
Mach Learn (2010) 80: 63–84
DOI 10.1007/s10994-010-5183-x

Classification with guaranteed probability of error

Marco C. Campi

Received: 1 July 2009 / Revised: 8 February 2010 / Accepted: 24 March 2010 /
Published online: 17 April 2010
© The Author(s) 2010

Abstract We introduce a general-purpose classifier that we call the Guaranteed Error Ma-
chine, or GEM, and two learning algorithms that are used for the training of GEM, a real
GEM algorithm and an ideal GEM algorithm. The real GEM algorithm is for use in real
applications, while the ideal GEM algorithm is introduced as a theoretical tool. Differently
from most learning machines, GEM has a ternary-valued output, that is besides 0 and 1
it can return an unknown label, expressing doubt. Our central result is that, under general
conditions, the statistics of the generalization error of the GEM machine obtained with the
ideal GEM algorithm is universal, in the sense that it remains the same, independently of
the (unknown) mechanism that generates the data. As a consequence, the user can select a
desired level of generalization error and the learning machine is automatically adjusted so as
to meet this desired level, and no knowledge of the data generation mechanism is required
in this process; the adjustment is achieved by modulating the size of the region where the
machine returns the unknown label. The key-point is that no conservatism is present in this
process because the statistics of the generalization error is known. We further show that the
generalization error of the machine obtained with the real algorithm is always no larger than
the generalization error of the machine obtained with the ideal algorithm. Thus, the gener-
alization error computed for the latter can be rigorously used as a bound for the former, and,
moreover, it provably provides tight evaluations in typical cases.

Keywords Computational learning theory · Guaranteed generalization error · Convex
optimization · Invariant statistics · Ternary-valued classifiers

Editor: Nicolo Cesa-Bianchi.

M.C. Campi (�)
Department of Electrical Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
e-mail: marco.campi@ing.unibs.it
url: http://www.ing.unibs.it/~campi

mailto:marco.campi@ing.unibs.it
http://www.ing.unibs.it/~campi

64 Mach Learn (2010) 80: 63–84

1 Introduction

1.1 Preliminaries and notations

Machine learning studies the problem of predicting the class label of instances. An instance
x, x ∈ R

d , is a vector of measured attributes, and the class label y is a discrete quantity,1

belonging to a finite set, whose value is determined by x, that is there exists a function
y = y(x).2 We here consider binary classification, i.e. y ∈ {0,1}. 0 and 1 represent two
different classes, whose meaning varies depending on the application at hand and can e.g.
be sick or healthy, right or wrong, male or female. To an x, there is associated a y ∈ {0,1},
but we have no access to the map y = y(x), so, given an x, we have to guess its class y by
means of some classifier ŷ = ŷ(x). A classifier errs on x if y(x) �= ŷ(x), and the goal of
machine learning is that of constructing classifiers that err as rarely as possible.

In statistical machine learning, it is assumed that x values occur according to a proba-
bility μ and the reliability of a classifier is measured by μ(y(x) �= ŷ(x)), the probability of
the set in R

d where y(x) and ŷ(x) do not agree. μ(y(x) �= ŷ(x)) is called the probability of
error (or generalization error) and it will be indicated in this paper with PE(ŷ).

Given ŷ(·), PE(ŷ) cannot be computed, for its computation would require knowledge
of μ and y(·). Hence, selecting a good classifier cannot rely on direct minimization of this
probability. Instead, we assume that one has access to a database of past examples EN :=
(x1, y1), . . . , (xN, yN), where the xi ’s are independently extracted according to μ and yi =
y(xi), and is asked to select a classifier ŷN (·) based on EN . An algorithm is a rule that makes
this selection.

See e.g. (Vapnik 1995, 1998; Devroye et al. 1996; Cristianini and Shawe-Taylor 2000;
Schölkopf and Smola 2002) for general presentations of machine learning.

1.2 The stochastic nature of PE(ŷN)

Given a data generation mechanism, i.e. a pair (μ,y(·)), PE(ŷ) is a deterministic function
that associates a number in [0,1] to any given classifier ŷ(·). If we further substitute ŷ(·)
with ŷN (·), the classifier obtained from an algorithm, PE(ŷN) becomes a random variable
formed by the composition of ŷN (·), which depends on the random examples EN , with the
deterministic function PE(·).3 The dependence of PE(ŷN) on EN expresses the fact that
different sets of examples can be more or less effective to form an estimate of y(·) and,
when an algorithm is fed with EN , it returns a classifier ŷN (·) that more or less closely
match y(·) depending on the seen EN .

In more formal terms, let us consider a given fixed data generation mechanism (μ,y(·)).
This assigns a probabilistic model according to which each single example (xi, yi) =
(xi, y(xi)) is drawn. From this model, a probabilistic model for EN can be obtained by
the independence of examples: a multi-extraction of instances x1, x2, . . . , xN is selected in
(Rd)N = R

d × · · · × R
d according to the product probability μN := μ × · · · × μ, and this

multi-extraction maps into EN := (x1, y(x1)), . . . , (xN , y(xN)). Thus, EN is a random ele-
ment defined over ((Rd)N ,μN). If we now choose an algorithm, to each EN a classifier

1At times, a broader perspective where y is not discrete is also considered, see (Vapnik 1995).
2The approach of this paper carries over to the case when y takes value 0 or 1 with given probabilities—
nonzero Bayes risk, see (vi) in Sect. 3.
3In the statistical learning literature, PE(ŷN) is sometimes called the “conditional probability of error”.

Mach Learn (2010) 80: 63–84 65

ŷN (·) is associated and in turn PE(ŷN) = μ(y(x) �= ŷN (x)) becomes a fixed number for any
given EN . Thus, through EN , PE(ŷN) is a random variable defined over ((Rd)N ,μN).

One fact that is important to make explicit is that PE(ŷN) is a random variable whose
probabilistic characteristics, its distribution in particular, depend on the unknown data gen-
eration mechanism (μ,y(·)). Thus, the same algorithm can generate classifiers that are likely
to be more or less reliable depending on the context in which the algorithm is applied.

1.3 The guaranteed error machine

In this paper, we introduce {0,1,unknown}-valued classifiers that have a guaranteed prob-
ability of error, also called Guaranteed Error Machines (GEM). The learning algorithm for
the GEM has a tunable parameter k which may be used to enlarge the region where the clas-
sifier does provide a classification, that is it returns a value 0 or 1. A large value of k leads
to classifiers that are more likely to return a 0 or 1 value, but these classifiers misclassify
more frequently, whereas smaller values of k correspond to more risk-averse classifiers pay-
ing emphasis on reducing the probability of misclassification, but also returning unknown’s
with higher probability.

In more precise terms, let us start by generalizing to {0,1,unknown}-valued classifiers the
definition of probability of error: define PE(ŷN) = μ(ŷN(x) = 0 or 1, and y(x) �= ŷN (x)),
that is PE(ŷN) is now the probability that an answer is issued and this answer is incorrect.
First, we introduce an ideal GEM algorithm. For each value of the tunable parameter k, our
Theorem 1 gives the exact probability distribution of PE(ŷN), and shows that, under mild
conditions, this distribution does not depend on the data generation mechanism (μ,y(·)),
i.e. it is universal. This is in contrast with what happens in other machines, as discussed in
Sect. 1.2. This deep theoretical result bears important practical implications: when select-
ing the tunable parameter k, the user has full control on how PE(ŷN) distributes since this
distribution does not depend on the unknown element of the problem, the data generation
mechanism (μ,y(·)). Thus, the user can choose a level of risk and select that k that meets
the selected risk level, even without any knowledge of (μ,y(·)). For simple-to-estimate data
generation mechanisms, the algorithm will construct classifiers that return a 0 or 1 answer
most of the time, while an unknown will be more often issued in the case of difficult-to-
estimate data generation mechanisms. The very point is that no conservatism is present in
this selection procedure since the algorithm pushes the classifier all the way down to the
desired level of risk, automatically and without prior knowledge on the data generation
mechanism.

The ideal GEM algorithm selects the size of the unknown region to tune the level of risk.
Like pulling down one end of a rope wrapped around a pulley lifts the other end, similarly in
the ideal GEM algorithm pulling down the level of risk determines an increase in the size of
the unknown region. This tuning mechanism, however, is effective until the unknown region
is present, that is it does not shrink to the empty set so that the classifier classifies the whole
x space. In the ideal GEM algorithm, when this happens a misclassified region is artificially
introduced to obtain the selected risk level.

The ideal GEM algorithm is used in this paper merely as a theoretical tool, and it is not
for use in real applications. We next introduce a real GEM algorithm, the algorithm used in
practice. The machine obtained with the real GEM algorithm is identical to that constructed
by the ideal GEM algorithm, except that the artificial misclassified region is not introduced.
As a consequence, most of the time the two algorithms generate the same classifier,4 while in

4They generate the same classifier whenever the unknown region does not become empty, a situation which
is not uncommon, see also the literature on classifiers that can choose not to classify referenced in Sect. 1.4.

66 Mach Learn (2010) 80: 63–84

simple-to-estimate classification problems the real GEM algorithm may reach the condition
of total classification (no unknown’s) even before hitting the selected level of risk. Hence,
we show that the probability of error of the classifier obtained with the real GEM algorithm
is always no more than that of the classifier obtained with the ideal GEM algorithm and
the results valid for the ideal GEM algorithm can therefore be rigorously used to establish
reliability results for the real GEM algorithm.

Thanks to the theoretical result that the distribution of PE(ŷN) is universal, the GEM ma-
chine can be tuned so as to obtain a classified region as extended as it is possible compatibly
to the selected level of risk. Still, whether the classified region is indeed satisfactorily large
depends on the environment in which classification is performed and can only be evaluated
a-posteriori, after the classifier is constructed. When conceiving the GEM machine, we de-
signed it so that it generates wide regions of classification and we observed in experimental
examples that the classified region tends to grow rapidly in the x domain. Moreover, we
observed that when the GEM classifier eventually comes to the point of classifying all the
observations, it had an empirical probability of error (evaluated by cross-validation) sim-
ilar to other machine learning approaches, see the empirical results in Sect. 4. So, GEM
seems to perform similarly to other methods in case of full classification, while it gains two
important additional advantages: (i) theoretical and non-conservative a-priori guarantees of
generalization are available; (ii) can be tuned by the user so as to trade part of its classi-
fication capability (i.e. it may output an unknown) for an increased level of generalization
properties.

Further discussion on the theoretical results and on their use in practice is postponed to
Sect. 3 after the GEM algorithms have been formally introduced in the next Sect. 2.

1.4 Bibliographical notes

Classifiers that can choose not to classify (like our unknown here) have been previ-
ously introduced by other authors in contexts different from ours. A Bayesian classi-
fier with rejection option was considered as early as in (Chow 1957). See (Chow 1970;
Gyorfi et al. 1978; Muzzolini et al. 1998; Ferri et al. 2003) for other studies. The-
oretical results on abstaining classifiers are provided e.g. in (Rivest and Sloan 1988;
Freund et al. 2004; Ruckert and Kramer 2004; Pietraszek 2005), see also Chap. 3 of (Vovk
et al. 2005) where the efficiency of recursive conformal predictors that can output mul-
tiple labels set are studied. However, as recently noted in (Herbei and Wegkamp 2006;
Bartlett and Wegkamp 2008), more theoretical work is needed, and indeed expected, in
this context.

The results of this paper have some aspects in common with “conformal prediction”, see
(Vovk et al. 2005; Shafer and Vovk 2008). Conformal prediction operates on-line and gener-
ates predictions sequentially:5 based on the examples (x1, y1), . . . , (xt , yt) and after seeing
the next instance xt+1, a prediction ŷt+1 of yt+1 is generated; the actual yt+1 is then observed
and the predictor incurs an error if yt+1 �= ŷt+1,6 moreover the database of examples is up-
dated to also include the new observation, i.e. the database is now (x1, y1), . . . , (xt+1, yt+1);
this same scheme is repeated at time t + 2, t + 3, Grounded on a theoretically solid
and yet flexible approach, conformal prediction generates hedged on-line predictions with
a guaranteed level of cumulative errors. We here also generate hedged predictions, but in

5This framework is also called transductive, see Vapnik (1995, 1998).
6Similarly to our unknown, conformal predictors can return a multiple output {0,1} which never makes an
error. So, we should more precisely write yt+1 /∈ ŷt+1.

Mach Learn (2010) 80: 63–84 67

the more traditional inductive framework where examples are used off-line to determine
a classifier. In this context, our Theorem 1 permits one to compute (ε, δ) guarantees in a
PAC-learning sense.

The results of this paper also have connections with statistical tolerance limits. A tol-
erance limit is a set of a measurable space constructed from data that contains a por-
tion of the total probability of the space (or “coverage”) that distributes independently
of the probability with which data are generated. According to this terminology, Theo-
rem 1 states that the classifier constructed by GEM is indeed a tolerance limit in the space
R

d × {0,1} for (x, y). Tolerance limits were introduced by Wilks (1941) in relation to
the problem of partitioning the [0,1] segment into blocks. Similar to Wilks’ approach,
further generalizations provided by (Wald 1943; Tukey 1947; Fraser 1951; Fraser 1953;
Kemperman 1956) are still based on order statistics. Existence of an ordering permits one
to identify sets where data have to fall in order to obtain given coverages. In contrast, the
approach of this paper is based on convex optimization and does not allow for such an inter-
pretation.

Interestingly, in the 1950’s, in addition to tolerance limits, expectation tolerance limits
were also introduced, (Fraser and Guttman 1956; Fraser 1957), which have the property
that the expectation of the coverage is independent of the probability with which data are
generated. This is the same property that underpins the theoretical results valid for confor-
mal predictors. So, tolerance limits are predecessors of the GEM, and expectation tolerance
limits are the predecessors of conformal predictors.

2 The GEM algorithm

We first introduce the real GEM algorithm (henceforth also simply called the GEM algo-
rithm), then followed by the ideal GEM algorithm obtained as a modification of the GEM
algorithm. In the algorithms, k is an integer that has to be fixed in advance; depending on
k, different probability distributions for PE(ŷN) are obtained, as given in Theorem 1. We
also recall that d is the size of x and N is the number of examples. Throughout, we assume
k ≤ N − 1.

THE GEM ALGORITHM

0. Let xB = x1, j = 1, P = {2,3, . . . ,N}, and Q = ∅ (empty set).
1. If |Q| ≤ k − (d(d + 1)/2 + d) (| · | means cardinality), go to point 2a;

elseif k − (d(d + 1)/2 + d) < |Q| ≤ k − (d + 1), go to point 2b;
else, go to point 2c.

2a. Solve the following convex optimization problem:

minA=AT ∈Rd×d ,b∈Rd Trace(A)

subject to: (xi − xB)T A(xi − xB) + bT (xi − xB) ≥ 1,

for all i ∈ P such that yi �= y(xB)

and A � 0 (A positive semi-definite).

If more than one pair (A,b) solves the problem, take the pair (A,b) with smallest norm

of b, ‖b‖ =
√∑d

r=1 b2
r . If a tie still occurs, break it according to a lexicographic rule on

the elements of A and b. Let (A∗, b∗) be the optimal solution.
Go to point 3.

68 Mach Learn (2010) 80: 63–84

2b. Solve the following convex optimization problem:

mina≥0,b∈Rd a

subject to: a · ‖xi − xB‖2 + bT (xi − xB) ≥ 1,

for all i ∈ P such that yi �= y(xB).

If more than one pair (a, b) solves the problem, take the pair (a, b) with smallest norm
of b. Let (a∗, b∗) be the optimal solution, and define A∗ = a∗I (I = identity matrix).
Go to point 3.

2c. Solve the following convex optimization problem:

mina≥0 a

subject to: a · ‖xi − xB‖2 ≥ 1, for all i ∈ P such that yi �= y(xB).

Let a∗ be the optimal solution, and define A∗ = a∗I and b∗ = 0.
Go to point 3.

3. Form the region Rj = {x : (x − xB)T A∗(x − xB) + (b∗)T (x − xB) < 1}, and let
�j = y(xB).

Update P by removing the indexes of the instances in Rj . If P is empty, go to point 4;
update Q = Q∪{indexes of the active instances}, where the “active” instances are those
that fall on the boundary of Rj ;
if |Q| < k, search for the “active” instance furthest away from xB (if there is more
than 1 instance at the furthest distance from xB take any one of them) and rename as xB

this instance; let j = j + 1, and go to point 1;
else, go to point 4.

4. Define the classifier

ŷN (x) =
{

unknown, if x /∈ Rr ,1 ≤ r ≤ j

�q, otherwise, with q = min r such that x ∈ Rr ,1 ≤ r ≤ j .

Points 2a, 2b, and 2c construct regions containing examples all having the same class
label as the label y(xB) of the “base” instance xB . Point 2a constructs regions more complex
than 2b, which are in turn more complex than those in 2c: 2a constructs (hyper)ellipsoids
containing xB , those in 2b are (hyper)spheres containing xB , while those in 2c are (hy-
per)spheres having xB at their center. If P does not become empty, the procedure is halted
when the total number of the active instances |Q| reaches the selected bound k, and re-
directing the algorithm to simpler constructions when |Q| gets close to k as done in point 1
serves the purpose of exactly reaching k upon termination of the algorithm. As we shall see,
this is the key-property to make the generalization error of the algorithm guaranteed.

The first example plays a special role in the construction. To make the algorithm inde-
pendent of the ordering of the training examples one can conceive to test one by one all
examples in the role of first base example and then select that example that provided the
best performance (fewer unknowns). While this is a sensible way of proceeding, one has
to keep in mind that Theorem 1 below has to be used with care in this case and one has to
multiply the right-hand-side of (1) by N , the number of different possible choices of first
base example, obtaining a bound instead of an equality in (1).

Altogether, the classifier has the structure of a data-dependent decision list, see e.g. (An-
thony 2004; Marchand and Sokolova 2005; Klivans and Servedio 2006).

Mach Learn (2010) 80: 63–84 69

Fig. 1 a Function y(x), upper square has label 1. b Data set: × = 0, + = 1

Fig. 2 The regions constructed by the GEM algorithm

To help the reader understand the algorithm operation, a toy example is provided in
Figs. 1 and 2. Figure 1(a) represents the function y(x); N = 100 examples were extracted
according to a uniform distribution on [0,1]2 and they are shown in Fig. 1(b). We set k = 5
and executed the GEM algorithm. The algorithm performed one construction according to
point 2a, two constructions according to 2b, and two constructions according to 2c, de-
termining each time n = 1 active instances. Figure 2 displays the regions constructed in
succession by the algorithm. No unknown region was left at the end.

If the GEM algorithm terminates at point 3 with P empty, then it is easy to see that all
the R

d space of x is classified. The ideal GEM algorithm is defined as a modification of the
real GEM algorithm, where the modification is effective only when P becomes empty:

70 Mach Learn (2010) 80: 63–84

THE IDEAL GEM ALGORITHM

Add at the end of point 4 of the real GEM algorithm the following part:
“If P is empty, construct the largest open ball B centered in x1 that contains other (be-
sides x1) k − |Q| − 1 of the instances xi , i ∈ {2,3, . . . ,N} − Q. So, if e.g. k = 20
and |Q| = 18, B contains just one instance and, by enlarging B as much as possible,
it touches another instance at its boundary. Then, let Q = Q ∪ {indexes of the instances
inside and on the boundary of B}, and redefine ŷN (x) = 1 − y(x) for all x in B except

for the instances xi , i ∈ {2,3, . . . ,N} − Q, for which we maintain a correct classification
ŷN (xi) = y(xi); thus, ŷN (x) misclassifies all x �= xi in B.”

The ideal GEM algorithm cannot be used in practice since the redefinition of ŷN (x) in
the ball B requires knowledge of y(x);7 and, moreover, it would not make sense in practice
to deliberately misclassify in B! We show in Theorem 1 that, for the ideal GEM algorithm,
PE(ŷN) is exactly distributed as a Beta variable, independently of (μ,y(·)). We also show
that this Beta can be used to bound the misclassification of the machine obtained with the
real GEM algorithm, which always misclassifies no more than the machine obtained with
the ideal GEM algorithm. Since the modification in the ideal GEM algorithm is effective
only in the special condition of total classification, for normally assumed risk levels the two
algorithms behave the same and the Beta distribution provides tight risk evaluations for the
real GEM algorithm.

Theorem 1 Suppose that the probability μ according to which x values are extracted has
density. Then, the probability distribution of PE(ŷN) for the ideal GEM algorithm is given
by

FPE(z) := μN {PE(ŷN) ≤ z} =
N−1∑
i=k

(
N − 1

i

)
zi(1 − z)N−1−i . (1)

Note that FPE(z) does not depend on the data generation mechanism (μ,y(·)).
Moreover, this FPE(z) “dominates” the probability distribution of PE(ŷN) for the real

GEM algorithm, in the sense that μN {PE(ŷN) ≤ z} ≥ ∑N−1
i=k

(
N−1

i

)
zi(1 − z)N−1−i for this

algorithm.

In the theorem, μN = μ×· · ·×μ is the product probability according to which the exam-
ples EN = (x1, y1), . . . , (xN, yN) are extracted. The right-hand-side of (1) is a Beta(k,N −k)

distribution (see e.g. Schervish 1995), and in words the theorem says that the probability of
error PE(ŷN) of the GEM machine obtained with the ideal GEM algorithm distributes as a
Beta(k,N − k) variable, irrespective of the data generation mechanism (μ,y(·)). Moreover,
for the real GEM algorithm, PE(ŷN) ≤ z holds with probability no less than that for the
ideal GEM algorithm. To visualize the result, the density of a Beta(k,N − k) is depicted in
Fig. 3 for a few values of N and k.

The proof of Theorem 1 is given in Sect. 5. In the next section, we discuss the practical
use of the GEM algorithm, while Sect. 4 presents some empirical results with real data.

7In conformal prediction, (Vovk et al. 2005; Shafer and Vovk 2008), the empty prediction ∅ has been intro-
duced; ∅ always incurs an error. We could have similarly used the empty prediction and output ∅ instead of
1 − y(x) in B, resulting in an implementable algorithm. Nonetheless, in this paper we have preferred not to
enlarge the label set of the classifier by adding ∅ since sticking to 0, 1, unknown is easier and since the ideal
algorithm is here seen as a theoretical tool not for real implementation.

Mach Learn (2010) 80: 63–84 71

Fig. 3 The Beta(k,N − k) density. N = 200, k = 5 (solid), 10 (dashed), 20 (dotted)

3 Practical use of the GEM algorithm

A number of remarks on the interpretation of the result presented in the previous section, as
well as on its practical use, are in order.

(i) The theoretical result. The fact that with the ideal GEM algorithm PE(ŷN) has a
Beta(k,N − k) distribution that does not depend on how the examples are generated is, we
believe, a deep theoretical result. It can be phrased by saying that the distribution of PE(ŷN)

is universal. The Beta(k,N − k) distribution also tightly describes the behavior of the real
GEM algorithm, as confirmed by the empirical results in Sect. 4, and, in any case, it provides
theoretically guaranteed lower bounds for the probability that PE(ŷN) ≤ z.

(ii) A Monte-Carlo test. A Monte-Carlo test was performed for the y(x) function of
Fig. 1(a). N = 200 examples were extracted M = 1000 times. For each multi-extraction
of 200 examples, we constructed the classifier ŷ200 with the ideal GEM algorithm with
k = 5 and then computed the corresponding PE(ŷ200). Note that this computation is here
possible due to the artificial nature of the problem example, i.e. (μ,y(·)) is known. The
histogram obtained from the M = 1000 trials is shown in Fig. 4 against the theoretical
Beta(5,200 − 5) density. Should we have extracted x values according to a probability
density different from the uniform one, or should the y(x) function have been a different
one, the density of PE(ŷ200) would have remained the same.

(iii) Practical use of the result. The Beta(k,N − k) distribution can be used in different
ways.

A first use is that one selects a risk level ε and requires that PE(ŷN) ≤ ε holds with high
probability 1 − δ. Since the Beta(k,N − k) tail is very thin, PE(ŷN) ≤ ε can be enforced
with such a high level of probability that the complement event that PE(ŷN) > ε looses
any practical relevance. To appreciate this behavior, in Table 1 we give the probability that
PE(ŷN) > ε for ε = 5% and N = 1000 for different values of k.

For a quick evaluation of the largest k such that μN {PE(ŷN) > ε} is a rare event with
probability no more than a given δ, one can resort to the Chernoff bound for the Beta tail, see

72 Mach Learn (2010) 80: 63–84

Fig. 4 Histogram of PE(ŷ200)

Table 1 δ := μN {PE(ŷN) > 5%} for different values of k, N = 1000

k 1 2 3 4 5

δ 5.5 × 10−23 2.9 × 10−21 7.9 × 10−20 1.4 × 10−18 1.9 × 10−17

k 10 15 20 25 30

δ 5.4 × 10−13 9.7 × 10−10 2.9 × 10−7 2.4 × 10−5 7.3 × 10−4

(Chernoff 1952) for the original reference or e.g. (Vidyasagar 1997), yielding the following
corollary to Theorem 1:

Corollary 1 Under the assumptions in Theorem 1, given ε, δ ∈ (0,1) we have that
μN {PE(ŷN) ≤ ε} holds with probability 1 − δ both for the ideal and the real GEM algo-
rithm provided that

k ≤ 1

2
(N − 1)ε + ln δ. (2)

Proof Note that (2) implies

ln δ ≥ k − 1

2
(N − 1)ε ≥ k − 1

2
(N − 1)ε − 1 − (1 − k)2

2(N − 1)ε
= −[(N − 1)ε + (1 − k)]2

2(N − 1)ε
,

(3)
so that δ ≥ exp(−[(N−1)ε+(1−k)]2

2(N−1)ε
). On the other hand, the Chernoff bound (Chernoff 1952 or

Vidyasagar 1997) says that the tail for z > ε of a Beta(k,N − k) distribution is no more than

exp(−[(N−1)ε+(1−k)]2
2(N−1)ε

), so leading to the conclusion that

δ ≥ “tail for z > ε of a Beta(k,N − k)” ≥ μN {PE(ŷN) > ε}. �

Mach Learn (2010) 80: 63–84 73

For e.g. N = 1000, ε = 5% and δ = 2.4 × 10−5, (2) gives k = 14 (compare with Table 1
where the real k is 25).

A second use of the Beta(k,N − k) distribution is to tune k so that the total probability
of seeing N examples and that the next (N + 1)-th example is misclassified is below a
fixed threshold. This probability is given by the mean of PE(ŷN), that is by the mean of the
Beta(k,N − k) distribution, which is (see e.g. Schervish 1995):

E[PE(ŷN)] = k

N
. (4)

Thus, with e.g. N = 1000 examples one can be 5% confident that the 1001-st example will
not be misclassified if k = 50.

(iv) An impossibility result. Obtaining a result similar to Theorem 1 for {0,1}-valued
classifiers is impossible. Theorem 1 says that PE(ŷN) distributes as a Beta(k,N − k) vari-
able and, therefore, the probability of the event {PE(ŷN) > z} can be tuned to be small at
will by suitably selecting k and N . In contrast, for {0,1}-valued classifiers the following
FACT holds:

Fact Let ρ > 0 be an arbitrary small number. For any N and for any algorithm generating
{0,1}-valued classifiers, there exists a data generation mechanism (μ,y(·)) such that

μN {PE(ŷN) > ε} ≥ 0.5 − ε − ρ.

This FACT immediately follows from Theorem 7.1 in (Devroye et al. 1996), a theorem
originally proven in (Devroye 1982). Thus, with e.g. ρ = 0.1 we see that μN {PE(ŷN) > ε =
5%} ≥ 0.5 − 0.05 − 0.1 = 0.35 and no algorithm exists guaranteeing that the probability of
error is below 5% with high probability close to 1, no matter how large N is. This is not a
surprising fact: for any large N , there are difficult-to-estimate data generation mechanisms
(μ,y(·)) where the algorithm fails to behave satisfactorily, if the algorithm is not allowed to
issue the unknown symbol.

(v) More general algorithms. An inspection of the proof of Theorem 1 reveals that the
key-property of the ideal GEM algorithm to make the result valid is that, upon termination,
the algorithm has stored k active instances in Q. Other constructions than those in points
2a, 2b, and 2c of the algorithm permits to obtain this result. For example, one can introduce
one more construction where the elements of A and b are constrained in such a way that
the total number of degrees of freedom of the corresponding optimization problem is, say, p

and enter this point only if |Q| ≤ k − p. Theorem 1 easily extends to cover this case. More
generally, along extensions similar to that just traced, the analysis of this paper carries over
to a whole family of variants of the GEM algorithm.

(vi) The case of stochastic y(x). So far we have assumed that, given an x, y(x) is uni-
vocally determined. Generalizing this situation, we can now consider the possibility that
y(x) is not totally determined by x and that it can take value 0 or 1 according to a ran-
dom scheme. To formalize this situation, introduce the space R

d × {0,1} for the examples
(x, y) and let now μ be a probability defined over R

d × {0,1} according to which the ex-
amples are extracted. In this context, ŷN (·) is still a classifier constructed according to the
GEM algorithms that associates just one label (0, 1, or unknown) to each x, and we let
PE(ŷN) = μ((x, y) : ŷN (x) = 0 or 1, and y �= ŷ(x)). The proof of Theorem 1 remains sub-
stantially unchanged, and one can prove that the theorem’s result carries over to this case.

74 Mach Learn (2010) 80: 63–84

4 Empirical results

We present empirical results obtained by applying GEM to some publicly available data sets,
Glass, Iris, BreastW, Haberman, Pima, Bupa, Credit. The first data set has been obtained
from http://www.cs.utsa.edu/~bylander/cs4793/, while the other six have been downloaded
from the UCI machine learning repository, (Asuncion and Newman 2007).

Tables 2–4 display the results obtained with Glass and Iris, where with Iris we have
classified in Table 3 Iris Setosa vs other Iris types (Versicolor and Virginica) and in Table
4 we have eliminated the examples of Iris Setosa from the data set and have classified Iris
Versicolor vs Iris Virginica. k is the tunable parameter in the GEM algorithm; # of errors
is the total number of errors in a 10-fold cross validation. Precisely, we left out each time
a number of examples equal to the integer part of the total number of examples divided
by 10, and these examples were used as a test set. # of errors was then computed as the
sum of the errors found in the test set at each trial. In parentheses, we have reported the
ratio # of errors

total # of test examples , an estimate of the expected probability of error; # of unknowns
and # of correct is obtained similarly to # of errors summing the number of unknowns
and of correctly classified examples in the 10 test sets; the last row gives the theoretical
value of E[PE(ŷN)], computed using (4), so e.g. figure 2.04% in Table 2 is the ratio 3/147,
where 3 = k and 147 is the number of training examples (total number of examples, 163,
minus examples in the test set, 16). This theoretical value should be compared with the
empirical ratio # of errors

total # of test examples , and we notice a tight adherence between the two. The
theoretical value is guaranteed and when the empirical ratio exceeds the theoretical value
we have to impute this to the stochastic fluctuation of the former. In a real application, the
user selects a reliability level and tunes k accordingly, guided by the theory. The algorithm
adjusts the learning machine automatically to hit the desired reliability level, and the user
can a-posteriori inspect the number of unknowns. A large number of unknowns indicates
that the classification problem was a difficult one and the user can select his/her favorite
compromise between reliability and number of unknowns.

In Tables 5 through 9 we have similar results for BreastW, Haberman, Pima, Bupa, Credit.
Strictly speaking, for these data sets Theorem 1 is not applicable because some attributes
are discrete and therefore μ has no density. However, an inspection of the theorem proof
reveals that the existence of the density serves only to prevent degenerate situations from
occurring where some instances fall exactly on the boundary of the region generated by
other instances, a fact that generally does not happen even when μ has no density. Again we
notice a good adherence between the theoretical value and the practical behavior, showing
the robustness of the theoretical result.

We further compared GEM with other methods, the nearest-neighbor classifier (NNC,
Devroye et al. 1996), the support vector machine (SVM, Vapnik 1998; Cristianini and

Table 2 Glass, # of examples = 163

k 3 9 10 20 30 40 44

of errors 3 8 10 16 26 47 48

(1.88%) (5.00%) (6.25%) (10.00%) (16.25%) (29.38%) (30.00%)

of unknowns 127 103 113 75 35 1 0

of correct 30 49 37 69 99 112 112

E[PE(ŷN)] 2.04% 6.12% 6.80% 13.61% 20.41% 27.21% 29.93%

http://www.cs.utsa.edu/~bylander/cs4793/

Mach Learn (2010) 80: 63–84 75

Table 3 Iris Setosa, # of examples = 149

k 2 3 4

of errors 2 3 3

(1.43%) (2.14%) (2.14%)

of unknowns 5 4 0

of correct 133 133 137

E[PE(ŷN)] 1.48% 2.22% 2.96%

Table 4 Iris Versicolor vs Iris Virginica, # of examples = 99

k 3 4 5 6 10

of errors 1 3 5 6 8

(1.11%) (3.33%) (5.56%) (6.67%) (8.89%)

of unknowns 73 64 7 4 0

of correct 16 23 78 80 82

E[PE(ŷN)] 3.33% 4.44% 5.56% 6.67% 11.11%

Table 5 BreastW, # of examples = 683

k 5 10 15 20 25 30 35

of errors 5 12 20 25 26 29 31

(0.74%) (1.76%) (2.94%) (3.68%) (3.82%) (4.26%) (4.56%)

of unknowns 378 347 148 106 49 16 0

of correct 297 321 512 549 605 635 649

E[PE(ŷN)] 0.81% 1.63% 2.44% 3.25% 4.07% 4.88% 5.69%

Table 6 Haberman, # of examples = 294

k 10 20 40 60 80 90 100

of errors 12 24 41 59 85 95 101

(4.14%) (8.28%) (14.14%) (20.34%) (29.31%) (32.76%) (34.83%)

of unknowns 252 217 159 105 39 15 0

of correct 26 49 90 126 166 180 189

E[PE(ŷN)] 3.77% 7.55% 15.09% 22.64% 30.19% 33.96% 37.74%

Shawe-Taylor 2000) with C = ∞ and with finite C, and the simple set covering machine
(SCM, Marchand and Shawe-Taylor 2002; Hussain et al. 2007) of type c (conjunction) and
d (disjunction) and with finite p and s (which provide better performance than the SCM with

76 Mach Learn (2010) 80: 63–84

Table 7 Pima, # of examples = 768

k 10 30 50 100 150 200 250

of errors 9 28 49 114 158 209 241

(1.18%) (3.68%) (6.45%) (15.00%) (20.79%) (27.50%) (31.71%)

of unknowns 724 657 601 402 244 92 0

of correct 27 75 110 244 358 459 519

E[PE(ŷN)] 1.45% 4.34% 7.23% 14.45% 21.68% 28.90% 36.13%

Table 8 Bupa, # of examples = 345

k 10 15 30 50 90 120 135

of errors 11 16 31 50 89 122 129

(3.24%) (4.71%) (9.12%) (14.71%) (26.18%) (35.88%) (37.94%)

of unknowns 308 303 255 203 104 15 0

of correct 21 21 54 87 147 203 211

E[PE(ŷN)] 3.22% 4.82% 9.65% 16.08% 28.94% 38.59% 43.41%

Table 9 Credit, # of examples = 653

k 10 30 50 80 100 135 150

of errors 12 39 66 100 117 153 153

(1.85%) (6.00%) (10.15%) (15.38%) (18.00%) (23.54%) (23.54%)

of unknowns 597 445 339 199 138 13 0

of correct 35 166 245 351 395 484 497

E[PE(ŷN)] 1.70% 5.10% 8.50% 13.61% 17.01% 22.96% 25.51%

infinite p and s). Since all these methods do not use unknowns, to perform a comparison
we chose the k value in GEM to be the first k giving 0 unknowns. Moreover, as explained
above, with GEM at each trial we left out as test examples a number of examples equal to
the integer part of one tenth of the total number of the examples, so that summing up all the
test examples we do not reach exactly the total size of the data set. Thus, to provide a fair
comparison with the other methods, we have multiplied the number of errors observed with
GEM by the ratio between the total number of examples divided by the total number of test
examples. Table 10 gives the results, where the figures for NNC, SVM and SCM have been
taken from (Marchand and Shawe-Taylor 2002). It may seem that GEM does not compare
favorably with the other methods in most of the cases. However, it is important to remark
that the reported figures for SVM and SCM are those that achieved the smallest 10-fold cross
validation error among an exhaustive scan of many values of the free parameters (the kernel
parameter γ and the soft margin parameter C for SVM, and parameters p and s for SCM).
Thus, these parameters are “tuned” to the data set and the figures in Table 10 are underesti-
mates of the real generalization error. On the contrary, with GEM we displayed the results

Mach Learn (2010) 80: 63–84 77

Table 10 # of errors, comparison of different methods

GEM NNC SVM (C = ∞) SVM (finite C) SCM type c SCM type d

Glass 48.2 36 42 34 35 36

BreastW 31.1 29 27 19 18 16

Haberman 103.6 107 111 71 71 93

Pima 243.5 247 243 203 189 206

Bupa 130.9 124 121 107 109 106

Credit 153.7 214 205 190 198 195

obtained in one single algorithmic run and the obtained figures are reliable estimates of the
generalization error, as confirmed by their adherence to the theoretical value of E[PE(ŷN)].

5 Proof of Theorem 1

We start with some set-theory results.
Consider a set Z and two maps m and t as follows.
Let k be a fixed integer. Given a finite set of at least k points of Z, say {z1, z2, . . . , zp}

with p ≥ k, m{z1, z2, . . . , zp} extracts k of these points and returns the set that contains
the extracted points. However, we do not require that m is always defined, that is there can
be sets {z1, z2, . . . , zp} for which m{z1, z2, . . . , zp} is not defined (this will help us in the
construction of m for the classification problem, see later on). What we instead require is
that m is always defined when p = k, in which case m{z1, z2, . . . , zk} = {z1, z2, . . . , zk} since
m extracts a k-dimensional subset.

As for map t , t maps any finite set of exactly k points of Z into a (possibly infinite)
subset A ⊆ Z.

Example 1 Let Z = R. Given a set of reals {z1, z2, . . . , zp}, we can take m{z1, z2, . . . , zp} =
{zmin, zmax}, where zmin and zmax are the min and max numbers in the set. So, k = 2 here.
Also, we define t{z1, z2} = [z1, z2], the interval connecting the two points.

Example 2 (sketched) In the classification problem of this paper, Z is the instance space, m

is the map that selects the “active” instances and t returns the region in Z where the classifier
provides a correct classification. Details are provided later on in this section.

In what follows, R and S indicate two finite subsets of Z, both containing at least k points
of Z. We consider three classes of pairs (R,S):

A = {(R,S) such that: m(R) and m(S) are defined, R ⊆ S, and S ⊆ t (m(R))},
B = {(R,S) such that: m(R) and m(S) are defined, R ⊆ S, and m(S) = m(R)},

C = {(R,S) such that: m(R) and m(S) are defined, R ⊆ S, and m(S) ⊆ R}.
The following proposition establishes a link among A, B, and C .

Proposition 1 A = B if and only if A = C .

78 Mach Learn (2010) 80: 63–84

Example 3 (Example 1 continued) The reader may want to verify that A = B and also A = C
in Example 1.

Proof of Proposition 1 (a) Suppose A = B.
To prove that A = B ⇒ A = C , we show in (a.1) that A ⊆ C and in (a.2) that C ⊆ A.
(a.1) If (R,S) ∈ A, then: m(S) = [since A = B] = m(R) ⊆ R, i.e. (R,S) ∈ C .
(a.2) If (R,S) ∈ C , then

m(S) ⊆ R. (5)

Moreover,

S ⊆ t (m(S)), (6)

as it follows from observing that (S,S) ∈ B so that, being B = A, (S,S) ∈ A and (6) follows.
Thus,

R ⊆ S ⊆ [use (6)] ⊆ t (m(S)) = t (m(m(S))), (7)

where the last equality is true since m extracts a subset of k points, so that m(m(S)) is the
extraction of a subset of k points from m(S) which is already a set of k points, and, hence,
m(m(S)) = m(S).

Equations (5) and (7) together imply that (m(S),R) ∈ A and, owing to that A = B, we
obtain (m(S),R) ∈ B, i.e.

m(m(S)) = m(R),

which in turn gives m(S) = m(R), that is (R,S) ∈ B. Since B = A, the thesis that (R,S) ∈ A
is proven.

(b) Suppose now that A = C .
To prove that A = C ⇒ A = B, we show in (b.1) that A ⊆ B and in (b.2) that B ⊆ A.
(b.1) If (R,S) ∈ A, then S ⊆ t (m(R)) = t (m(m(R))), so that (m(R),S) ∈ A. But A = C

and, therefore, (m(R),S) ∈ C yielding m(S) ⊆ m(R), from which m(S) = m(R) since both
sets contain k points. Whence, (R,S) ∈ B.

(b.2) If (R,S) ∈ B, then m(S) = m(R) ⊆ R and we have that (R,S) ∈ C = A.
Summarizing, in (a) we have proven that A = B ⇒ A = C and in (b) the opposite impli-

cation that A = C ⇒ A = B, so that the proposition statement that A = B and A = C are
equivalent is established. �

We are now in a position to state the following fundamental result.

Theorem 2 Consider a set Z and two maps m and t as above. Introduce a probability
measure μ on Z according to which zi points are independently extracted and suppose
that:

(i) μ has no concentrated mass, i.e. μ(z) = 0, ∀z ∈ Z;
(ii) for any fixed p, m{z1, z2, . . . , zp} is defined except for at most an exceptional set with

zero probability μp;
(iii) A = B.

Given an integer M ≥ k, consider the function ξ : ZM → [0,1] defined through: ξ(z1, z2,

. . . , zM) = μ(t (m{z1, z2, . . . , zM})). Then, ξ has a Beta(M + 1 − k, k) distribution, inde-
pendently of the probability μ.

Mach Learn (2010) 80: 63–84 79

Example 4 (Example 3 continued) In the situation of Example 3, the theorem simply says
that if points are extracted in R through a probability with no concentrated mass, then
μ(t (m{z1, z2, . . . , zM})) = μ(t{zmin, zmax}) = μ[zmin, zmax], i.e. the mass inside the inter-
val [zmin, zmax], is a random variable (it is random through the random extractions of
z1, z2, . . . , zM) that distributes according to a Beta(M − 1,2).

Proof of Theorem 2 A Beta(M + 1 − k, k) distribution has density fBeta(z) = (
M

k−1

)
(M −

k + 1)zM−k(1 − z)k−1. Its moments are

∫ 1

0
zjfBeta(z) dz =

∫ 1

0
zj ·

(
M

k − 1

)
(M − k + 1)zM−k(1 − z)k−1 dz =

(
M+j−k

j

)
(
M+j

M

) , (8)

as it can be verified by integration by parts. We want to establish the result that the moments
of ξ are indeed given by the right-hand-side of (8), viz.

E[ξ j] =
(
M+j−k

j

)
(
M+j

M

) , j = 1,2, . . . , (9)

which is enough to prove that ξ is distributed as a Beta(M +1−k, k) since the distribution of
a random variable with compact support (the support of ξ is [0,1]) is completely determined
by its moments (see e.g. Corollary 1, §12.9, Chap. II of Shiryaev 1996).

To prove (9), argue as follows: ξ = μ(t (m{z1, z2, . . . , zM})) is the probability that one
more point z extracted according to probability μ falls in t (m{z1, z2, . . . , zM}), so that ξ j is
the probability that j more points independently extracted all fall in t (m{z1, z2, . . . , zM}),
i.e.

ξ j = μj
(
zM+1, . . . , zM+j ∈ t (m{z1, z2, . . . , zM})),

or, more compactly with the notation zn
m = {zm, zm+1, . . . , zn},

ξ j = μj
(
z
M+j

M+1 ⊆ t (m(zM
1))

)
.

E[ξ j] is the mean of ξ j when zM
1 is let vary according to the probability μM . Hence, using

notation Zn
m for the domain Z × · · · × Z in which zn

m vary, we have

E[ξ j] =
∫

ZM
1

ξ j dμM

=
∫

ZM
1

μj
(
z
M+j

M+1 ⊆ t (m(zM
1))

)
dμM

= [I(A) = indicator function of set A]

=
∫

ZM
1

[∫

Z
M+j
M+1

I

(
z
M+j

M+1 ⊆ t (m(zM
1))

)
dμj

]
dμM

=
∫

Z
M+j
1

I

(
z
M+j

M+1 ⊆ t (m(zM
1))

)
dμM+j .

Now, let I = {i1, . . . , iM} be a generic subset of M indexes from {1,2, . . . ,M + j} and
let I be the family of all possible choices of I (I contains

(
M+j

M

)
elements). Moreover,

80 Mach Learn (2010) 80: 63–84

let Ī = {1,2, . . . ,M + j} − I . Since all zi are extracted independently and with the same
distribution, each group of M points zi has identical statistical properties as any other group;
therefore, if we indicate with zI the set of points zi, i ∈ I , we have that

∫

Z
M+j
1

I

(
z
M+j

M+1 ⊆ t (m(zM
1))

)
dμM+j =

∫

Z
M+j
1

I

(
zĪ ⊆ t (m(zI))

)
dμM+j , ∀I ∈ I.

Whence,

E[ξ j] =
∫

Z
M+j
1

I

(
z
M+j

M+1 ⊆ t (m(zM
1))

)
dμM+j

= 1(
M+j

M

)
∑
I∈I

∫

Z
M+j
1

I

(
zĪ ⊆ t (m(zI))

)
dμM+j

= 1(
M+j

M

)
∫

Z
M+j
1

∑
I∈I

I

(
zĪ ⊆ t (m(zI))

)
dμM+j . (10)

The indicator function in the integrand requires that zĪ ⊆ t (m(zI)). On the other hand,
(zI , zI) ∈ B which, by the fact that B = A, yields zI ⊆ t (m(zI)). Therefore, we can add
the indexes i ∈ I in the indicator function without any change of the result and write

I

(
zĪ ⊆ t (m(zI))

)
= I

(
z
M+j

1 ⊆ t (m(zI))
)

.

Further invoking Proposition 1, we see that the theorem condition (iii) that A = B implies
that A = C , so a pair (R,S) is in A if and only if it is in C . Thus, with R = zI and S = z

M+j

1 ,
we have

I

(
z
M+j

1 ⊆ t (m(zI))
)

= I

(
m(z

M+j

1) ⊆ zI
)

.

Substituting in turn the last two equations in (10), we come to the result that

E[ξ j] = 1(
M+j

M

)
∫

Z
M+j
1

∑
I∈I

I

(
m(z

M+j

1) ⊆ zI
)

dμM+j . (11)

To complete the computation of E[ξ j], observe now that points z1, z2, . . . , zM+j are with
probability 1 all distinct since μ(z) = 0, ∀z ∈ Z (assumption (i)), and therefore the sum
under the integral amounts to compute the number of times that a subset zI of M points
from a set z

M+j

1 of M + j distinct points contains a fixed set m(z
M+j

1) of k points in the set
z
M+j

1 . Since these k points are fixed, we have to decide which j points among the remaining
M + j − k in z

M+j

1 have to be left out of zI , and the number of possible different choices is(
M+j−k

j

)
. Substituting in (11) yields (9), and this completes the proof. �

We shall now prove Theorem 1 as an application of Theorem 2.
We start by considering the ideal GEM algorithm.
Throughout, (x1, y1) is regarded as a given initial example which we suppose fixed,

and derive the distribution of PE(ŷN) as a function of the remaining N − 1 examples
(x2, y2), . . . , (xN, yN). In more technical terms, we derive the conditional distribution of
PE(ŷN) given (x1, y1). This distribution turns out to be a Beta(k,N − k) regardless of
(x1, y1), so that, by integration with respect to (x1, y1), the distribution of PE(ŷN) is proven
to be a Beta(k,N − k).

Mach Learn (2010) 80: 63–84 81

The data generation mechanism (μ,y(·)) has to be thought of as given and fixed through-
out (even though it is unknown). Therefore an example (xi, yi) = (xi, y(xi)) is determined
once xi has been assigned.

For easy reference, we notice that Theorem 2 will be applied to establish Theorem 1 with
the following positions:

– Z = R
d , the instance space;

– the probability μ of Theorem 2 is the probability μ with which xi instances are observed.
Note that condition (i) of Theorem 2 is satisfied because μ in Theorem 1 has density;

– zi = xi+1, i = 1,2, . . . (remember that x1 plays a special role of “initial” instance);
– for any p ≥ k, suppose we apply the ideal GEM algorithm with N = p + 1. Then, upon

termination, the algorithm has stored in Q at least k indexes taken from {2,3, . . . , p + 1}
and, whenever they are exactly k, we define m through relation m{x2, x3, . . . , xp+1} =
{xi, i ∈ Q}. Later, we shall prove that Q contains exactly k indexes with probability 1,
that is condition (ii) in Theorem 2 is fulfilled;

– given k examples with instances xi1 , xi2 , . . . , xik (besides the initial example (x1, y1)),
t (xi1 , xi2 , . . . , xik) is by definition the set in R

d that is correctly classified or classi-
fied as unknown by the classifier constructed by the ideal GEM algorithm applied to
xi1 , xi2 , . . . , xik ;

– M = N − 1.
By these positions, we have that PE(ŷN) = 1−μ(t (m{x2, x3, . . . , xN })), which simply

means that the probability of error of the classifier is 1 minus the probability μ of the
region where it correctly classifies, or classifies as unknown. If we prove the applicability
of Theorem 2, then μ(t (m{x2, x3, . . . , xN })) distributes as a Beta(N − k, k) so that the
complementary variable PE(ŷN) distributes as a Beta(k,N − k) and the proof for the
ideal GEM algorithm is complete. We therefore see that all that remains to be proven is
that conditions (ii) and (iii) of Theorem 2 hold in our present context of application.

To prove (ii), we start off by showing the validity of the following property

(P) the optimization program in point 2a of the GEM algorithm returns the same so-
lution if we remove all the constraints (xi − xB)T A(xi − xB) + bT (xi − xB) ≥ 1,

i ∈ P such that yi �= y(xB), but at most (d(d + 1)/2 + d) of them, suitably selected.

This property is a consequence of the fact that this program is a convex program in
(d(d + 1)/2 + d) variables, where d(d + 1)/2 are the free parameters of A (remember that
A is symmetric) and d are the free parameters of b. To formally show property (P), assume
for the sake of contradiction that no choice of at most (d(d + 1)/2 + d) constraints exists
that maintains the solution unaltered. For any given i ∈ P such that yi �= y(xB), consider the
set Hi of (A,b), A � 0, pairs that satisfy the associated constraint:

Hi = {
(A,b) such that (xi − xB)T A(xi − xB) + bT (xi − xB) ≥ 1

}
.

Also consider one more set H0 of (A,b), A � 0, pairs defined as

H0 = {(A,b) that outperforms the solution of the program in point 2a} .

In this latter definition “outperforms” means that the Trace(A) is lower than Trace(A∗), or,
for equal Trace, b has lower norm than b∗, or, for equal b norm, the lexicographic rule favors
(A,b) over (A∗, b∗). An easy inspection shows that all these sets are convex, i.e. if (A1, b1)

and (A2, b2) belong to one set, also α(A1, b1) + (1 − α)(A2, b2), α ∈ [0,1], belong to the

82 Mach Learn (2010) 80: 63–84

same set. Moreover, the intersection of any (d(d +1)/2+d)+1 of these sets is always non-
empty. Indeed, the intersection of (d(d + 1)/2 + d) + 1 sets Hi , i �= 0, is clearly non-empty
since an (A,b) with b = 0 and A = aI with a large enough belongs to the intersection. If
instead H0 is in the group of (d(d + 1)/2 +d)+ 1 sets, then there are only (d(d + 1)/2 +d)

sets of the type Hi , i �= 0, but then, by the assumption made for the sake of contradiction,
the solution of the program with only the constraints associated with these (d(d + 1)/2 + d)

sets will be different from the solution of the whole program, and therefore this solution will
outperform the solution of the whole program. This means that this solution is also in H0,
proving that the intersection of all the (d(d +1)/2+d)+1 sets is non-empty in this case too.
Now, resorting to Helly’s theorem (see e.g. Rockafellar 1970) yields that the intersection of
all the sets, viz. ∩i∈P,yi �=y(xB)Hi ∩H0, is non-empty. This last relation means that we can find
a pair (A∗∗, b∗∗) which is simultaneously in all the sets Hi , i ∈ P,yi �= y(xB), and therefore
it satisfies all constraints (xi − xB)T A(xi − xB) + bT (xi − xB) ≥ 1, and that is also in H0,
and therefore it outperforms (A∗, b∗). But (A∗, b∗) is the optimal solution, and this is a
contradiction. Hence, we have proven (P).

Based on (P), we prove now property (ii). Suppose first that the algorithm last executes,
among 2a, 2b, and 2c, point 2a before termination. Since point 2a is entered only when |Q| ≤
k − (d(d +1)/2+d), having |Q| > k after executing point 2a implies that the algorithm has
found more than (d(d + 1)/2 + d) active instances while executing point 2a. But we have
shown in (P) that at most (d(d + 1)/2 + d) constraints determine the solution and, to have
more than (d(d + 1)/2 + d) active instances, at least one of the other instances must fall
exactly on the boundary of the region generated by the at most (d(d + 1)/2 + d) instances
that determine the solution, a fact that happens only with probability 0 since μ has density.

A similar rationale permits one to conclude that |Q| > k only happens with probability
0 when the algorithm last executes points 2b or 2c. We have therefore proven that |Q| = k

with probability 1 upon termination of the algorithm and condition (ii) is established.
We finally prove condition (iii), i.e. that A = B.
Suppose that a set of instances S has a subset R, that m(S) and m(R) are defined, and

that S is in t (m(R)), i.e. (R,S) ∈ A. This means that the examples whose instances are in
S −R are correctly classified, or classified as unknown, by the classifier constructed with the
examples with instances in R. If so, an easy inspection of the GEM algorithm reveals that
m(S) = m(R), so that (R,S) ∈ B. Vice versa, suppose (R,S) ∈ B. The region of correct
classification, or classified as unknown, for the classifier generated by the examples with
instances in S contains S itself since the ideal GEM algorithm does not misclassify any
example. Thus,

S ⊆ region of correct classification, or classified as unknown,

for the classifier generated by the examples with instances in S

= t (m(S))

= [since (R,S) ∈ B implies m(S) = m(R)]
= t (m(R)),

and it remains proven that (R,S) ∈ A. We have therefore proven condition (iii) that A = B,
and this completes the proof for the ideal GEM algorithm.

The result that the probability distribution of PE(ŷN) for the ideal GEM algorithm dom-
inates that for the real GEM algorithm immediately follows from observing that PE(ŷN) is,
by construction, always no bigger for the latter than for the former.

Mach Learn (2010) 80: 63–84 83

Acknowledgements This research was supported by MIUR (Ministero dell’Istruzione, dell’Universita’ e
della Ricerca). I feel indebted with two anonymous reviewers for insightful comments that helped improve
this manuscript. A special thank goes to Dr. A. Care’ for performing the empirical experiments of Sect. 4. An
openly distributed software that implements GEM is available at http://bsing.ing.unibs.it/~algo.care/GEM/.

References

Anthony, M. (2004). Generalization error bounds for threshold decision lists. Journal of Machine Learning
Research, 5, 189–217.

Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. University of Califor-
nia, Irvine, School of Information and Computer Sciences. URL: http://www.ics.uci.edu/~mlearn/
MLRepository.html.

Bartlett, P. L., & Wegkamp, M. H. (2008). Classification with a reject option using a hinge loss. Journal of
Machine Learning Research, 9, 1823–1840.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of obser-
vations. Annals of Mathematical Statistics, 23, 493–507.

Chow, C. K. (1957). An optimum character recognition system using decision functions. IRE Transactions
on Electronic Computers, 6, 247–254.

Chow, C. K. (1970). On optimum recognition error and reject tradeoff. IEEE Transactions on Information
Theory, 16, 41–46.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-
based learning methods. Cambridge: Cambridge University Press.

Devroye, L. (1982). Necessary and sufficient conditions for the almost everywhere convergence of near-
est neighbor regression function estimates. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte-
gebiete, 61, 467–481.

Devroye, L., Gyorfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recognition. New York:
Springer.

Ferri, C., Hernandez-Orallo, J., & Salido, M. A. (2003). Volume under the roc surface for multi-class prob-
lems. In 14th European conference on machine learning (pp. 108–120).

Fraser, D. A. S. (1951). Sequentially determined statistically equivalent blocks. Annals of Mathematical Sta-
tistics, 22, 372–381.

Fraser, D. A. S. (1953). Nonparametric tolerance regions. Annals of Mathematical Statistics, 24, 44–55.
Fraser, D. A. S. (1957). Nonparametric methods in statistics. New York: Wiley.
Fraser, D. A. S., & Guttman, I. (1956). Tolerance regions. Annals of Mathematical Statistics, 27, 162–179.
Freund, Y., Mansour, Y., & Schapire, R. E. (2004). Generalization bounds for averaged classifiers. Annals of

Statistics, 32(4), 1698–1722.
Gyorfi, L., Gyorfi, Z., & Vajda, I. (1978). Bayesian decision with rejection. Problems of Control and Infor-

mation Theory, 8, 445–452.
Herbei, R., & Wegkamp, M. H. (2006). Classifcation with reject option. Canadian Journal of Statistics, 34(4),

709–721.
Hussain, Z., Laviolette, F., Marchand, M., Shawe-Taylor, J., Brubaker, S. C., & Mullin, M. D. (2007). Revised

loss bounds for the set covering machine and sample-compression loss bounds for imbalanced data.
Journal of Machine Learning Research, 8, 2533–2549.

Kemperman, J. H. B. (1956). Generalized tolerance limits. Annals of Mathematical Statistics, 27, 180–186.
Klivans, A. R., & Servedio, R. A. (2006). Toward attribute efficient learning of decision lists and parities.

Journal of Machine Learning Research, 7, 587–602.
Marchand, M., & Shawe-Taylor, J. (2002). The set covering machine. Journal of Machine Learning Research,

3, 723–746.
Marchand, M., & Sokolova, M. (2005). Learning with decision lists of data-dependent features. Journal of

Machine Learning Research, 6, 427–451.
Muzzolini, R., Yang, Y. H., & Pierson, R. (1998). Classifier design with incomplete knowledge. Journal of

American Statistical Association, 31, 345–369.
Pietraszek, T. (2005). Optimizing abstaining classifiers using roc analysis. In 22nd European conference on

machine learning (pp. 665–672).
Rivest, R. L., & Sloan, R. (1988). Learning complicated concepts reliably and usefully. In Proceedings of the

1st annual workshop on computational learning theory (pp. 69–79), San Mateo, CA, USA.
Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press.
Ruckert, U., & Kramer, S. (2004). Towards tight bounds for rule learning. In Proceedings of the 21st inter-

national conference on machine learning, Banff, Alberta, Canada.

http://bsing.ing.unibs.it/~algo.care/GEM/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

84 Mach Learn (2010) 80: 63–84

Schervish, M. J. (1995). Theory of statistics. New York: Springer.
Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge: MIT Press.
Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9,

371–421.
Shiryaev, A. N. (1996). Probability. New York: Springer.
Tukey, J. W. (1947). Nonparametric estimation II. Statistically equivalent blocks and tolerance regions—the

continuous case. Annals of Mathematical Statistics, 18, 529–539.
Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.
Vidyasagar, M. (1997). Theory of learning and generalization: with applications to neural networks and

control systems. London: Springer.
Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic learning in a random world. New York:

Springer.
Wald, A. (1943). An extension of Wilks’ method for setting tolerance limits. Annals of Mathematical Statis-

tics, 14, 45–55.
Wilks, S. S. (1941). Determination of sample sizes for setting tolerance limits. Annals of Mathematical Sta-

tistics, 12, 91–96.

	Classification with guaranteed probability of error
	Abstract
	Introduction
	Preliminaries and notations
	The stochastic nature of PE(yN)
	The guaranteed error machine
	Bibliographical notes

	The GEM algorithm
	Practical use of the GEM algorithm
	Empirical results
	Proof of Theorem 1
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

