of

guaranteed properties?

This fundamental – and yet largely unanswered – question

is the theme this abstract is centered around.

A Min-Max perspective. Let y = P (u, d) be a plant, where

u is input, y is output, and d is disturbance, and let u =
Cθ(y, r) be a class of controllers parameterized in θ, where

r is reference. Also, let J (P (u, d), Cθ(y, r)) be a control

cost. For given P and Cθ, J depends on d and r, and one

can set out to minimizing the worst-case performance of the

control system over all possible references and disturbances:

min
θ

max
r,d

J (P (u, d), Cθ(y, r)).

Supposing that the plant P and the disturbance characteristics

are not known, how extensively do we need to experiment

on the plant in order to come up with a control unit

minimizing this minmax cost? This problem appears to be

unanswered at the present stage of knowledge.

A glance at system identification. Referring to a system

identification (instead of control) set-up helps shed new light

on the above problem.

Consider again y = P (u, d) and let ŷ = P̂θ(u) be a

class of linearly-parameterized models where ŷ is the model

output which should resembles the system output y. Let the

Supported by MIUR under the project “Identification and adaptive control
of industrial systems”

Marco C. Campi is with Dipartimento di Elettronica,
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identification cost be: J (P (u, d), P̂θ(u)) =
∑

t(yt − ŷt)
2,

and suppose we want to find θ that attains

min
θ

max
u,d

∑

t

(yt − ŷt)
2.

The interpretation is that the best model is the one that resem-

bles at best the system behavior over all possible operating

circumstances. Finding the minimizing θ is a formidable task

that requires in principle to experiment on the system in all

possible operating conditions. Surprisingly, however, due to

recent achievements, a solution close to optimal can be found

at a reasonable experimental effort.

An experiment on the system simply consists in randomly

selecting an input u, injecting it into the system, and collect-

ing the corresponding output y which will also be affected

by the disturbance d. The distribution in the selection of

u reflects the intended use of the system. Repeating this

experiment, say, N times results in N signals y(1), . . . , y(N).

One seemingly naive approach for finding θ then consists in

substituting the max in our identification cost with a max
only done over the seen N scenarios:

scenario optimization:

min
θ

max

{

∑

t

(y
(1)
t − ŷ

(1)
t )2, . . . ,

∑

t

(y
(N)
t − ŷ

(N)
t )2

}

,

where ŷ(i) = P̂θ(u
(i)). This minimization can be carried

out since it is totally data-based. It is a fact that the

resulting θ is nearly optimal for the initial minmax problem,

with no assumptions on P and on the range of variability

for d. Precisely, if we assume a stationary set-up through

experiments (i.e. plant P is invariant and disturbances d have

an invariant probability to happen), the found θ is guaranteed

to minimize J over all possible d and u except at most an

ǫ-fraction of them. This is to say that, no matter what P is,

in a new unseen situation we have that
∑

t(yt − ŷt)
2 ≤ Jopt

with probability 1 − ǫ, where Jopt is the optimal value for

the scenario optimization.

Interestingly, ǫ is totally under the user’s control. Indeed,

one can apply a general formula derived in robust convex

optimization, see [1], [2], to evaluate the N that has to be

used in order to attain an ǫ-guarantee. This formula scales

essentially as N ∼
size(θ)

ǫ
and does not depend on P .

The fact that N does not depend on P , while it does de-

pend on P̂θ through size(θ), has a significant interpretation:
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It is not important how complex what we

try to describe is, what matters is how

complex a description of it we want to

make.

Back to control. Going back to adaptive control, now we

ask: is it possible to establish results that parallel those just

mentioned for identification? Indeed, in certain contexts the

extension is even straightforward.

Example: noise compensation

Consider the noise compensation scheme in Figure 1. There,

Cθ is a linear and linearly-parameterized compensator and

P is a linear unknown plant. The objective is to solve the

noise-rejection problem

min
θ

max
d

∑

t

y2
t .

C

P

�

d

yu

Fig. 1. A compensation scheme

This problem is not much different from the system iden-

tification problem. Perform N experiments, where d(i) is

measured, and it is directly injected into P ; name y(i) =
Pd(i) + d(i) the measured output. The output that would

have been obtained with the compensator Cθ in place is

PCθd
(i) +d(i) = CθPd(i) +d(i) = Cθ(y

(i)−d(i))+d(i) and

it can be computed from the measured signals y(i) and d(i).

Thus, one can set out to solving the scenario counterpart of

the noise-rejection problem:

min
θ

max

{

∑

t

(Cθ(y
(1)
t − d

(1)
t ) + d

(1)
t )2, . . . ,

∑

t

(Cθ(y
(N)
t − d

(N)
t ) + d

(N)
t )2

}

.

Similarly to identification, what determines the number N

of experiments needed in order that the obtained θ is a

ǫ-guaranteed solution for the initial noise-rejection problem

is the compensator complexity, not the complexity of reality.

∗

The previous example is very specific in many respects:

plant and controller are linear and there is no feedback. Inves-

tigating more general situations – in the same vain of analysis

as done here or, possibly, along other approaches – to assess

the experimental effort required to learn the environment to

perform adaptive design represents a fundamental theoretical

challenge.
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