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Notes on the Scenario Design Approach

Marco C. Campi and Giuseppe C. Calafiore

Abstract—The scenario optimization method developed in [5] is a theo-
retically sound and practically effective technique for solving in a proba-
bilistic setting robust convex optimization problems arising in systems and
control design, that would otherwise be hard to tackle via standard deter-
ministic techniques. In this note, we explore some further aspects of the
scenario methodology, and present two results pertaining to the tightness
of the sample complexity bounds. We also state a new theorem that enables
the user to make a-priori probabilistic claims on the scenario solution, with
one level of probability only.

Index Terms—Probabilistic robustness, randomized algorithms, robust
control, robust convex optimization, scenario design.

1. PRELIMINARIES

Recently, techniques based on uncertainty randomization have
gained increasing favor among both control theoreticians and prac-
titioners. Theoreticians are attracted by the solid foundations of
these methods, rooting in the theory of probability, optimization and
stochastic processes, while practitioners are interested in their relative
simplicity of practical implementation. An up-to-date description of
this body of techniques, along with applications to control analysis
and design problems and many pointers to the literature, can be found
in the texts [7], [19]. Among these techniques, the so-called scenario
design method developed in [5] permits one to effectively solve control
design problems that can be cast in the form of a convex optimization
program with uncertain constraints. A significant class of control
problems indeed fall in this framework, see for instance the discussion
and examples in [5]. In what follows, we briefly review the essential
points of the scenario optimization approach of [5] in order to prepare
the terrain for our further discussion. We also refer the reader to the
recent contributions [1], [2], [9], [10] for further information on the
scenario approach.

Scenario Optimization: Consider an uncertain convex optimization
problem of the form

. e
min ¢ 8

subject to :
€6

F(6.6)<0,6€A (1

where # € © C R"? is the decision variable, © is convex and closed,
6 € A C R"¢ is an uncertain parameter, ¢ € R"? is a given vector,
and f(#,8) : © x A — [—c0, oc] is continuous and convex in 6, for
any fixed value of 5 € A.

If “Prob” is a probability measure on A, the scenario solution N

for (1) is the optimal solution of the following convex program
min ¢’ 6

subject to :
0co

f(B,é(i))g(),z’zl,...,N @)
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where 6(i), i = 1,..., N, are independent samples, identically dis-
tributed according to Prob. Note that the optimal solution fx of this
p{o)gram is(a gandom variable that depends on the random extractions
LI I SN

Lete € (0,1), 3 € (0,1) be given (small) probability levels. A
key fact in scenario optimization (see equation (12) in [5]) is that if NV
samples are used in (2), where N is such that

(:9) (1—9™™" <3 3

then it holds that

Prob” {(5(1) ..... 5(‘“) e AN V(dy) < e} >1-8 (&)

where V() is a measure of violation of the constraints in (1) for a
given 0, i.e.

V(8) = Prob {§ € A: f(6,5) > 0}.

In other words, with high probability 1 — /3, the scenario solution
is feasible for all the constraints in (1), except possibly for those in
a set having probability measure smaller than e, that is, this solution
is “almost robustly feasible.” Moreover, Theorem 1 and Corollary 1
in [5] provide explicit expressions N (e, 3) (see (5) below) such that
if N > N(e, ) then (3) and (4) hold. A fundamental point here is
that N (e, 3) is computed a-priori, before any constraint is extracted,
according to the formula!

) 2

N(e, g) = {E In ®)
([-] =smallest integer greater than or equal to the argument).
This bound holds in full generality for any uncertain convex program,
and any probability distribution on the uncertainties. Since 5 in (5)
appears under the sign of logarithm, in practice the 3 level can be fixed
to a very small value (107'° or even 1072°) without increasing too
much the required number of samples.

Content of This Note: In the next sections we provide further results
and discussion that are useful for clarifying the scope of the results in
[5] and for defining possible margins of improvement. In particular,
Section II elaborates on the possibility of improving the dependence
on € and 3 appearing in the sample complexity (5), and provides an es-
sentially negative answer. Section III discusses sequential implemen-
tations of the scenario method, and gives a fundamental limit for the
expected value of the stopping time of this version of the scenario al-
gorithm. Finally, Section IV gives a new bound for probabilistic assess-
ments on the scenario solution involving a single level of probability.

II. DEPENDENCE ON ¢ AND (3 OF THE SAMPLE COMPLEXITY

We show that no general sample complexity bound can be found that
scales below O(e™ ' In 8~"). Comparing with (5), we thus see that the
fundamental dependence on € and 5 appearing in (5) is intrinsic and
cannot be improved.

Proposition 1: The number N of samples guaranteeing that, in any
given problem instance and for any probability distribution, the solu-
tion of (2) satisfies (4) must scale at least as

O <%ln%> .

INote that a bound better than (5) is given in Theorem 1 of [5]. For the sake
of simplicity, we use here the simplified bound (5) in our discussion.
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Proof: A proof is obtained by producing a simple instance of
problem (2) in which the minimum N satisfying (4) can be computed
exactly, and showing that this number scales as O(¢™"' In 37 "). To this
end, consider the uncertain convex program

min ¢ subject to:
0ER
6—6<0,6 €l0,1]
with a uniform probability distribution on A = [0, 1], and the corre-

sponding scenario solution

fn = argmin #

subject to :
0ER

§9 -9<0,i=1,...,N. (6)
Clearly, in this case él\r = max;=1,. N 6(i), and
V(@) =Prob{6 €A:6-6>0}=1-46.

Therefore, we have that

V(éN =1—fy=1- } maXM(S(i)

------

and hence

Prob® {(5(1). o 5“”) e AN V(by) > e}

= Prob™ {(5(1), e (S(N)) e AN

1=

yeeesd

= Prob™ {(5“% . .,5<N>) c AV
5 <1—e,i:1,...,N}

T

=(1-¢om.

_max vﬁ(i) <1- F}

It follows that (4) is satisfied with equality, that is
Prob” {(5“>, . .,5(‘“) e AV V(dy) < e} —1-4

with = (1 — €)™, Making this formula explicit with respect to N
gives N =1In 37 /In(1— €)™, Since In(1 — €)™ is convex in [0,1),
considering the chord from the origin to point (1/2, In 2) we have that
In(1 —¢)™! < 2¢In2, for e € [0,1/2]; hence

. Inpg™! 1 1.1
[ = (1 — =7 2 32 Eln ik fore € [0,1/2].

Since this specific scenario problem has a sample complexity that
grows at least as O(¢~"1In371), we have proved that no general
sample complexity bound may exist for scenario optimization that
scales better than O(e ' In371). d

A couple of remarks are in order.

1) Notice that in the proof of Proposition 1 a simple uncertain linear
program with just one variable is produced, whose sample com-
plexity grows indeed as O(e™'In 37"). The fact that the general
bound (5) scales similarly to how it scales in this extremely simple
example, and yet the bound applies to all convex problems and all
possible distributions, shows that all convex problems share un-
expected similarities, as far as sample complexity is concerned.

2) Although Proposition 1 states that there is not much room for
improvement upon the a-priori general bound (5), better bounds
can still be found for properly modified scenario-like approaches
exploiting a-priori knowledge on the structure of uncertainty.
For instance, Nemirovski and Shapiro in [14], [15] achieved a
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Fig. 1. Allowed violation level e versus probability for the scenario example
(6) with N = 20.

O(lne "In3~") sample complexity bound by considering a
special situation of linear matrix inequality constraints, affinely
perturbed by independent parameters having “light-tailed” distri-
butions.

III. A-PRIORI AND ON-THE-GO VIOLATION

It is worth underlining once more that bound (5) works a-priori, in
the sense that the user knows a-priori (i.e. before seeing the actual con-
straints) that, if N (e, 3) samples will be used in the scenario optimiza-
tion, the resulting solution will satisfy (4).

The violation V((; ) is arandom variable that depends on the to-be-
extracted constraints, and (4) says that this random variable is concen-
trated around small values. Considering for instance the example in
(6), setting N = 20, we can plot the a-priori violation level € versus
the probability of the event {V(fx') < €}, see Fig. 1. Note then that,
once the constraints have been extracted, the resulting constraint vio-
lation can be much lower than the limit € imposed a-priori. In the ex-
ample, if we fix a-priori € = 0.2, there is a 0.9885 a-priori probability
of achieving a violation smaller than €. The actual violation achieved
a-posteriori can however be significantly smaller than 0.2.

This observation might suggest that there could be room for im-
proving the sample complexity, if the number of scenarios is chosen
“on-the-go” instead of a-priori.

By “on-the-go” we mean that optimization might be performed by
a sequential algorithm that, by checking a current optimal solution ob-
tained on the basis of the samples accrued so far, detects whether the
violation is above € and, in the positive case, extracts a new sample and
iterates; otherwise, the algorithm stops and returns the current solution,
which guarantees the desired violation level. In other words, the algo-
rithm possesses a stopping-rule to decide when to stop introducing new
constraints.

Recently, many sequential randomized methods have been proposed,
see [6], [8], [12], [16], [17]. These methods work quite satisfactorily
for probabilistic feasibility problems, i.e. for design problems where
the goal is to find a solution that satisfies (4), whereas, to the best of
these authors’ knowledge, they still cannot deal satisfactorily with
the problem of optimizing an objective subject to (4). We believe
that sequential probabilistic methods (here also named “incremental”
methods) for optimization under uncertainty should be a main research
topic for researchers interested in randomized design techniques. Our
contribution here limits to define an “abstract” scheme for incremental
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optimization, followed by a general result on the best expected value
that can possibly be achieved for the stopping-time of such a general
incremental method.

Definition 1: (Incremental Scenario Optimization Scheme): Define

ék = arg min Lo subject to :
0co
f (9,5“)) <0,i=1,....k

Let ko > 0 be a given integer, and set k = ko.
1) Extract k samples 6(1), RV s,
2) Compute O
3) Check if Y(ék) < e. If yes, stop and return the current solution;
otherwise set k = k4 1, extract a new sample 6 (") and goto2.0]
Mathematically speaking, the stopping-rule of an incremental
scheme is a stopping-time, that is, a discrete random variable that
depends on the algorithm history up to the current time, and the sample
complexity of an incremental method can be assessed by providing
an a-priori bound on its expected value. The following proposition
establishes that there exist a fundamental limit to the achievable
expected stopping time, and shows that it cannot scale below O(1/e).
We thus find the same dependence on € we had for a-priori evaluations.
Proposition 2: The stopping-time of an incremental optimization
scheme applicable to general uncertain convex optimization problems
must exhibit at best an expected value that scales as O(1/¢).

Proof: A proof of this statement is obtained by considering again
the example in (6). Suppose this problem is solved incrementally ac-
cording to the scheme in Definition 1, with kg = 1. Define the stop-
ping-time

N = number of iterations executed upon exit

and notice that the event {N' = &} happens if the sequential scheme
actually fails to find a good solution for the first & — 1 iterations, and
then it stops at the k-th iteration with a good solution. Let us compute
the probability of this event (this probability is computed in A°°, the
set of infinite extractions, since the number of extractions is not a-priori
defined):

Prob™{N =k} = Proh* { (5(‘)7 s {g(k)) .
V() > e V(b)) >e....V(Br1)>e V() < 6}. (7
In problem (6) we have that V() > € if and only if
max;=1,.. 06" < (1—e), i.e. if and only if 89 < (1 —¢)fori =
1., The jointevent {V(61) > &,V (62) > es.... V(B 1) > e}

is thus equivalent to the event {5(i) <(l—e),fori=1,....,k—1},
and the event considered in (7) is the event

{6(i) <(l—e), fori=1,....k—1, and §™ > (1—6)}.
Thus,
Prob™{N =k} = ¢(1 — )" 7",

We can now compute exactly the expectation for the stopping-time:

E{N} = kProb™{N =k} =) ke(1—e)**
k=1 k=1

oo ) 1 1
= E(l—e)f ' =ez ==,
6; ( €) €=

Since at least a problem instance exists in which the expected stop-
ping-time grows as 1/¢, we have proved that no incremental scheme
can have an expected stopping-time that scales better than O(1/¢) uni-
formly over all possible problem instances. O
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IV. ASSESSMENTS WITH A SINGLE LEVEL OF PROBABILITY

In the usual approach to probabilistic robustness, results are given in
the form of a statement involving a double level of probability. For in-
stance, (4) states that the probability of violation V((; ) is less than or
equal to €, with probability at least 1 — /3. This nested probabilistic state-
ment may cause some confusion to the uninitiated reader. We next show
that an alternative result can be obtained for scenario design, which in-
volves one level of probability only.

To make things concrete, let us consider a problem of Lyapunov
quadratic state feedback stabilization, and let us ask the following ques-
tion: What is the probability that we extract N plants, do a scenario
design, and then another plant (the “real” plant) picked at random
according to the same probability distribution does not satisfy the de-
signed Lyapunov inequality? Note that there is only one level of proba-
bility here. In the notation of this technical note, this question amounts
to assessing the probability with which a scenario solution fx (which,
we recall, is computed on the basis of the randomly extracted samples
s 6(N)) fails to satisfy the constraint f(éN. 6) < 0 on anewly

extracted 6 € A. That is, we need to evaluate the probability

Py = Prob™*! { (5(” ..... 50, 5) eAN XA f(Bn.8)> 0}
or, equivalently, the probability

Ps;=1-Pr
= Prob™*! {(5“), . .,5““,5) e AN x A

fbx.8) <0}, ®)

The following proposition shows that an explicit lower bound for P
can be determined in full generality.

Proposition 3: Consider the scenario solution n of problem (2),
with N > ng. The a-priori probability (8) with which the design in-
equality f(éN,é') < 0 is satisfied is

N+1-
Poz S ©

Proof: Pg can be rewritten as
Py = Prob™*! {(5(”, . .,5(“,5) eAY xA:

FOn.8) > o}

_ / {10 6)> 0}

AN xA

dProb™ (5(1) ..... 5<N>) dProb(s)

:/ /ﬂ{f(éN,(S)>0}dProb(6)

AN A

The inner integral in the expression above is nothing but Prob{6 €
A f(6n,6) > 0}, whichis V(6 ); hence

AN

= Epin [V(@N)] . (10)
Invoking Theorem 1 in [4], Ep,.,~ [V ()] can be bounded by

: s ny
EProbN I:" (91\7)] S N+1
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Fig. 2. Logarithmic plot of IV satisfying (9) as a function of Pg, for ny =
1,...,10.

from which
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T ON+1
that is the theorem statement. O

It can actually be proved (see [3], [11]) that the result in (9) is tight,
since it holds with equality for the so-called “fully-supported” prob-
lems. Interestingly, [11] offers a way to establish (9) alternative to the
use of Theorem 1 in [4]: Theorem 1 in [11] delivers an exact evaluation
of the probability with which V' (fx') > €, and (9) can also be obtained
by integration of this probability. In [3], yet another alternative route is
offered to obtain an exact expression of Pg.

Formula (9) returns the probability that, if we solve a scenario opti-
mization problem on the basis of N plant samples, the obtained solu-
tion is also feasible for another plant extracted according to the same
probability. Relation (9) can also be used to design an experiment,
where one wishes to a-priori fix a desired level for Pr;, and then de-
termine the number N of scenarios necessary for achieving this level
of probability. For the purpose of illustration, a plot of N as a function
of P¢; for various values of ng is given in Fig. 2.

A. A Special Case: Estimation of Extrema via Sampling

A problem that arises frequently in the analysis of robustness of un-
certain control systems is that of computing the worst-case value (with
respect to the uncertainty) of a function f(§) representing some perfor-
mance or cost index of the system, that is one wants to evaluate the max-
imum value of f(6), for 6 € A. Exact computation of the maximum
is in general NP-hard, but randomized techniques may be employed
to compute an estimate of the maximum. A well known approach (see
[13], [18]) is to use the sample maximum as an estimate:

v = max f ((s‘(")) (11)

1=1,...,]
where 80, i =1,...
ples.
‘We note that (11) is a special instance of the general problem family
(2), where 6 is one-dimensional, and f(#,8) = f(§) — 6. Indeed,
problem (11) can be rewritten equivalently in the form (2) as:

, IV, are independent, identically distributed sam-

fn =argmin # subject to:
0ER

f(é(”) —0<0,i=1,....,N. (12)
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Proposition 3 gives in this case: .

Proposition4: Consider the sample maximum estimate # resulting
from problem (12). The a-priori probability (8) with which f(6) < 6
holds is

P> N

- N+1 (3)

(relation (13) is actually valid with equality if the distribution of f(&)
is continuous).

Notice that making explicit (13) with respect to N, we have that
Py < ¢ holds whenever the following sample size bound holds:

1
N>>--1
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