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1 Introduction

Model Predictive Control (MPC) is a methodology to determine control actions
in the presence of constraints that has proven effective in many real applications.
Instead of addressing an infinite-horizon problem, which would be hard to deal
with due to computational difficulties, in MPC one solves at each point in time
a finite-horizon constrained problem, and implements only the first control ac-
tion that has been determined; then, the procedure is repeated at the next instant
of time by shifting the prediction horizon ahead of one unit of time (receding
horizon).

In many control problems, disturbances are a fundamental ingredient. In MPC,
disturbances have been dealt with along two different approaches, namely robust
MPC and stochastic MPC. In robust MPC (e.g., [4, 5, 23, 34, 47, 50]), the control
cost is optimized against the worst disturbance realization, while also guaranteeing
constraints satisfaction. The drawback with this approach is that it generates conser-
vative control actions. To overcome this drawback, an average cost with probabilis-
tic constraints is considered in stochastic MPC where a violation of the constraints
is accepted provided the probability of this to happen is kept below a given thresh-
old (e.g., [3, 9, 18, 19, 21, 46, 49, 53]). In the stochastic optimization literature,
probabilistic constraints of this type are often called “chance-constraints,” see, e.g.,
[44, 45].
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Chance-constraints are known for being very hard to deal with. One reason is that
they are highly non-convex even when the original problem is born within a convex
setup where the constraints are convex for any given realization of the disturbance.
As a matter of fact, solutions to MPC with chance-constrained constraints have
been proposed for specific cases only such as linear systems with either bounded
and i.i.d. (independent and identically distributed) [9, 18, 19] or Gaussian [21] dis-
turbances. In this chapter, we describe an alternative scheme to deal with stochas-
tic MPC ([43]). This scheme is grounded in some recent developments in stochas-
tic optimization where the chance-constraints are replaced by variants obtained by
sampling finitely many realizations of the disturbance (scenario approach). Consid-
ering a finite sample of realizations makes the problem computationally tractable
while the link to the original chance-constrained problem is established by a rig-
orous theory. With this approach, one gains the important advantage that no as-
sumptions on the disturbance, such as boundedness, independence or Gaussianity, is
required.

This chapter is organized as follows. In the first section the mathematical setup
of study is introduced. After a digression to summarize some relevant results of the
scenario approach in Section 3, Section 4 describes how the scenario methodology
can be applied to MPC. The closing Section 5 presents a simulation study for a
mechanical system.

2 Stochastic MPC and the Use of the Scenario Approach

Consider a linear system whose state xt ∈ R
n evolves according to the equation

xt+1 = Axt +But +Dwt ,

where ut ∈R
m is the control input, wt ∈R

l , l ≤ n, is a stochastic disturbance with a
possibly unbounded support, and D is full-rank.

We assume that the entire state vector of the system is known at each time instant
and focus on the finite-horizon optimization problem that needs to be solved at each
point in time τ of a stochastic MPC scheme that implements a receding horizon
strategy. Specifically, we consider the following quadratic cost

J = E

[
M

∑
i=1

xT
τ+iQixτ+i +

M−1

∑
i=0

uT
τ+iRiuτ+i

]
, (1)

where M is the horizon length and Qi = QT
i ' 0 and Ri = RT

i ( 0 have appropriate
dimensions, subject to the probabilistic constraint:

P{ f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1)≤ 0} ≥ 1− ε , (2)
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2 Stochastic MPC and the Use of the Scenario Approach 447

where f : Rn×M+m×M → R
q is a q-dimensional function and the inner inequality

in (2) is interpreted componentwise. In the above expressions, probability P refers to
the stochastic nature of the disturbance and E is the expected value associated with it.
In the probabilistic constraint (2), condition f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1) ≤ 0
is not required to hold for all possible disturbance realizations and parameter
ε ∈ (0,1) quantifies the admissible probability of constraint violation. Allowing for
an ε violation improves the control system performance and, moreover, when the
disturbance has unbounded support, allowing for a small probability of constraint
violation can be the only way to avoid infeasibility of the optimization problem. In
practice, applications exist where violating a constraint may result in severe dam-
ages of equipments or in important malfunctionings, in which case one may not
be willing to allow for an ε-violation. In many other cases, however, sporadic con-
straint violations are tolerable and cause little damage. For example, exceeding the
load capacity in power lines for a short time does not cause any plant damages and,
in a totally different field, high blood glucose is not a cause of cellular damage if it
happens for short periods. Similar examples can be found in a variety of contexts.
This is the frame where stochastic MPC finds application.

In many cases, function f in (2) is used to enforce input saturation constraints in
addition to constraints on the allowed state values. If, for instance, f is given by

f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1) =

⎡
⎣ sup

i=0,...,M−1
‖Suτ+i‖∞− ū

sup
i=1,...,M

‖Cxτ+i‖∞− ȳ

⎤
⎦ , (3)

where S and C are matrixes in Rq×m and Rp×n respectively, then, ū and ȳ are limits
on linear combinations of the inputs and of the state values. In the following, we
shall consider generic but convex functions f .

Note that when the noise is Gaussian and constraints are missing, minimizing (1)
gives a standard LQG control problem which admits analytical solution. Instead,
in the presence of constraints, or when the noise is not Gaussian, the problem of
finding the optimal solution becomes quite challenging. Hence, one can concentrate
on specific structures by which the control actions are determined.

To find a suitable structure, one can think of reconstructing the noise from the
state according to the equation

wτ+i = D†(xτ+i+1 −Axτ+i −Buτ+i),

where D† is pseudo-inverse and then parameterize the control action as an affine
function of the disturbance

uτ+i = γi +
i−1

∑
j=0
θi, jwτ+ j, (4)
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with γi ∈ R
m and θi, j ∈ R

m×n.1 This parametrization was indeed proposed in [30]
(and, independently in [6]) where it was also shown that (4) is equivalent to consid-
ering policies that are affine in the state (i.e., to every affine in the state policy μτ+i,
there correspond γi and θi, j such that (4) returns the same control action as μτ+i and
vice versa).

The fundamental advantage gained by adopting (4) is that the control cost and
the constraints become convex in the variables γi and θi, j (when the control action
is parameterized as an affine function of the state, this fails to be true). We shall
write this control cost and the constraints explicitly in Section 4 after introducing
suitable notations. There, we shall further show that by sampling the noise realiza-
tions (scenario approach) and enforcing the constraints only on the realizations that
have been sampled, one obtains a standard convex problem that can be solved with
conventional optimization methods. The so-found solution carries precise guaran-
tees of satisfaction of the original chance-constrained constraint. Proving this deep
result calls for the use of the scenario theory that is briefly summarized in the next
section.

3 Fundamentals of Scenario Optimization

Consider the following constrained convex optimization problem

min
x∈X ⊆Rd

�(x) subject to:

x ∈Xδ , δ ∈ Δ ,
(5)

where �(x) is a convex function, δ ∈Δ is an uncertain parameter, and X and Xδ are
convex and closed sets. In normal situations, Δ has infinite cardinality. Uncertainty
in (5) can be dealt with along two distinct approaches. The first one consists in en-
forcing satisfaction of all constraints, that is one optimizes the cost �(x) over the set⋂
δ∈ΔXδ (robust approach). Alternatively, one may want to satisfy the constraints

with “high probability” (stochastic approach). Along this second approach one sees
the uncertainty parameter δ as a random element with a probability P, and seeks a
solution that violates at most a fraction of the constraints that has small probability
(chance-constrained solution). This second approach is often more advantageous in
that it returns less conservative designs.

Notoriously, finding a solution to (5) that carries a high probability of constraints
satisfaction is a very difficult task [44]. In [7, 8], the following scenario problem is
introduced, where N values of δ , say δ (1), . . . ,δ (N), are randomly sampled from P

one independently of the others and these N values provide the only constraints that
are enforced in the optimization problem:

1 Often, the total number of parameters is reduced as compared to (4) by imposing internal relation
among parameters. This is further discussed in Section 4. When all θi, j are set to zero, one obtains
a classical setup where optimization is directly performed on the control actions.
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3 Fundamentals of Scenario Optimization 449

min
x∈X ⊆Rd

�(x) subject to:

x ∈Xδ (i) , i ∈ {1,2, . . . ,N}.
(6)

Since (6) has a finite number of constraints, it can be solved at low computational
cost. On the other hand, the obvious question to ask is whether (6) gives a chance-
constrained solution. An answer is found in the following fundamental theorem that
has been established in [12].2

Definition 1 (violation probability). The violation probability of a given x ∈X is
defined as V (x) = P{δ ∈ Δ : x /∈Xδ}.

Theorem 1 ([12]). Let x∗N be the solution to (6). It holds that

P
N{V (x∗N)> ε} ≤

d−1

∑
i=0

(
N
i

)
ε i(1− ε)N−i. (7)

From (7) one obtains that PN{V (x∗N)≤ ε}≥ 1−∑d−1
i=0

(N
i

)
ε i(1−ε)N−i, which shows

that the cumulative probability distribution of V (x∗N) is bounded by a Beta distribu-
tion. This result, as all results in the scenario theory, is distribution-free, that is, it
holds for all distributions P. Moreover, it is not improvable since in [12] it is proven
that the result is tight and holds with equality for a class of problems there named
“fully-supported.” By setting ∑d−1

i=0

(N
i

)
ε i(1− ε)N−i ≤ β , the interpretation of Theo-

rem 1 is that the scenario solution is, with (high) probability 1−β , a feasible solu-
tion for a chance-constrained problem where one is allowed to violate an ε-fraction
of the constraints.

To offer a more immediate understanding of the theorem, a pictorial representa-
tion of the result is given in Figure 1. In the figure, the N samples δ (1), . . . , δ (N)

are represented as a single multi-sample (δ (1), . . . , δ (N)) from ΔN . In ΔN there
is a “bad set” represented in grey such that, if we extract a multi-sample in the
bad set, then the theorem does not provide us with any conclusions. This, how-
ever, happens with tiny probability since β can be made very small, say 10−10,
without having to increase N excessively (this fact is discussed in [12] and it is
also touched upon later in this chapter for the particular setup of MPC). In all
other cases, the multi-sample maps into a finite convex optimization problem, the
scenario problem, that we can easily solve and the corresponding solution auto-
matically satisfies all the other unseen constraints except for a small fraction ε
of them.

Scenario optimization has been introduced in [7], and has ever since attracted
an increasing interest. Robustness properties have been studied in [8, 12, 20]
and, under regularization and structural assumptions, further investigated in [2, 11,

2 In [12], a mild assumption of existence and uniqueness of the solution (Assumption 1 in [12]) is
made which we do not report here for conciseness of presentation. Moreover, paper [12] considers
linear cost functions but the extension to generic convex functions is straightforward.

marco.campi@unibs.it



450 Marco C. Campi, Simone Garatti, and Maria Prandini

optimization
direction

Fig. 1: Visualization of Theorem 1.

48, 55]. Papers [13, 29] consider constraints removal, and [54] examines multi-
stage problems. Generalizations to a non-convex setup are proposed in [1, 28, 31].
See also [8, 16, 24, 36, 42, 51, 52] for a comparison of scenario optimization
with other methods in stochastic optimization. Besides MPC, scenario optimiza-
tion has found application to fields ranging from machine learning and prediction
[10, 15, 22, 37] to quantitative finance [33, 39–41], from management to con-
trol design [16]. For next use in this chapter, we also recall here the main result
from [29].

Theorem 2 ([29]). Fix a value k ≤ N; remove k constraints from problem (6) ac-
cording to a given, arbitrary, rule; find the solution x∗k,N of the so-obtained problem,
and assume that the rule has been designed so that the k constraints that have been
removed are violated.3 It holds that

P
N{V (x∗k,N)> ε} ≤

(
k+d −1

k

) k+d−1

∑
i=0

(
N
i

)
ε i(1− ε)N−i. (8)

Constraints removal is important to improve the performance of the scenario
program and Theorem 2 quantifies the violation when a solution that violates k
constraints is considered.

3 Violation of the removed constraints must hold almost surely with respect to the scenario realiza-
tions and for any N, see [29] for a broad discussion.
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4 The Scenario Approach for Solving Stochastic MPC

By defining the following vectors of state, input, and disturbance signals

x+ =

⎡
⎢⎢⎢⎣

xτ+1

xτ+2
...

xτ+M

⎤
⎥⎥⎥⎦ u =

⎡
⎢⎢⎢⎣

uτ
uτ+1

...
uτ+M−1

⎤
⎥⎥⎥⎦ w =

⎡
⎢⎢⎢⎣

wτ
wτ+1

...
wτ+M−1,

⎤
⎥⎥⎥⎦

one can write
x+ = Fxτ +Gu+Hw

u = Γ +Θw,
(9)

where matrices F, G, and H are given by

F =

⎡
⎢⎢⎢⎣

A
A2

...
AM

⎤
⎥⎥⎥⎦ G =

⎡
⎢⎢⎢⎢⎣

B 0n×m · · · 0n×m

AB B
. . .

...
...

. . .
. . . 0n×m

AM−1B · · · AB B

⎤
⎥⎥⎥⎥⎦ H =

⎡
⎢⎢⎢⎢⎣

D 0n×l · · · 0n×l

AD D
. . .

...
...

. . .
. . . 0n×l

AM−1D · · · AD D

⎤
⎥⎥⎥⎥⎦ ,

and Γ andΘ contain the parameters of the control law and are given by

Γ =

⎡
⎢⎢⎢⎣
γ0
γ1
...

γM−1

⎤
⎥⎥⎥⎦ Θ =

⎡
⎢⎢⎢⎢⎣

0m×l 0m×l · · · 0m×l

θ1,0 0m×l
. . .

...
...

. . .
. . . 0m×l

θM−1,0 · · · θM−1,M−2 0m×l

⎤
⎥⎥⎥⎥⎦ .

Let us start by considering the constraints. Since the state and input vectors x+
and u are linear functions of the design parameters Γ and Θ (equation (9)), and
function f (x+,u) in (2) is convex, then f (Fxτ +GΓ +(H+GΘ)w,Γ +Θw) is a
convex function of Γ andΘ .

As for the control cost (1), letting

Q =

⎡
⎢⎣

Q1 · · · 0n×n
...

. . .
...

0n×n · · · QM

⎤
⎥⎦ R =

⎡
⎢⎣

R0 · · · 0m×m
...

. . .
...

0m×m · · · RM−1

⎤
⎥⎦

the cost can be expressed as follows:

J(Γ ,Θ) = E
[
xT
+Qx++uT Ru

]
= (Fxτ +GΓ )T Q(Fxτ +GΓ )+2(Fxτ +GΓ )T Q(H+GΘ) ·E [w]

+ tr
[
(H+GΘ)T Q(H+GΘ) ·E

[
wwT ]]+Γ T RΓ +2Γ T RΘ ·E [w]

+ tr
[
ΘT RΘ ·E

[
wwT ]] ,
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which is a quadratic convex function of Γ andΘ .
Hence, the optimization problem to be solved at time τ can be written as the

following chance-constrained optimization problem

min
Γ ,Θ

J(Γ ,Θ) subject to:

P{ f (Fxτ +GΓ +(H+GΘ)w,Γ +Θw)≤ 0} ≥ 1− ε .
(10)

As it has been remarked in previous sections, the probabilistic constraint in (10)
poses severe difficulties that can even lead to a conundrum in solving the problem.
In the scenario approach, this difficulty is addressed by replacing the infinite amount
of noise realizations with finitely many realizations sampled according to the noise
distribution, as described in the following. Let w(i), i = 1,2, . . . ,N, be realizations
of the noise vector w obtained by simulating the model of the noise.4 In this context,
the scenario problem is written as

min
Γ ,Θ

J(Γ ,Θ) subject to:

f (Fxτ +GΓ +(H+GΘ)w(i),Γ +Θw(i))≤ 0, i ∈ {1,2, . . . ,N},
(11)

which corresponds to replacing the probabilistic constraint in (10) with N determin-
istic constraints, one for each noise realization.

Problem (11) is a standard convex optimization problem, with a convex cost
J(Γ ,Θ) and a finite number of convex constraints. Problems of this type can be
efficiently solved via standard numerical solvers like those implemented in the in-
terfaces CVX [32] or YALMIP [35]. Moreover, by using the theory presented in the
previous section, one can show that the following result holds.

Theorem 3. Select a “confidence parameter” β ∈ (0,1). Then, the solution
(Γ ∗

N ,Θ ∗
N) to the scenario problem (11) satisfies the relation

P{ f (Fxτ +GΓ ∗
N +(H+GΘ ∗

N)w,Γ ∗
N +Θ ∗

Nw)≤ 0} ≥ 1− ε ,

with probability no smaller than 1 − β , where (d is the number of optimization
variables)

ε = min

{
2
N

(
ln

1
β
+d

)
,1

}
. (12)

Theorem 3 states that the scenario solution is feasible for problem (10) where ε
is given by the right-hand side of (12) with confidence 1−β . The scenario solution
cannot be guaranteed to be always feasible because of the stochastic nature of its
construction. However, infeasibility is such a rare event that it can be neglected in
practice. To see this, fix ε and make N explicit in (12) with respect to ε and β , so
obtaining

4 In a standard LQG setting, this would require generating M independent Gaussian noise terms
for each realization. In the scenario approach, however, there is no limitation on the noise structure
and the noise can, e.g., be generated by an ARMA (Auto-Regressive Moving-Average system) or
by any other model.
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N =
2
ε

(
ln

1
β
+d

)
.

Here, N increases logarithmically with 1/β , so that enforcing a very small value
of β , like β = 10−7 or even β = 10−10, can be done without rising N to too high
values.

Formula (12) provides an explicit expression for ε as a function of N and β and
can be derived from Theorem 1. Precisely, equation (12) is obtained by making
explicit the right-hand side of equation (7) with respect to ε; see [2] for technical
details.

Further, the cost function in the scenario problem (11) can be improved by re-
moving some of the scenario constraints. The price to pay for this is an increase
in the violation probability ε . To be precise, suppose that, from the N disturbance
realizations, k realizations are removed according to Algorithm 1.5

The so-obtained solution satisfies the remaining N − k constraints and is fea-
sible, with probability no smaller than 1 − β , for the chance-constrained prob-
lem (10) with a violation probability ε as given in the next theorem, which di-
rectly follows from the right-hand side of equation (8) by making it explicit with
respect to ε .

Theorem 4. Select a ‘confidence parameter’ β ∈ (0,1). Then, the solution
(Γ ∗

k,N ,Θ
∗
k,N) obtained by removing k of the N constraints in (11) via Algorithm 1

satisfies the relation

P{ f (Fxτ +GΓ ∗
k,N +(H+GΘ ∗

k,N)w,Γ ∗
k,N +Θ ∗

k,Nw)≤ 0} ≥ 1− ε ,

with probability no smaller than 1 − β , where (d is the number of optimization
variables)

ε = min

{
k
N
+

d +h+
√

h2 +2(d + k)h
N

,1

}
, (13)

with h = ln 1
β +d

(
1+ ln d+k

d

)
.

In equation (13), k/N is the empirical violation probability and the guaranteed
violation ε is obtained by adding a margin to it. Letting k be proportional to N,
k = γN, one obtains that the margin is O

(
logN/

√
N
)
, so that ε approaches γ = k/N

as N grows to infinity.

5 Algorithm 1 is a greedy removal algorithm which is here introduced because it can be imple-
mented at relatively low computational cost. Other alternatives exist, and the paper [13] offers an
ample discussion on this matter. Algorithm 1 comes to termination provided that at each step an
active constraint can be found whose elimination leads to a cost improvement. This is a very mild
condition.
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Algorithm 1: Scenario Algorithm with constraints removal
1: Solve problem (11) and store the solution.
2: Let i run over 1,2, . . . ,N and find the constraints violated by the stored solution (the first

time that this point 2 is entered, the set of violated constraints is empty), that is, find the
indexes i such that

f (Fxτ +GΓ +(H+GΘ)w(i),Γ +Θw(i))> 0.

Let these indexes be j1, j2, . . . , jL. If L is equal to k, then halt the algorithm and return the
stored solution.

3: Find the active constraints for the stored solution, i.e., the indexes i such that

f (Fxτ +GΓ +(H+GΘ)w(i),Γ +Θw(i)) = 0.

Let these indexes be i1, i2, . . . , iq.
4: For h = 1,2, . . . ,q

Solve problem

min
Γ ,Θ

J(Γ ,Θ) subject to:

f (Fxτ +GΓ +(H+GΘ)w(i),Γ +Θw(i))≤ 0, i ∈ {1,2, . . . ,N}/{ih, j1, j2, . . . , jL}.

If the obtained cost is better than the cost of the stored solution, then delete the
currently stored solution and store the last computed solution.

End For
5: Goto 2

As said, (13) is obtained by making equation (8) explicit with respect to ε . By in-
stead making this same equation explicit with respect to N, one sees that the smallest
N so that (8) holds scales as

N = O

(
d + ln 1

β

(ε− ε ′)2

)
,

where we have put ε ′ = k/N. This relation reveals some interesting features of the
computational complexity of the scenario optimization algorithm. If ε ′ is selected
to be close to the desired violation probability ε , then N becomes large. Provably,
this leads to solutions that better approximate the solution to the chance-constrained
problem (10); however, this is obtained at the price of an increase of the compu-
tational burden. In a given application, the choice of a suitable ε ′ comes from a
compromise between quality of the solution and computational tractability. In many
cases the extreme choice of taking ε ′ = 0 (i.e., k = 0, no constraint removal) already
gives acceptable results.

In closing this section, one additional word deserves to be spent on the control
parametrization (4). In (4), one has d = mM+ml (M−1)M

2 , where mM is the number

of optimization variables in Γ and ml (M−1)M
2 is the number of those inΘ . In various
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4 The Scenario Approach for Solving Stochastic MPC 455

applications, the quadratic dependence on the horizon length M poses a hurdle in the
applicability of the scenario approach due to the linear dependence of N on d. This
may suggest alternative parameterizations that keep the total number of parameters
lower, and some choices are illustrated below.

1. uτ+i = γi +
i−1
∑

j=i−r
θi, jwτ+ j, which corresponds to (blank entries are zero values):

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1,0
...

. . .

θr,0
. . .

. . .
. . .

. . .
. . .

θM−1,M−1−r · · · θM−1,M−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, d = mM+ml
(

r(M −1− r)+ (r−1)r
2

)
;

2. uτ+i = γi +
i−1
∑
j=0
θi− jwτ+ j, which corresponds to:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1

θ2
. . .

...
. . .

. . .
θM−1 · · · θ2 θ1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In this case, d = mM+ml(M −1);

3. uτ+i = γi +
i−1
∑

j=i−r
θi− jwτ+ j, which corresponds to:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
...

. . .

θr
. . .

. . .
. . .

. . .
. . .

θr · · · θ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, d = mM+mlr;
4. uτ+i = γi, i.e., Θ = 0. In this case, d = mM. At times, this parametrization has

been combined with a fixed linear state-feedback controller,

uτ+i = γi + K̄xτ+i, K̄ fixed,

to improve performance [18, 19].
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5 Numerical Example

We consider a numerical example inspired by [21].

Fig. 2: Scheme of the mechanical system (l̄1, l̄2, l̄3, l̄4 are masses nominal positions).

The mechanical system in Figure 2 is composed by four masses and four springs.
The state of the system is formed by the mass displacements, d1, d2, d3, and d4, from
the nominal positions (i.e., the positions at the equilibrium when the input is zero,
l̄1, l̄2, l̄3 and l̄4), and by the displacements derivatives, ḋ1, ḋ2, ḋ3, and ḋ4 (superscript
dot denotes derivative). The control input is u = [u1,u2,u3]

T , where u1, u2, and u3

are forces acting on the masses as shown in Figure 2.
All masses and stiffness constants are equal to 1, i.e., m1 = m2 = m3 = m4 = 1

and k1 = k2 = k3 = k4 = 1. Assuming that the control action is held constant over
the sampling period, the discrete-time model of the system is given by

xt+1 = Axt +But +Dwt ,

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.19 0.35 0.03 0.00 0.71 0.14 0.01 0.00
0.35 0.22 0.35 0.04 0.14 0.71 0.14 0.01
0.03 0.35 0.23 0.39 0.01 0.14 0.71 0.14
0.00 0.04 0.39 0.58 0.00 0.01 0.14 0.85

−1.28 0.44 0.12 0.01 0.19 0.35 0.03 0.00
0.44 −1.15 0.45 0.13 0.35 0.22 0.35 0.04
0.12 0.45 −1.15 0.57 0.03 0.35 0.23 0.39
0.01 0.13 0.57 −0.71 0.00 0.04 0.39 0.58

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.39 0.00 −0.04
−0.39 0.04 −0.42
−0.04 0.39 −0.04
−0.00 −0.42 −0.00

0.57 0.01 −0.14
−0.58 0.13 −0.71
−0.13 0.57 −0.14
−0.01 −0.71 −0.01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and wt is an additional stochastic disturbance that affects the system. For simplicity,
in this simulation section we assume that wt is a bi-variate white Gaussian noise
with zero mean and covariance matrix I2×2, and that

D =

[
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

]T

,

which means that the external disturbance affects the fourth mass only.
The system is at rest at the initial time, that is, xτ = 0. The goal is to design a

control action over a time-horizon M = 5 that gets the masses to be close to the
nominal positions at the final time instant despite the presence of the noise. During
operation, the springs are required to stay in their linear operation domain, a require-
ment which can be explicitly accounted for by imposing a constraint on the spring
deformations, while the control action has also to satisfy saturation limits.

To be specific, we consider the average control cost (1) and set

Qi =

⎧⎪⎨
⎪⎩

08×8 i < 5[
I4×4 04×4

04×4 04×4

]
i = 5

, and Ri = 10−6I3×3 ∀i. (14)

Moreover, in (3) we let S = I and

C =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0 04×4

0 −1 1 0
0 0 −1 1

⎤
⎥⎥⎦ ,

so that

Cxτ+i =

⎡
⎢⎢⎣

d1,τ+i

d2,τ+i −d1,τ+i

d3,τ+i −d2,τ+i

d4,τ+i −d3,τ+i

⎤
⎥⎥⎦

represents the springs deformation at time τ+ i, and consider the probabilistic con-
straint

P

{
sup

i=0,...,4
‖uτ+i‖∞ ≤ 1.8 and sup

i=1,...,5
‖Cxτ+i‖∞ ≤ 1.8

}
≥ 1− ε , (15)
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In this problem, using a probabilistic constraint finds justification because an excess
of deformation can be tolerated as long as it does not happen too often, while relax-
ing the input saturation constraint leads to a less conservative design while hitting
the saturation limits may rarely generate some deviation from the designed behavior.

For the actual implementation, the scenario approach was used. The control ac-
tion was parameterized according to (4) (full parametrization), resulting in d = 75.
N = 1500 realizations of the disturbance were sampled and the scenario problem
in (11), with no removed constraints, was solved, which gave the solution (Γ ∗

N ,Θ ∗
N).

For the sake of comparison, the LQG solution, (Γ ∗
LQG,Θ ∗

LQG), was also computed by
minimizing the cost with no input and state constraints. All numerical results were
obtained by means of CVX, [32] with the solver MOSEK, [38].

The two cost values were J(Γ ∗
N ,Θ ∗

N) = 0.709 and J(Γ ∗
LQG,Θ ∗

LQG) = 0.481, which
gives a 31% improvement for the LQG cost. On the other hand, as expected, the
LQG solution often violates constraints, and a Monte-Carlo simulation showed a
23% probability of constraints violation. In the scenario design, we have instead
that, with high confidence 1−10−6, it holds that

P

{
sup

i=0,...,4
‖uτ+i‖∞ ≤ 1.8 and sup

i=1,...,5
‖Cxτ+i‖∞ ≤ 1.8

}
≥ 0.926;

The actual probability of constraints satisfaction, computed by means of a Monte-
Carlo simulation, was found to be 97%.7

To better appreciate the difference between the two designs (scenario and LQG),
Figure 3 displays the cumulative probability distributions of supi=0,...,4 ‖uτ+i‖∞ and
of supi=1,...,5 ‖Cxτ+i‖∞ obtained via Monte-Carlo methods when the input and state
are generated by the scenario and the LQG designs.

When N is large, resorting to the scenario approach with no constraints removal
returns solutions that carry high guarantees of constraints satisfaction which, how-
ever, are also poorly performing because the design is close to the worst-case (ro-
bust) design. Here, with N = 1500 we already had a significant decrease of per-
formance as compared to LQG. To improve the scenario control performance, we
next resorted to constraints removal and applied Algorithm 1 with k �= 0. Table 1

6 The value ε = 0.08 was computed from (7) by bisection instead of using the explicit formula in
Theorem 3.
7 It is perhaps worth mentioning that it is possible to obtain better evaluations of constraints satis-
faction by using the results of the recent contribution [14]. Specifically, from Theorem 2 of [14], it
can be proven for the present setup that, with high confidence 1−10−6, it holds that

P

{
sup

i=0,...,4
‖uτ+i‖∞ ≤ 1.8 and sup

i=1,...,5
‖Cxτ+i‖∞ ≤ 1.8

}
≥ 1− ε(s∗N),

where ε(·) is a function defined over the integers given in the paper and s∗N is the number of the
so-called “support constraints” that have been found in the problem at hand. In other words, ε(s∗N)
is not a-priori determined and it is a-posteriori tuned to the number of support constraints. The
interested reader is referred to [14] for a more-in-depth discussion. In the present simulation, it
turned out that the number of support constraints was 34, resulting in 1− ε(34) = 0.949.
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Fig. 3: Cumulative probability distributions of supi=0,...,4 ‖uτ+i‖∞ (lower plot) and
supi=1,...,5 ‖Cxτ+i‖∞ (upper plot) for the scenario design (solid line) and LQG con-
trol (dotted line).

summarizes the results obtained for k = 0,10,20, . . . ,50. In the table, “Guaranteed
prob.” refers to the bound on the probability of constraints satisfaction guaranteed
with confidence 1−10−6 and obtained from (8) by means of bisection, and “Actual
prob.” is the actual probability computed via Monte-Carlo methods. As it appears,

Table 1: A comparison between scenario designs with different number of removed
scenarios.

k J(Γ ∗
k,N ,Θ

∗
k,N) Guaranteed prob. Actual prob.

0 0.709 0.92 0.971
10 0.661 0.881 0.967
20 0.629 0.871 0.959
30 0.597 0.863 0.952
40 0.575 0.854 0.947
50 0.564 0.845 0.937

constraint removal leads to a rapid improvement of the performance, while the prob-
ability of constraints satisfaction decreases more gently. This shows the ability of
Algorithm 1 to remove portions of the uncertainty domain that have a strong impact
on the cost function, a feature which is missing on LQG. Figure 4 shows the cumu-
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lative probability distributions of supi=0,...,4 ‖uτ+i‖∞ and of supi=1,...,5 ‖Cxτ+i‖∞ for
(Γ ∗

N,0,Θ ∗
N,0), (Γ ∗

N,50,Θ
∗
N,50) and the LQG control.
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Fig. 4: Cumulative probability distributions of supi=0,...,4 ‖uτ+i‖∞ (lower plot) and
supi=1,...,5 ‖Cxτ+i‖∞ (upper plot) for (Γ ∗

0,N ,Θ ∗
0,N) (solid line), (Γ ∗

50,N ,Θ
∗
50,N) (dashed

line), and LQG control (dotted line).

6 Extensions and Future Work

In the present chapter, the main focus has been on the application of the scenario
approach to the solution of the finite-horizon chance-constrained optimization prob-
lem (10). The resulting MPC scheme consists in the implementation of scenario
optimization over a receding horizon; that is, at every time τ only the first control
action uτ is applied and, after that the system has moved to the new state xτ+1, the
whole optimization process is repeated. This poses additional challenges that have
been partly addressed in the literature and that are hinted at here.

A first issue concerns with the recursive feasibility of (11). It may happen that
the stochastic noise pushes the state to a far distant condition such that a bounded
input cannot succeed in satisfying the constraints in the next time period. This issue
has been addressed in [25–27] by introducing a suitable relaxation to the scenario
framework as described in this chapter.
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A second issue refers to studying the constraint satisfaction in the long run. Often
the constraint f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1) ≤ 0 comes in the form of input or
state saturation limits that apply at every point in time. For this case, the paper [49]
presents a study which quantifies the asymptotic proportion of times when these
limits are violated over the total number of time instants passed.

A final point that deserves to be mentioned is the possibility of applying the
scenario-based MPC scheme to nonlinear systems. Nonlinearity introduces an ad-
ditional difficulty relating to the convexity assumption made in this chapter since
convexity fails to be true for nonlinear systems even when the function f setting
the constraints is convex in its arguments. More specifically, Theorems 1 and 2 of
Section 3 are grounded on the fact that, in a convex setup, the solution to (6) is deter-
mined by a limited and known number of constraints (those that are called support
constraints in the literature, see [7], which are no more than the number of optimiza-
tion variables). In contrast, in a non-convex setup the number of support constraints
cannot be a-priori bounded and it can actually be arbitrarily large. Even though the
corresponding analysis has not been fully developed at the time this chapter is being
written, we envisage that the wait-and-judge perspective of [14, 17] can be used in
this context to circumvent this difficulty: the support constraints are determined af-
ter the solution has been found and the evaluation of constraint violation is adapted
to the found number of support constraints based on the theory of [14, 17].
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