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Bounded Error Identification of 
Time-Varying Parameters by RLS Techniques 

Sergio Bittanti and Marco Campi 

Absbaet-The performance of the Recursive Least Squares algorithm 
with constant forgetting factor in the identification of timevarying pa- 
rameters is studied in a stochastic framework. It is shown that the 
mean square tracking error keeps bounded if and only if the socalled 
covariance matrix of the algorithm is L1-hounded. Then, a feasibfity 
range for the forgetting factor is worked out in correspondence of which 
the covariance matrix (and therefore the tracking error) keeps hounded. 

I. INTRODUCXION 

A. The RLS Algorithm f o r  the Tracking of Time-Varying Parameters 

The challenge of adaptive identification techniques is to allow for 
good performance in prediction, filtering, and control despite possible 
changes in the system dynamics. 

In this context, a typical setting of analysis amounts to assuming 
that the system is described by the equations 

(1.la) Y(t )  = 0°(t)‘63(t) + 4 t )  

O O ( t  + 1) = 6’(t) + S @ ( t )  (l . lb) 

where d ( t )  is the system disturbance and 60°(t)  the parameter drift. 
The time-varying parameter 19’(t) E RnXm has to be estimated 
starting from the measurements of the output y(t) E R“ and the 
observation vector y ( t )  E R” up to time t. To this purpose, a 
major role is played by the Recursive Least Squares (IUS) algorithm, 
wherein adaptivity is often achieved by means of the so-called 
forgetting factor (FF) (see [ 11 and [2]). More precisely, the estimate 
O ( t )  of the unknown parameter is obtained by the equations 

€( t )  = v(t)’ - +(t)’i(t - 1) (1.2a) 

i ( t )  = i ( t  - 1) + K(t)E(t) .  (1.2d) 

In these expressions, vectors + ( t )  E R”, v ( t )  E R” are filtered 
versions of the measurements y ( t )  and y ( t ) ,  respectively. ((1.2b) 
and (1.2d) are initialized-at time t = 0 with deterministic matrices 
P(0)  = P(0)’ > 0 and 6(0) ,  respectively.) Note that (1.2b) can be 
equivalently written as 

(1.3) P(t)-’ = p P ( t  - 1)-1 + p$( t )$ ( t ) ’ .  

The specific choice of p has been discussed in many papers, such 
as [3]  and [4]. 
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If $( t )  is let to coincide with the observation vector y ( t )  and 
v ( t )  with the output vector y(t), then one obtains the Exponential 
Forgetting (EF) algorithm, which has been the subject of a number of 
papers, see e.g., [3] and [5]. However, it is well known that EF may 
exhibit poor performance when y ( - )  takes large values. Indeed, in 
such a case, P(t)-’ becomes exceedingly large in the y(.)-directions, 
(see (1.3)), and this results in a reduction of the algorithm sensitivity 
in these directions. Such a reduced sensitivity has some persistence 
in time since the recovery of P ( . )  cannot be prompt (see (1.2b)). In 
these periods of sluggishness, the estimate becomes very poor if there 
is a permanent drift of the system parameters in the directions of low 
sensitivity. To overcome effects of this type, one can feed algorithm 
(1.2) with vectors $(t)  and v ( t )  derived as 

The value H of the threshold is a user’s choice. A typical guideline 
is to take H high enough with respect to the normal ranges spanned 
by the variables entering vector y ( t ) .  In this way, the “cut” of raw 
data is active only when the observation vector becomes exceedingly 
large, as may happen due to oversized shots of noise, outliers and so 
on. Precautions such as (1.4) are frequently encountered in the area of 
robust estimation under the heading of bounded influence regression, 
see [6] and [2] for more discussion. 

B. From the Deterministic to the Stochastic Analysis 

obtains 
Letting 8( t )  = 8( t )  - 8’(t + l), from (l . l) ,  (1.2a), (1.2d) one 

(1.5a) 

(1.5b) 

$ ( t )  = F(t)$( t  - 1) + A-(t)n(t)’ - 619’(t), 

F ( t )  = I - I i ( t )$( t ) ‘  

Equation (1.5) describes the influence of the drift term SO“_-) and 
the disturbance term d ( . )  on the parameter estimation error 6(.)  and 
forms the basis of all the performance analyses. As pointed out in [7], 
the difficulty in the analysis stems from the complicated expression 
for the system transition matrix 

@(t, T )  = F ( t ) F ( t  - 1) * .  . F(T + 2)F(T + 1). 

Its properties depend entirely on the sequence y(.),  but they are inher- 
ited in a fairly complicated way. Obviously, the uniform exponential 
stability of the above time-varying linear system is a basic desirable 
property. This amounts to requiring 

Then, if h7(.) keeps bounded, the boundedness-of n(.) and SOn(.) 
entails the boundedness of the estimation error 6 (.) . Condition ( 1.6) 
imposes a deterministic contractivity property. As such, it calls 
for some deterministic excitation assumption on data. The typical 
condition takes the form 

‘+S 

0 < C I  5 y ( i ) p ( i ) ‘  I C I ,  VT (1.7) 
C T + l  
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which implies both the uniform stability and the boundedness of the 
algorithm gain. 

This line of analysis can be traced back to [SI where condition 
(1.7) has been linked to the uniform complete observability and 
controllability of system (1 S). Ever since, this approach has been 
adopted in a number of papers and books. As a matter of fact, 
condition (1.7) constitutes a now common paradigm in system 
identification. On the other hand, it is obvious that (1.7) is just an 
idealization far from being applicable to uncertain real data. 

Turning to the stochastic analysis, it is worth noticing that most 
papers are concerned with the case of adaptive algorithms with 
very long memory length. The stochastic behaviour of the algo- 
rithm can then be approximated by means of some deterministic 
average. A well-established technique to pursue this objective re- 
lies on weak convergence concepts leading to the so-called ODE 
approach, [9]-[ 111. More recently, under ergodicity assumption on 
the observation vector, in [12] the proposal is made to replace 
the time-varying and stochastic algorithm covariance matrix with 
a constant and deterministic approximant. The applicability of the 
corresponding results, however, is limited by the stationarity character 
of the underlying assumptions. Another noteworthy contribution is 
the one provided in [13]. Precisely, the estimation error variance 
is evaluated by squaring (1.5.a) and then simplifying the obtained 
expression by dropping out the cross terms and by replacing the 
stochastic matrix F ( t )  with its expected value. In [13], it is shown that 
this is a fair approximation when the memory length tends to infinity. 
The main drawback of this approach is that it calls for constraints on 
matrix P(.) which look to stiff to be applicable with generality. 

In conclusion, there is a huge lack of knowledge in the area 
of stochastic RLS algorithms and, in most papers in the field, the 
analytical results are obtained by making reference to a limit case, 
that of infinite memory length. As a matter of fact, even in elementary 
situations, such as in the forthcoming example, it is hard to predict the 
performance obtained by the RLS algorithm for the different values 

Example I :  Suppose that all the variables in (1.1) are scalar and 
~ ( t )  coincides with an exogenous i.i.d. input u ( t )  with binomial 
distribution 

of p.  

2, prob. 0.5 
0, prob. 0.5. u ( t )  = 

The estimate 8( t )  can be obtained by minimizing 

t 

J = Cp[y(i) - u( i )8( t ) ]2  
z = 1  

where p E (0, 1) is the forgetting factor. Obviously, the estima- 
tion error depends on the characteristics of the drift term and the 
disturbance affecting the signal y(.). Assume, for example, that 

independent of 66'(.) i.i.d. sequence with L2 - norm = 

d ( t )  = const. = 1, Vf.  
4.); 

In this way the setting of analysis is fully specified. Notwithstand- 
ing the simplicity of the described situation, however, no result in 
the literature known to the authors allow one to say for which value 

w of p the tracking error keeps bounded. 

C. Achievements of the Paper 

In this paper, we study the tracking performance of algorithm (1.2) 
in a stochastic environment without any restriction on the memory 
length of the algorithm. We will resort to a direct approach requiring 
neither reformulations nor simplification of any sort. 

The main achievements of the paper can be outlined as follows. 
a) The second-order moment of the parameter tracking error is 

shown to be bounded if and only if the expected value of the 
so called "covariance matrix" P(.) is bounded (Theorem 1). 

b) Matrix P ( . )  can be kept bounded provided that the FF does not 
fall below a given threshold (which depends on the information 
content of data) (Proposition 2). 

Statement a) has the important consequence that the study of the 
boundedness of the parameter tracking error reduces to the analysis 
of the behavior of the sole P( . )  equation. In turn, b) points out 
that, to keep P ( . )  bounded, one should avoid an overdiscount of the 
information conveyed by past data. Thus, the threshold of Proposition 
2 defines a feasibility range for the forgetting factor. By suitably 
selecting the value of the forgetting factor within such a range, one 
can minimize the magnitude of the parameter tracking error. 

A highlight of the paper is that the analysis will be based on simple 
L2-boundedness conditions on the disturbance d(.) and the drift term 
S f l o ( . )  and a general excitation assumption of conditional type on 
the observation vector U ( - ) .  In particular, no assumption on the 
distribution or stationarity of the underlying processes is made. This 
is why the results can be applied to a variety of specific situations. 

11. STOCHASTIC SElTING OF ANALYSIS 
Given a probability space (Q, F, p) consider the stochastic pro- 

cesses p(F) € R", d ( t )  € R" and S O O ( t )  E WX". Let Pi be the 
a-algebra generated by (p ( i ) ,  d ( i ) ,  68'( i )  1 i = 1, 2,-.-,t). As 
already pointed out in Section I, we will suppose that y(t)  and O O ( t )  
are recursively generated in agreement with (1.1). Equation (1.1 b) is 
initialized at time t = 1 with deterministic initial condition 6'(1). 
Then Pi can be seen as the a-algebra of the past. We also introduce 
the symbols Py : = a (U, P: ) and P: to denote the trivial a-algebra. 

The disturbance d ( t )  and the drift term 68'(t) are assumed to be 
L2 -conditionally bounded: 

Assumption A . ] :  E [ l ( d ( t +  1)112 I Pi] 5 A;, Vt 2 0, where iyd is 
a deterministic constant. w 

AssumptionA.2: E[1168'(f + 1)112 I Pi] 5 A;, 'df 2 0, where 
Aa is a deterministic constant. 

Notice that Assumption A.l does not require that the noise d ( t )  
have zero expected value. As for the time behaviour of the drift term 
6@( f ) ,  Assumption A.2 allows for any deterministic pattern of @ ( t )  
with uniformly bounded variations. It allows also for many types of 
stochastic perturbations provided that the correspondent drift is slow. 
Thus, Assumption A.2 does not prevent 8' (.) from the possibility of 
presenting trends or seasonalities. 

In this paper, the excitation condition firstly introduced in [ 141 is 
used. 

AssumptionA.3: There exist s > 0 such that 

Vr 2. 0 (2.1) 

for some real h-1 > 0 and I<z > 0. w 
Although condition (2.1) is equivalent to (2.1) of [15], it is 

better suited for the technical developments to follow. It requires 
that, whatever the past evolution of the system might have been, 
with probability h - 2  the "amount of information" carried by data 
over the next s time points is greater than hl in any direction of 
the parameter space. In this sense, integer s can be interpreted as 
excitation horizon. 
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111. A NECESSARY AND SUFFICIENT CONDITION 
FOR THE BOUNDEDNESS OF THE TRACKING ERROR 

The time-evolution of the tracking error 8 ( t )  = g ( t )  - I?'(t+ 1) is 
described by (1 Sa). To derive a suitable expression for the solution 
of this equation, observe first that, using (lSb),  (1.2c), and (1.2b) 

F ( t ) F ( t  - 1). . . F(T + 2)F(T + 1)  = pt--rP(t)P(T)-l. 

By means of this expression, the solution of (1.5a) can be given the 
form 

t 

3(t)  = p f P ( t ) P ( 0 ) - ' f ( O )  + CpL'- 'P(t)P(T)- 'h-(T)n(T)'  
r=l 

t 

- C p t - - '  P( t)P(r)-'SBo (7). (3.1) 

Equation (3.1) points out the ke_y role played by E[p'-'IIP(t)ll I 
P;] in determining the error I?(.). Proposition 1 below gives a 
contractivity result concerning the time behaviour of such a quantity. 

r=l 

Proposition 1: Let v E [p ,  1)  such that vs > 1 - h;. Then 

E[j? IIP(t)ll I pa 
I vf-'{(y',tv2(1-S)IIP(T)ll + (1  - 7',f )P(v)}, 

V t l t > T > O  

where 
- 
P(v) = vl-s (1 - v")h-;'(v" - 1 + & ) - I  

and 7r,t E (0, l ) ,  VT, t ,  is a deterministic function of T and t. 
Proof: S e e  the Appendix. 

Consider now any class C of systems satisfying Assumptions A.l, 
A.2, A.3, with given constants A d  > 0, > 0, s > 0, h'l > 0, 
Iiz > 0. The theorem below states that the Lz-boundedness of 
the tracking error 8(.) over such a class is equivalent to the L'- 
boundedness of matrix P ( - )  over the same class. 

Theorem 1: 

Proofi +) Note first that the forcing term h-(t)n(t)' in (1.5a) 
coincides with h-(t)d(t)' if Ilp(t)ll 5 H. Moreover, the dis- 
turbance term d ( t ) ,  being subject to Assumption A.1 only, can 
be any deterministic vector the norm of which is less than A d .  

Consequently, it suffices to show that supc supf IIP(t)llLl = CO + 

Given an arbitrary number M ,  consider a system in C defined by 

SUPcSUPtII;J(t)llL2 < CO e SUPC SUPtJIP(t)llLI < 00. 

llh'(L')112dP = CO. 
S{llw(t)l,gf} 

the triple {(pl(.) ,  d l ( . ) ,  Spy(-)} such that 

IlP(?)llLi 2 ~ ' - ~ ( 4 M ( 1  - Kz)-l + H - 2 )  

for some ? (note that I<' < 1, otherwise sup, supt IIP(t)llL1 < CO). 

Let y be the integer part of s/s. 
Consider now a set of deterministic vectors { U ,  E R", i = 

1, 2,.--,s}, such that Xmln(C:=l v l d / ( l  + H-21(uz112)) 2 KI. 
Moreover, let A be an event, independent of the cr-algebra P,bo 
associated to the considered system, such that p ( d )  = 1 - K2 (we 
assume that such an event exists in our probabilistic space). 

By means of pl(.), {ut} and A, a new sequence of observation 
vectors p2 (.) can be constructed in the following way: 

p z ( t )  5 qs  

9'2 ( t )  = Ut mod s )  t 2 qs + 2 

where zmax [.] denotes maximum eigenvector. 

Inequalities (3.3) and (3.4) can be used in (3.2) with i = 1 and i = 2, 
respectively. The inequalities obtained in this way can be used to find 
upper bounds for the L2-norm of the second and third term at the 
right-hand side of (3.1). As for the first term, by resorting again to 
Proposition 1, one can easily work out the inequality 

r=l  

r=l 
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(3.6) 

Since P ( . )  is Lt-bounded, this inequality immediately leads to the 
H 

Remark: Note that, in the noise-free case ( d ( - )  = 0), to guarantee 
the boundedness of the estimation error, the boundedness of matrix 
P ( - )  is no more necessary. In [16], one can find a simple deterministic 
example where a(.) keeps bounded even if P(.) tends to infinity. H 

It is obvious that matrix P ( - )  may keep bounded or not depending 
on the value of the memory length of the algorithm. Indeed, the 
information conveyed by fresh data may not be sufficient to com- 
pensate for the discount of past information if the forgetting factor 
is exceedingly small. A feasible range for the forgetting factor such 
that matrix P(.)  keeps bounded is given in the following 

conclusion that 8 ( - )  is L2-bounded. 

Proposition 2: Suppose that ps > 1 - h;. Then 

where 

Pro08 See the Appendix. H 
Theorem 1 and Proposition 2 immediately lead to a feasible range 

for the forgetting factor. 
meorem 2: ps > 1 - 1i2 +  SUP^ ~ ~ ~ t l l i J ( t ) l l ~ z  < ca. H 
Example I (continued): Consider algorithm (1.2), (1.4) and take 

H = 2. With this choice $( t )  = y ( t )  = u( t ) ,  and v ( t )  = u( t ) ,  Vt ,  
so that algorithm (1.2), (1.4) reduces to the usual EF algorithm. On 
the other hand, it is well known that EF provides a recursive way 
to minimize loss function (1.8). Therefore, the results derived in this 
paper are applicable to the situation described in Example 1. 

Sequences S8'( .) and d ( . )  obviously satisfy Assumptions A. 1 and 
A.2 with = lo-' and l i d  = 1, respectively. Moreover, the 
observation sequence p(.) = U ( - )  satisfies the excitation condition 
stated in Assumption A.3 with s = 1, h'l = 2, IC2 = 1/2. Indeed 

Then, Theorem 2 entails that the tracking error I?(.) keeps bounded 
whenever p > 1/2. w 

APPENDIX 
(PROOFS OF PROPOSITTON 1 AND PROPOSITION 2) 

The following lemma (the proof of which is omitted) will be used 
in the subsequent derivations. 

LRmma I: Consider two r.v.'s C > 0, and 7 2 0 over the 
probabilistic space (0, 5, p). Suppose that < is measurable w.r. 
to G 5 and, for a given a > 0, p(7 2 a I G )  2 p. Then: 

H 
The statements of Proposition 1 and Proposition 2 can be seen as 

corollaries of a unique key inequality, which will be demonstrated 
first. 

E [ ( <  + 7 ) r 4  I GI I: P ( C  + + (1 - P)CC4?  4 2 0. 

Key inequality: Let p be any real number such that 

P E [P ,  1) n ( (1  - ~ i ~ ) ~ / ~ ,  1) (0.1) 

Letting 

the following inequality holds true: 

V n  2 m + 1 2 1. 

Proof: In view of the very definition of $ ( t )  one has 

Consequently, the persistent excitation Assumption A.3 entails that 

(ff.3) 

By taking conditional expectation w.r. to Pl(n-l)s at the two sides of 
(a.3) and applying Lemma 1 with q = 1 to the right-hand side with 

On the other hand 
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Fig. A.l. 

The key inequality follows from (a.4) and (a.5). 
Under condition (a.l) ,  the diagram of the function yn = f ( y n - l )  

given by the expression 

p - ” ( l -  K2)KlY,-, + p - s  
h’iyn-1 + 1 Yn = Yn-1 

is shown in Fig. A.1. 

easily conclude from the key inequality that 
Then, letting P(p) = p’-’(l-  p”)K;l(p” - 1 + h-~)- l ,  one can 

~ ( n ,  m) 5 a n p m 5 ( m ,  m )  + (1 - an-”)pS-lP(p), n 2 m 
(4 

where a E (0 ,  1) is a deterministic constant. 
Proposition 1) By taking p = v, inequality (a.6) gives: 

5 ~ y ~ - ~ l l ~ ( m s ) l l +  (1 - an-”)vS-’P(v), n 2 m. 

The thesis easily follows observing that P ( t )  5 P(t  - l) /p.  (see 

Proposition2) By taking p = p and m = 0, from inequality 
(1.2b)). 

(a.6) it follows that: 

~ [ 1 1 ~ ( ~ ~ ~ 1 1 1  I max{llP(O)ll, cLs-lRcL)l. 
Bearing in mind again that P ( t )  5 P(t  - l) /p,  the statement of 
Proposition 2 is a straightforward consequence of this inequality. 
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Approximate Solution of Large 
Sparse Lyapunov Equations 

Thorkell Gudmundsson and Alan J. Laub 

Abstract-This note describes a simple method for efficiently estimating 
the dominant eigenvalues and eigenvectors of the solution to a Lyapunov 
equation, without first solving the equation explicitly. The method is 
based on the power method and matrix-vector multiplications and is 
particularly suitable for problems where those multiplications can be done 
efflciently, such as where the coefficient matrices are large and sparse or 
low-rank. The same idea is directly applicable to balanced-trupcation 
order reduction of linear systems. 

I. INTRODUCTION 

The Lyapunov equation 

A X  + X A T  + BBT = 0 (1) 

(with A E RnXn stable, X E R n X n ,  and B E Rnxm) is very 
important in many control applications. Some examples are stability 
analysis of nonlinear systems [16], [14], optimal ‘FI, control design 
of linear systems [5] ,  [3], iterative solution of the Riccati equation 
[15], [21], balancing of linear systems [17], [18], and model reduction 
methods based on balancing [18], [7]. 

When the order of the equation is moderate (say, n < loo), it 
can be solved efficiently via the Bartels-Stewart [2] or Hammarling 
algorithms [ 101. These algorithms require o(n3) computational ef- 
fort, however, so when the order increases significantly, the need for 
less computationally intensive algorithms becomes more pronounced. 
Moreover, when n is large, A is typically sparse and B is of low rank 
(m is small), while the solution X is, in general, dense. Thus, solving 
the Lyapunov equation in this case is not only time consuming, but 
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