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Abstract— In this paper the problem of computing uncer-
tainty regions for models identified through an Instrumental
Variable technique is considered. Recently, it has been pointed
out that, in certain operating conditions, the asymptotic theory
of system identification (the most widely used method for model
quality assessment) may deliver unreliable confidence regions.
The aim of this paper is to show that, in an Instrumental
Variable setting, the asymptotic theory exhibits a certain “ro-
bustness” that makes it reliable even when used with moderate
data samples. Reasons for this are highlighted in the paper
through a theoretical analysis and simulation examples.

I. INTRODUCTION

Model quality assessment is a very important (and also
challenging) problem in system identification. In fact, it has
been widely recognized that an identified model is of little
use in practical applications if an estimate of its reliability
is not given along with the model itself. In other words,
if S is the data-generating system and Ŝ is the identified
model, it is fundamental to characterize the system-model
mismatch, i.e. the distance between S and Ŝ (see [10], [8],
[5] and [1]).
One of the best-known tools for model quality assessment is
the asymptotic theory of system identification ([9] and [12]).
The asymptotic theory works in a probabilistic framework
and returns ellipsoidal confidence regions for S – namely,
regions in the parameter space to which the data-generating
system parameter belongs with a pre-assigned probability.
It has been proved that such ellipsoidal confidence regions
are asymptotically correct as the number of data points
increases.
The major drawback with the use of the asymptotic theory
is that, in real applications, only a finite number of data
points is available. Therefore, the asymptotic theory holds
true in practice only approximately, and it is a common
experience that it returns sensible results in many cases, but
not always. As a matter of fact, it has been recently shown
that – in condition of poor excitation and depending on the
underlying identification setting – the computed ellipsoid
may as well be completely unreliable as an approximate
confidence region (see [4] and [2]).
This limitation of the asymptotic theory can be quite severe
because lack of excitation is common in many applications,
particularly when the identification has to be performed in

closed-loop with restricted bandwidth. This happens, for
example, at the first iterations of iterative controller design
schemes (see [3], [6], [13] and [7]). At a more general
level, one can argue that model quality assessment becomes
important when the system-model mismatch is significant
and this occurs when the system is poorly excited, so that
a good model quality assessment method should work
properly especially in this case.

This paper focuses on an Instrumental Variable (IV)
identification setting. The aim is to show that in this setting
the asymptotic theory exhibits a certain “robustness” so that
it can be safely used even in the case of poor excitation and
for moderate data samples.

Structure of the paper
In Section II the IV identification setting is presented and a
brief summary of the standard asymptotic theory is given.
Moreover, the problems that may arise when using the
asymptotic theory in presence of poor excitation are pointed
out. Section III delivers a new asymptotic result, also valid
in “singular” conditions, precisely defined in Section III.
This result makes it possible to show in Section IV that the
asymptotic theory for IV methods can be safely used even
when data are poorly exciting. Some simulation results are
given in Section V.

II. MODEL QUALITY ASSESSMENT FOR IV
IDENTIFICATION

A. Mathematical setting

Throughout the paper we suppose that the data are gener-
ated by the following dynamical system, which is assumed
to be asymptotically stable:

y(t) = ϕ(t)′ϑo + v(t) (1)

where

ϕ(t) = [y(t − 1) . . . y(t − na) u(t − 1) . . . u(t − nb)]′

is the n-vector (n = na + nb) of observations and

ϑo = [−ao
1 . . . − ao

na
bo
1 . . . bo

nb
]′



is the true system parameter n-vector.
The input u(t) and the noise process v(t) are generated ac-
cording to the following scheme which encompasses closed-
loop as well as open-loop configurations:

u(t) = G(z−1)r(t) + H(z−1)e(t)
v(t) = V (z−1)e(t),

where G(z−1), H(z−1), V (z−1), r(t) and e(t) satisfy the
following assumption.

Assumption 1: The transfer functions G(z−1), H(z−1)
and V (z−1) are rational, proper and asymptotically stable.
In addition, V (z−1) has no zeroes on the unit circle in
the complex plane. e(t) is a sequence of independent zero
mean random variables with variance λ2 > 0 and such that
E[|e(t)|4+δ] < ∞, for some δ > 0. r(t) is a wide sense
stationary, stochastic, ergodic, external input sequence. r(t)
and e(t) are independent. �
It is important to note that both u(t) and y(t) can be seen as
the sum of two independent processes, one depending on r(t)
and the other depending on e(t). That is, u(t) = ur(t)+ue(t)
and y(t) = yr(t) + ye(t), where

ur(t) = G(z−1)r(t), (2)

ue(t) = H(z−1)e(t),

yr(t) =
B(z−1)
A(z−1)

G(z−1)r(t), (3)

ye(t) =
B(z−1)
A(z−1)

H(z−1)e(t) +
1

A(z−1)
V (z−1)e(t),

(
A(z−1) = 1 + ao

1z
−1 + . . . + ao

na
z−na ,

B(z−1) = bo
1z

−1 + . . . + bo
nb

z−nb

)
.

The predictor model used in identification is obtained
from (1) by removing v(t) and replacing ϑo with a generic
parameter ϑ:

ŷ(t, ϑ) = ϕ(t)′ϑ, ϑ ∈ R
n. (4)

The estimate ϑ̂N is computed as:

ϑ̂N = sol
{

1
N

N∑
t=1

ζ(t)ϕ(t)′ϑ =
1
N

N∑
t=1

ζ(t)y(t)
}

, (5)

where N is the number of data points and ζ(t), the so
called instrumental variable, is a n-dimensional, stationary,
stochastic process, independent of e(t).

Remark 1: Assuming that the data are generated accord-
ing to (1) implies in a certain sense, precisely addressed
later, that the true system belongs to the model class (4).
This assumption is common whenever the asymptotic theory
is developed for model quality assessment since, otherwise,
the asymptotic theory can ascertain the variance part of the
system-model mismatch only. See [9] and [12]. �
Throughout the paper we assume that ζ(t) is chosen as
follows:

Assumption 2: ζ(t) = ϕr(t), where ϕr(t) is equal to

[yr(t − 1) . . . yr(t − na) ur(t − 1) . . . ur(t − nb)]′,

i.e. it is the part of the observation vector depending on the
external input sequence r(t) as defined in (2) and (3). �

Remark 2: The choice ζ(t) = ϕr(t) is optimal in a sense,
i.e. it minimizes the estimation error variance (see [11]).
In practical applications ϕr(t) can be constructed approxi-
mately by first identifying an initial model (through some
identification method) and then by generating “synthetic”
data by feeding the identified model with r(t) (open-loop
case) or by feeding the entire control scheme where the plant
has been substituted by the estimated model (closed-loop
case). This procedure can be also repeated in an iterative
scheme. �
Let Θ∗ be the set of solutions to equation

E[ζ(t)ϕ(t)′]ϑ = E[ζ(t)y(t)]. (6)

It can be proved (see [9], [11] and [12]) that, in the present
setting, the distance between ϑ̂N and Θ∗ tends to zero, as
N → ∞.
Moreover, thanks to Assumption 2 and equation (1), equa-
tion (6) can be rewritten as

E[ϕr(t)ϕ(t)′]ϑ = E[ϕr(t)ϕ(t)′]ϑo + E[ϕr(t)v(t)],

and, since ϕ(t) = ϕr(t) + ϕe(t) and r(t) is independent of
e(t), the last equation is equivalent to

E[ϕr(t)ϕr(t)′](ϑ − ϑo) = 0. (7)

It follows that the cardinality of Θ∗ depends on the rank
of the matrix E[ϕr(t)ϕr(t)′] and ϑo always belongs to
Θ∗. Thus, if E[ϕr(t)ϕr(t)′] is nonsingular, then Θ∗ is the
singleton {ϑo} and ϑ̂N → ϑo as N → ∞.

B. Asymptotic theory

We turn now to the problem of evaluating the accuracy of
the model estimated through the IV method. The asymptotic
Theorem 1 below can be trivially obtained from the general
results presented in [9], [11] and [12]. Before the theorem
we need some preliminaries.
Suppose that E[ϕr(t)ϕr(t)′] is nonsingular. Then, let

Qα = λ2
E

[
ϕα

r (t)ϕα
r (t)′

]
, (8)

where ϕα
r (t) =

∑∞
i=0 αiϕr(t − i) and αi are the Markov

coefficients of V (z−1), viz. V (z−1) =
∑∞

i=0 αiz
−i, and let

Pα = E

[
ϕr(t)ϕr(t)′

]−1

· Qα · E
[
ϕr(t)ϕr(t)′

]−1

. (9)

Further, consider the following ellipsoid centered in ϑ̂N :

Eα(r) =
{

ϑ : (ϑ̂N − ϑ)′P−1
α (ϑ̂N − ϑ) ≤ r

}
, (10)

where r, the size of the ellipsoid, is a real positive number.



Remark 3: It is perhaps worth mentioning that assuming
that V (z−1) has no zeroes on the unit circle (Assumption 1)
serves to the purpose to guarantee that the definition of Eα(r)
is well posed, i.e. Pα is invertible. See “Complements to
Remark 3” in the appendix for details. �
The following theorem suggests how to select r so that
Eα(r) is an ellipsoidal confidence region for ϑo of pre-
assigned asymptotic probability (P{E} = probability of E
in the following).

Theorem 1: Under the assumptions in this section, we
have that

lim
N→∞

P

{
ϑo ∈ Eα

(ρ(p)
N

)}
= p,

where ρ(p) is the inverse of the function p =
∫ ρ

0
fχ2(x)dx

and fχ2(x) is the probability density of a χ2 random variable
with n degrees of freedom. �

Remark 4: In the practical computation of Eα(r), as it is
obvious, Qα and Pα cannot be computed exactly and have
to be substituted by their sample counterparts, Q̂α and P̂α.
These can be computed simply by substituting E with 1

N

∑
,

in equations (8) and (9). Note that, since Q̂α and P̂α tends
almost surely to Qα and Pα as N increases, the introduced
approximation is negligible, provide that N is sufficiently
large. �

C. Discussion on the practical use of the asymptotic theory

It should be noted that the exact computation of Eα

(
ρ(p)
N

)
requires the knowledge of λ2 and V (z−1) (see equations (8)–
(10)). However, both these quantities are unknown in practice
and have to be identified from the data.
To estimate λ2 and V (z−1), a common choice is to identify
an ARMA model describing the residual error ε(t, ϑ̂N ) =
y(t)−ŷ(t, ϑ̂N ). This is motivated by the fact that ε(t, ϑ̂N ) →
v(t) = V (z−1)e(t) as N → ∞, since, under the assumption
of Theorem 1, ϑ̂N → ϑo.
In a practical application, the number of data points is finite
so that ϑ̂N �= ϑo and λ2 and V (z−1) cannot be identified
exactly. However, when ϕr(t) is well exciting (and therefore
E[ϕr(t)ϕr(t)′] is positive definite with all the eigenvalues
away from zero) we have ϑ̂N ≈ ϑo and the introduced
approximation is small.
Consider now the situation of poorly exciting inputs, so that
matrix E[ϕr(t)ϕr(t)′] has some eigenvalues close to zero. As
long as E[ϕr(t)ϕr(t)′] is not exactly singular, it is still true
that the estimate ϑ̂N converges to the true system parameter
ϑo as N → ∞. However, such a convergence takes place
with a very slow rate and it may happen that ϑ̂N is far from
ϑo even for a large N . In this case it is no longer true that
ε(t, ϑ̂N ) approximates v(t), so that λ2 and V (z−1) cannot
be identified with a good precision as well.
Thus, one could doubt as to the sensibility of applying the

asymptotic result in case of poor excitation. One of the main
scopes of this paper is to present the somehow surprisingly
result that this is not so.
To this aim, we first develop in the next section a new asymp-
totic theory valid for the singular case (lack of excitation)
and, then, we show in Section IV that, in the light of this
new theory, the asymptotic results maintain its applicability
in case of poor excitation.

III. ASYMPTOTIC THEORY FOR THE SINGULAR CASE

Let us assume now that det E[ϕr(t)ϕr(t)′] = 0, i.e. we
are in the singular case. The aim of this section is to show
that a result similar to Theorem 1 still holds true in the
present situation.
As it has been already noted in Section II, if matrix
E[ϕr(t)ϕr(t)′] is singular, then the set of asymptotic
estimates Θ∗ is not a singleton, but it is an affine subspace
whose dimensionality d is equal to the dimension of the
kernel of E[ϕr(t)ϕr(t)′] (see equation (7)). Refer the
parameter space to a basis having the first d components
parallel to Θ∗, and the remaining n − d components
orthogonal to Θ∗. Let x [z] be the first d [the remaining
n − d] coordinates in this basis (see Figure 1 for a
graphical representation in a bi-dimensional space). Thus,

ϑ
N

z
N

 

x
N

 

ϑ*

ϑo 

xo 

x* 

z* = zo 

z 

x 

Θ* 

Fig. 1. The parameter space

[(xo)′ (zo)′]′ and [(x̂N )′ (ẑN )′]′ represent ϑo and ϑ̂N ,
respectively, and Θ∗ writes {[x′ z′]′ : z = zo}.
In the present singular setting, matrix 1

N

∑
ζ(t)ϕ(t)′ =

1
N

∑
ϕr(t)ϕ(t)′ in equation (5) is singular itself, leaving a

degree of freedom in the choice of ϑ̂N . In the sequel we
assume that ϑ̂N is fixed by a suitable deterministic tie-break
rule (e.g select among the ϑ̂N satisfying (5) the one which
minimizes ‖ϑ̂N‖) such that ϑ̂N tends to a limiting estimate
ϑ∗ = [(x∗)′ (z∗)′]′, as N → ∞. Note that, though ϑ∗ ∈ Θ∗

(and, therefore, z∗ = zo), ϑ∗ �= ϑo in general since x∗ �= xo.
We turn now our attention to the problem of model quality
assessment. Since x̂N has been chosen deterministically,
we cannot characterize the distance between x̂N and



xo in a probabilistic way. In contrast, a probabilistic
characterization is possible in the z direction, as precisely
stated in Theorem 2 below.
We need a simple preliminary lemma. Let [ϕx

r (t)′ ϕz
r(t)

′]′

be the vector ϕr(t) referred to the x, z coordinates. We have:

Lemma 1: ϕx
r (t) = 0 almost surely, while E[ϕz

r(t)ϕ
z
r(t)

′]
is nonsingular. Moreover, ε(t, ϑ∗) = y(t) − ŷ(t, ϑ∗) only
depends on e(t) and can be written as

∑∞
i=0 βie(t − i), for

suitable βi’s. �

Proof: see the appendix.�

Let

Qz
β = λ2

E

[ ∞∑
i=0

βiϕ
z
r(t − i)

∞∑
j=0

βjϕ
z
r(t − j)′

]
,

and let

P z
β = E

[
ϕz

r(t)ϕ
z
r(t)

′
]−1

Qz
βE

[
ϕz

r(t)ϕ
z
r(t)

′
]−1

,

and further consider the following ellipsoid centered in ẑN :

Ez
β(r) =

{
z : (ẑN − z)′(P z

β )−1(ẑN − z) ≤ r
}

,

where r is again the size of the ellipsoid and is a real positive
number.

Remark 5: In view of Lemma 1 E

[
ϕz

r(t)ϕ
z
r(t)

′
]

is invert-
ible. Instead, similarly to Qα in Remark 3, invertibility of Qz

β

requires that
∑∞

i=0 βiz
−i has no zeroes on the unit circle.

Such condition is assumed here for granted. �
The following theorem suggests how to select r so that Ez

β(r)
is an ellipsoidal confidence region for zo of pre-assigned
asymptotic probability.

Theorem 2: We have that

lim
N→∞

P

{
zo ∈ Ez

β

(ρ(p)
N

)}
= p,

where ρ(p) is the inverse of the function p =
∫ ρ

0
fχ2(x)dx

and fχ2(x) is the probability density of a χ2 random variable
with n − d degrees of freedom. �

Proof: see the appendix.�

Note that βi �= αi in general. Thus, if one uses the
Markov coefficients αi’s of V (z−1) when computing
Ez

β , the resulting ellipsoid fails to represent a confidence
region with the pre-assigned level of confidence. What is
remarkable in Theorem 2 is that, in order to compute a
correct ellipsoid, one has to use alternative coefficients
βi’s and these coefficients can be in fact estimated
from the residual error ε(t, ϑ̂N ) since ϑ̂N → ϑ∗ and
ε(t, ϑ∗) =

∑∞
i=0 βie(t − i) (see Lemma 1).

Remark 6: It is worth mentioning that Theorem 2 is a
generalization of Theorem 1. As a matter of fact, in the
nonsingular case, d = 0 so that z = ϑ and the statement
of Theorem 2 reduces to that of Theorem 1. �

Remark 7: In view of the result of Theorem 2, it is
possible to determine a confidence region for ϑo (and not
only for zo). Since the difference between x̂N and xo remains
unpredictable, the natural choice is to consider the degenerate
ellipsoid

DEβ

(
ρ(p)

N

)
=

{
[x′ z′]′ : (ẑN − z)′(P z

β )−1(ẑN − z) ≤ ρ(p)

N

}
,

which is nothing but the ellipsoid Ez
β

(
ρ(p)
N

)
extended along

the x direction towards infinity. The fact that DEβ

(
ρ(p)
N

)
is an asymptotic p-confidence region for ϑo directly follows
from Theorem 2. �

IV. USE OF THE NEW ASYMPTOTIC RESULTS IN PRACTICE

Consider an identification problem where we have a finite
number N of data points. After estimating ϑ̂N , we can com-
pute the prediction error ε(t, ϑ̂N ) and then estimate a model∑∞

i=1 γie(t − i) describing such a prediction error. Here,
γi’s are the coefficients estimated from data and depending
on the context in the discussion to follow, represent either
an estimate of the αi’s or an estimate of the βi’s. Then,
we compute the ellipsoid Êγ

(
ρ(p)
N

)
along the line traced in

Section II. Namely,

Êγ

(ρ(p)
N

)
=

{
ϑ : (ϑ̂N − ϑ)′P̂−1

γ (ϑ̂N − ϑ) ≤ ρ(p)
N

}
, (11)

where

P̂γ =
(

1
N

∑N
t=1 ϕr(t)ϕr(t)′

)−1

· λ2

N

∑N
t=1 ϕγ

r (t)ϕγ
r (t)′·

·
(

1
N

∑N
t=1 ϕr(t)ϕr(t)′

)−1

,

ϕγ
r (t) =

∑∞
i=0 γiϕr(t − i) and ρ(p) is the inverse of the

function p =
∫ ρ

0
fχ2(x)dx where fχ2(x) is the probability

density of a χ2 random variable with n degrees of freedom.
Note that this is nothing but the normal line of proceeding
in the application of the asymptotic theory to Instrumental
Variable techniques.
Suppose first that the regressor ϕr(t) excites well all the
directions in the parameters space (full excitation case).
Then, ϑ̂N ≈ ϑo so that the γi’s become an estimate of the
αi’s and since Êγ

(
ρ(p)
N

)
≈ Eα

(
ρ(p)
N

)
Theorem 1 applies to

conclude that we have computed a reliable estimate of a p-
confidence region for ϑo.
The crucial fact is that the way of proceeding in (11) is also
motivated in case of poor excitation where ϑ̂N is far from
ϑo (the case where estimating the ϑ̂N -ϑo mismatch is in fact
more significant) as we next discuss grounding our analysis
on the theory developed in Section III.
The poor excitation case can be seen as a “perturbation” case
with respect to the singular setting of Section III, so that ϑ̂N



can be seen as a perturbed version of ϑ∗ in that section.
As we have seen in Section III, ε(t, ϑ∗) =

∑∞
i=0 βie(t − i)

and the βi’s are in fact the coefficients to be used in the
construction of Ez

β

(
ρ(p)
N

)
in Theorem 2. This motivates the

use of the γi’s (which are estimates of the βi’s) in the
construction of Êγ

(
ρ(p)
N

)
in equation (11). Note also that

ρ(p) in (11) refers to a χ2 with n degrees of freedom
(while we had n − d degrees of freedom in Theorem 2)
because in (11) we compute confidence regions for the whole
n dimensional parameter vector ϑo.

V. SIMULATION RESULTS

The simulation example of the present section serves the
purpose to illustrate the theory and it is not intended as a real
application example. Correspondingly, the simplest possible
situation has been selected. While the situation is artificial,
the drawn conclusions bear a breath of general applicability.
We have considered a first order data-generating system with
ϑo = [−ao bo]′ = [0.9 0.1]′ and V (z−1) = 1 + 0.5z−1.
That is:

y(t) = 0.9y(t − 1) + 0.1u(t − 1) + e(t) + 0.5e(t − 1),

where e(t) = WGN(0, 1) (WGN = White Gaussian
Noise). To identify this system, the plant has been operated
in open-loop with u(t) = r(t), and the IV technique has
been used with ϕ(t) = [y(t−1) u(t−1)]′ and ζ(t) = ϕr =
[yr(t − 1) r(t − 1)]′, where

yr(t) = 0.9yr(t − 1) + 0.1r(t − 1).

As input signal, we have used u(t) = 1 + ξ(t), where
ξ(t) = WGN(0, 10−6). Note that the variance of ξ(t) is
very small as compared to the noise variance so that the
input u(t) is poorly exciting (u(t) is nearly exciting of order
1 while two parameters have to be identified).
The identification has been performed 500 times, by using
N = 5000 data points each time. In each experiment a
parameter vector ϑ̂k

N = [−âk
N b̂k

N ]′, k = 1 . . . 500, has been
identified and a 95%-confidence region has been estimated
as Êk

γ

(
ρ(0.95)

N

)
(the coefficients γi’s have been computed

by identifying an ARMA(3,3) model for the residue – see
Section IV). The true parameter ϑo turned out to belong to
Êk

γ

(
ρ(0.95)

N

)
in 491 cases out of 500, that is, with empirical

frequency of 98%.
As an interesting comparison, we have further computed
the 95% confidence region with the true parameters αi’s
(
∑∞

i=0 αiz
−i = V (z−1)). In this case, the success rate of

ϑo ∈ Êk
α

(
ρ(0.95)

N

)
was of 47%. The results are summarized

in Table I. As it appears, using the true parameters αi’s leads
to wrong results.

VI. CONCLUDING REMARKS

In this paper, a new asymptotic result, valid also in a
singular case, has been developed for an IV identification

ϑo in E ϑo out of E % of success

Êα

(
ρ(0.95)

N

)
233 267 47%

Êγ

(
ρ(0.95)

N

)
491 9 98%

TABLE I

RELIABILITY OF THE ESTIMATED CONFIDENCE REGION

setting. Grounded on this new result, we have shown that
the asymptotic theory can be safely used for model quality
assessment, even in the case of poor excitation and moderate
data samples.
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VIII. APPENDIX

Complements to Remark 3: Note that, Pα is invertible pro-
vided that Qα is nonsingular. Here, we show that Qα > 0.
Let v be a generic vector of R

n and consider v′Qαv =
λ2 ·v′

E[ϕα
r (t)ϕα

r (t)′]v = λ2 ·v′
E[(ϕα

r (t)−E[ϕα
r (t)])(ϕα

r (t)−
E[ϕα

r (t)])′]v + λ2 · v′
E[ϕα

r (t)]E[ϕα
r (t)]′v.

Since ϕα
r (t) = V (z−1)ϕr(t), we obtain, through the Parseval

identity,

v′Qαv = λ2

2π

∫ π

−π
v′Φr(ejω)v · |V (ejω)|2dω

+λ2V (1)2 · v′
E[ϕr(t)]E[ϕr(t)]′v,

where Φr(ejω) is the spectrum of the n-dimensional process
ϕr(t).
This implies that

v′Qαv ≥ minω∈[−π,π]

{
|V (ejω)|2 · λ2

2π

∫ π

−π
v′Φr(ejω)v dω

+λ2V (1)2 · v′
E[ϕr(t)]E[ϕr(t)]′v

}
.

Applying now the assumption that V (z−1) has no zeroes
on the unit circle we have minω∈[−π,π] |V (ejω)|2 = k >
0. Since, in addition, λ2 > 0 and E[ϕr(t)ϕr(t)′] > 0 by
assumption, we conclude that

v′Qαv ≥ kλ2
(

1
2π

∫ π

−π
v′Φr(ejω)v dω

+v′
E[ϕr(t)]E[ϕr(t)]′v

)
= kλ2 · v′

E[ϕr(t)ϕr(t)′]v > 0, ∀v �= 0,

i.e. Qα is positive definite. �

Proof of Lemma 1: Let T the n×n rotation matrix such that
Tϑ = [x′ z′]′. Referring equation (7) to the x, z coordinates
(i.e. TE[ϕr(t)ϕr(t)′]T ′T (ϑ − ϑo) = 0), we obtain

E

[
ϕx

r (t)ϕx
r (t)′ ϕx

r (t)ϕz
r(t)

′

ϕz
r(t)ϕ

x
r (t)′ ϕz

r(t)ϕ
z
r(t)

′

] [
x − xo

z − zo

]
= 0.



Since [x′ z′]′ is a solution of this equation if and only if
z = zo, while each value of x is feasible, it follows that
E[ϕz

r(t)ϕ
z
r(t)

′] must be nonsingular, while E[ϕx
r (t)ϕx

r (t)′]
must be equal to zero so that ϕx

r (t) = 0, almost surely.
Consider now ε(t, ϑ∗) = y(t) − ŷ(t, ϑ∗). It can be rewritten
as

ϕ(t)′(ϑo−ϑ∗)+v(t) = ϕx(t)′(xo−x∗)+ϕz(t)′(zo−z∗)+v(t),

where [ϕx(t)′ ϕz(t)′]′ = Tϕ(t). Noting that zo = z∗ and
that ϕx(t)′ = ϕx

r (t)′ + ϕx
e (t)′ = ϕx

e (t)′ almost surely, we
obtain

ε(t, ϑ∗) = ϕx
e (t)′(xo − x∗) + v(t). (12)

Thus, ε(t, ϑ∗) is the stationary output of a dynamical linear
system fed by e(t), and

∑∞
i=0 βie(t − i) is the Markov

representation of such a process. �

Proof of Theorem 2: Referring equation (5) to the x, z
coordinates, we have that

1
N

∑N
t=1 ϕx

r (t)ϕx(t)′(x̂N − xo) + 1
N

∑N
t=1 ϕx

r (t)ϕz(t)′·
·(ẑN − zo) = 1

N

∑N
t=1 ϕx

r (t)v(t)

1
N

∑N
t=1 ϕz

r(t)ϕ
x(t)′(x̂N − xo) + 1

N

∑N
t=1 ϕz

r(t)ϕ
z(t)′·

·(ẑN − zo) = 1
N

∑N
t=1 ϕz

r(t)v(t)

with ϕx(t) and ϕz(t) defined as in the proof of Lemma 1.
The first equation is 0 = 0 almost surely, since ϕx

r (t) = 0,
almost surely. Instead, inflating the second equation by

√
N

yields

1

N

N∑
t=1

ϕz
r(t)ϕ

z(t)′
√

N(ẑN − zo) =
1√
N

N∑
t=1

ϕz
r(t)ṽ(t), (13)

almost surely, where ṽ(t) = v(t)+ϕx
e (t)′(xo − x̂N ) and we

have used the fact that ϕx(t) = ϕx
r (t) + ϕx

e (t) = ϕx
e (t),

almost surely. Note that the term v + ϕx
e (t)′(xo − x̂N )

depends just on e(t) and, since x̂N → x∗ as N → ∞, it
tends to ε(t, ϑ∗) (see (12)). The latter, in turn, is equal to∑∞

i=0 βie(t − i) (Lemma 1).
Then, following the same rationale in [9] – chapter 9 –
it can be proved that the term

√
N(ẑN − zo) in (13) is

asymptotically distributed as a (n−d)-dimensional Gaussian
random variable with zero mean and variance equal to

E[ϕz
r(t)ϕ

z
r(t)

′]−1 · λ2
E

[ ∑∞
i=0 βiϕ

z
r(t − i)·

·∑∞
j=0 βjϕ

z
r(t − j)′

]
· ·E[ϕz

r(t)ϕ
z
r(t)

′]−1 = P z
β .

Then, the theorem thesis easily follows noting that
N(ẑN − z)′(P z

β )−1(ẑN − z) is asymptotically distributed as
a χ2 random variable with (n − d)-degree of freedom. �
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