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Exponentially Weighted Least /Squares Identification 
of Time-Varying Systems with White Disturbances 

Marco C. Campi 

Abstract- This paper is devoted to the stochastic analysis of 
recursive least squares (RLS) identification algorithms with an 
exponential forgetting factor. A persistent excitation assumption 
of a conditional type is made that does not prevent the regressors 
from being a dependent sequence. Moreover, the system param- 
eter is modeled as the output of a random-walk type equation 
without extra constraints on its variance. It is shown that the 
estimation error can be split into two terms, depending on the 
parameter drift and the disturbance noise, respectively. The first 
term turns out to be proportional to the memory length of the 
algorithm, whereas the second is proportional to the inverse of 
the same quantity. Even though these dependence laws are well 
known in very special mathematical frameworks (deterministic 
excitation andor independent observations), this is believed to 
be the first contribution where they are proven in a general 
dependent context. Some idealized examples are introduced in 
the paper to clarify the link between generality of assumptions 
and applicability of results in the developed analysis. 

I. INTRODUCTION AND PRELIMINARIES 

A.  The Exponentially Weighted Least Squares Algorithm 

observation vectors G p(.) E R", consider the scalar process y(.) generated 
according to the following time-varying equation 

( la)  

In (la), the scalar d ( . )  is a disturbance term, and d o ( . )  E R" 
is a stochastic sequence of unknown parameter vectors, whose 
time evolution satisfies a random-walk type equation: 

(lb) 

The generality of model (1) can be appreciated by means of 
the following examples, which will be used later on to test the 
applicability of the theory developed in the present paper. 

IVEN a sequence of stochastic 

?At) = cp(f)'dO(t) + 4 t ) .  

d O ( t  + 1) = 7Y0(t) + S?YO(t). 

Examples: 
1) Linear combiner [I]: The linear combiner is an adap- 

tive nonrecursive filter widely used in adaptive signal 
processing, whose general form is 

Y(t)  = al( t )ul( t )  + a2(t)u2(t)  
+ ' ' ' + a,(t)u,(t) + d ( t )  
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where ui(t) and i = 1 , 2 , .  . . , n are exogenous inputs. 
The linear combiner takes the form (la) by introducing 
the observation vector 

Autoregressive model [2]: Autoregressive models are 
often used in time series analysis since they provide 
parsimonious representations for both slow and fast 
dynamics hidden in the data. The time-varying version is 

which can be given form (la) with the notation 

Hammerstein model [3]: When the input/output dynam- 
ics of a system contains a nonlinear but fast component, 
a common modeling procedure consists of resorting to 
a linear dynamic model complemented with a nonlinear 
gain. Then, the nonlinear gain is represented by a Taylor 
expansion as follows (Hammerstein model): 

In addition, this model can be put in form (la) by 
introducing the vector 

cp(t) = [l u( t )  u( t )2 .  ' .  u(t)"]' 

0 
The following assumptions on d( . )  and M O ( . )  will be 
assumed to hold throughout the paper (the symbol .('U), 
where 'U is a set of random variables, stands for the 
a-algebra generated by U). 

A. 1 d( t )  is a zero expected value random variable indepen- 
dent of a(cp(i), Sdo( i ) ,  d ( i  - l), i 5 t )  and E [ ~ i ( t ) ~ ]  = 
2. 

A.2 6do( t )  is a zero expected value random variable 
independent of a(cp( i ) ,d( i ) ,6d0( i  - 1) , i  5 t )  and 
E[l16do(t)112] = A2. 

1053-587X/94$04.00 0 1994 IEEE 
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For the estimation of the unknown parameters d O ( t ) ,  we 
will consider the exponentially weighted least squares (EWLS) 
algorithm obtained by minimizing the loss function: 

B. A Glimpse through the Existing Literature 
on Adaptive RLS Techniques 

The following two questions motivate almost all the papers 
t pertaining to the performance analysis of adaptive identifica- 

J(79) = p [ y ( T )  - cp(T)’S]2 (2) tion algorithms: 
r=-m i) Is the algorithm able to keep the estimation error 

bounded-in some sense-in a range of situations 
sufficiently large with respect to its normal area of where 
application? 

way? 
if l l d T ) I l  I b, 

(3a) ii) What does the estimation error depend on and in what 

if lldT)ll 5 
if l ldT)I l  > b,. 

(3b) As for this last question, a key issue is finding the de- 
pendence of the estimantion error on the “tuning knobs” of 
the algorithm. This issue has been recently investigated in 

In (2), the coefficient p E ( 0 , l )  is the so-called forgetting 
factor, which is introduced in the loss function to discount old 
data in favor of fresh information. The lower the forgetting 
factor, the higher the algorithm responsiveness. The selection 
of the value for p is a user’s choice and is discussed, e.g., in 
[4] and [5]; see also [6] and [7]. In the sequel, the time constant 
X = l / ( l -p)  associated with the discrete exponential function 
pt will be called the memory length of the algorithm. 

The data cp(,) and y(.) are “cut” according to (3a) and (3b) 
before they are processed by the identification algorithm. Such 
a procedure avoids that data with large value due to oversized 
shots of noise or measurements errors have an excessive 
weight in the loss function (2). In this connection, the positive 
constant b, should be chosen in the light of apriori knowledge 
about the normal range of variability of the cp(.) entries; see 
[8] for more discussion. 

The minimum of the loss function (2) is achieved by the 
vector ([8]) 

6( t )  = P(t )R( t )  

where 

and 

P( t )  = p q ( T ) c p ( T ) ‘  ) - l  (4c) r T=-W 

is the so-called covariance matrix of the algorithm. 
Equation (4) is the batch version of EWLS. It is well known 

that the algorithm can be given recursive form suitable for on- 
line identification. Numerically robust versions based on U-D 
factorization can be found, e.g., in [4]; in addition, see [9]. 

The present work aims at studying the performance of the 
EWLS algorithm in a stochastic framework. In Section I- 
B, we illustrate the basic problems arising in the analysis 
of least squares techniques; moreover, we will present our 
main results, putting them into perspective within the existing 
literature on the subject. 

[lo] with regard to the least mean squares (LMS) algorithm 
(see also [ l l ] ) ,  where it is shown that the mean square 
of the estimation error can be given the following bound: 
(a = algorithm stepsize): 

The two terms on the right-hand side of ( 5 )  describe how the 
noise and the parameter drift affect the estimation error. Note 
that the steady-state error increases linearly with a and the 
tracking error is inversely proportional to such a quantity. 

Turning now to least squares techniques, to better describe 
the relevant results in the literature, we are well advised to 
consider the following general weighted least squares (WLS) 
algorithm: 

-1 

= w ( t l 7 )  W W )  r T=- W 

In (6), +(.) and U(.) are the “filtered observation vector” 
and “filtered output” obtained from q(-) and y(.) via some 
processing such as prefiltering, cutting etc. Note that algorithm 
(4) corresponds to (6) with $(.) = cp(.), U(.) = fi(.), 
and w ( t , ~ )  = pt-r as weights. In contrast with LMS, the 
WLS algorithm is characterized by the auxiliary memory 
constituted by the matrix A ( t )  = E“,=_, w(t, T )  $(T)$(T)’ 

(information matrix). Loosely speaking, this matrix keeps 
memory of the total amount of information available in the 
different directions in the parameter space. As a consequence, 
the estimation at time t depends in a complex way on the 
entire history of data. 

The first study of least squares techniques worth mentioning 
can be found in [ 121. In this paper, the analysis ,relies on the 
independence assumption of regressors and the stationaxity of 
observations. Even though based on these strong assumptions, 
this paper is illuminating in that it shed light for the first 
time on how the performance of the algorithm depends on 
its memory length. Moreover, due to averaging effects, the 
analysis carried out under the independence assumption is able, 
to some extent, to capture the basic behaviors exhibited by the 
algorithm even in the dependent context in the case of long 
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memory length algorithms; see [I31 for another study in a 
similar mathematical context. 

In [12]-as in almost all papers on the subject-the major 
technical difficulties arise for the possible lack of information 
when the observation vectors are described in a stochastic way. 
This is due to the fact that the sophisticated treatment of data 
performed by WLS algorithms is quite involved in the way 
in which uncertain information can possibly compensate for 
errors in the estimate. Obviously, a drastic simplification is 
obtained if one assumes that the observation vectors satisfy a 
stiff deterministic constraint of the type 

r+s 

C I  2 cp(i)cp(i)’ 2 cI.Vr.  (7) 
i=7+1 

Basically, this condition imposes that a certain degree of 
information is available in any direction of the parameter 
space over any time interval of length s. In the analysis, this 
enables one to disregard the actual pattern of information, 
taking into account just the lower bound guaranteed by (7). 
Under condition (7), nice bounds for the estimation error have 
been worked out in [14] and [15]. 

More recently, Niedzwiecki and Guo [I61 observed that 
under stationarity assumption on the observation vectors, the 

auxiliary matrix A@)- ’  = 

tends to B-’ = E“,-, ( w ( t ,  ~ ) E [ $ ( T ) $ ( T ) ’ ] ) - ~  when the 
memory length of the algorithm tends to infinite. On the 
grounds of this consideration, they proposed to approximate 
the WLS estimate d ( t )  with the following “idealized” WLS 
estimate: 

-1 

w( t ,  T ) $ ( T ) $ ( T ) ’ )  

In this way, one has to deal with the constant matrix B-l 
instead of the more complicated information matrix A(t )  -’. 
Applying this idea to the rectangular window algorithm (i.e., 
w ( t ,  T )  = 1 /N ,  t - T 5 N - 1; w(t. T )  = 0, t - T 2 N ) ,  the 
authors were able to prove that for Gaussian regressors, the 
L2 norm of the estimation error can be given the bound 

1 
N E[[@@) - d”(t)112] 5 c” + c//--. (8) 

Note that (8) can be seen as the counterpart of ( 5 )  for the rect- 
angular window LS algorithm. In analogy with the derivation 
of (5) given in [IO], result (8) is also based on independence 
assumptions between c p ( . ) ,  d o ( . ) .  and d( . ) .  Moreover, as 
already noted, the approach proposed in [I51 is inherently 
based on stationarity assumption on the observation vector 
sequence cp(.). As such, it is suitable for linear combiner-type 
models only. 

To the best knowledge of the present author, the first paper 
where WLS algorithms were studied without resorting to 
mutual independence among observation vector, noise, and 
parameter drift and/or stationarity assumption on the sequence 

cp(.) is [17]. There, a general algorithm with time-varying 
forgetting factor is considered, which is obtained by setting 
w ( t ,  T )  = 7rj:(;p(t - j )  in (6). In [17], only the first question 
set at the beginning of this section has been addressed. 
The main contribution consists of recognizing that the L2 
boundedness of the estimation error is strictly related to the 
L1-boundedness of the so-called covariance matrix of the 
algorithm. The interested reader is also referred to [18] and 
[19] for a preliminary study in the case of ideal systems (no 
measurement noise and time-invariant true parameterization) 
carried out in the same mathematical framework as [17]. 

In this paper, we are basically concerned with the second 
question posed at the beginning of this section. More precisely, 
we want to work out bounds for the estimation error of the 
EWLS algorithm with the objective of clarifying how the 
performance of this algorithm depends on its memory length. 

The main results of the paper can be summarized as follows: 
i) The L2 norm of the estimation error can be split into 

two terms, respectively, depending on the parameter drift 
and the disturbance. Under suitable persistent excitation 
conditions, the first term is proportional to the memory 
length of the algorithm, and the second one is inversely 
proportional to the same quantity. 

ii) When A = 0 (no drift in the parameter), the L2 norm of 
the estimation error tends to zero if the forgetting factor 
p tends to 1. 

The results stated above have been worked out in a very 
general stochastic framework. In particular, we do not require 
any independence assumption of the observation vectors. Even 
though the independence assumption does not reflect the 
reality, its use has been common practice in the study of 
adaptive filtering algorithms. In this paper, we have been able 
to drop this assumption thanks to a novel approach based 
on the introduction of a “fake information matrix,” which 
keeps memory of the “independent portion of information” 
(see Section IV for details). It is the hope (and the belief) of 
the present author that such a new approach can be helpful 
for the study of many more situations of interest besides that 
treated in this paper. 

11. A FUNDAMENTAL EXPRESSION 
FOR THE ESTIMATION ERROR 

Let 

The EWLS estimation 8 ( t )  given by (4) can be handled as 
follows: 

t 

6 ( t )  = p.”-‘P(t)cp(.) [cp(T)’d”(7) + cl(.)] 
?-=-a 

t 

(using (la)) 

= p t - T ( t )  [P(,)-l - pP(T - 1)-1] 
r=--03 

X [19”(T f 1) - 6 d 0 ( 7 ) ]  
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t 

+ p P ( t ) @ ( T ) d ( T )  (using (1 .b)) 
7=-m 

t 

r=--00 

t 

+ pt-r+lP(t)P(T - 1)-1 
r=--OO 

x [do(.) + Sd0(7) - dO(7 + l)] 
t 

+ pt-'P(t)p(7)d((7) 
+=--00 

t 

= dO(t + 1) - pt--.P(t)P(7)-'6d0(7-) 
r=-m 

t 

+ p"-'P(t)p(T)d(T) (using (1 b)). 
r=--00 

Consequently, the estimation error 8(t)  = B( t )  - do(t  + 1) 
is given by 

Equation (9) constitutes the starting point for the analysis 
of the tracking properties of the EWLS algorithm, which is 
worked out in the next sections. 

111. A SIMPLE INDEPENDENT CASE 
Assumptions A.l and A.2 of Section I-A require the obser- 

vation vector sequence cp(i), i 5 t to be independent of d ( t )  
and 6d0( t ) ,  that is, the disturbance acting on the system and the 
variation in the true parameterization occurring at time t are 
unpredictable on the basis of the observation vectors measured 
up to time t. This working assumption looks very mild and is 
generally satisfied even if the observation vector contains an 
autoregressive part. However, the study of algorithm (4) under 
the only independence assumptions A. 1 and A.2 constitutes, 
in general, a hard task. A considerable simplification in the 
analysis is achieved by introducing the following stronger 
independence assumption: 

A.3 cp(.) is a sequence of independent variables such that 

Note that A.3 is a reasonable assumption as long as the 
a(cp(.)) is independent of a(d(.), 66"(.)). 

This assumption is a persistent excitation condition on data. 
Apparently, for this condition to be satisfied, the span of 
the observation vectors over any time interval of length s 
has to be the entire parameter space with probability one. 
Even more so, A.4 imposes that the events on which infor- 
mation is poor in some direction are small enough so that 
Xmin{C;=+,8+1 p(Z)p(i)'} is invertible in the mean squared 
sense. 

Assumption A.4 constitutes an implicit condition on ob- 
servation vectors. Obviously, it is interesting to work out 
explicit conditions on cp(.), guaranteeing that A.4 is met. 
In this connection, note that a strictly related problem has 
been recently discussed in [16]. To be precise, in this pa- 
per, the authors investigate the boundedness of the matrix 
E[(CLi' $(Z)$(i)')-'], where $(.) is an i.i.d. sequence with 
finite second-order moment. They show that the boundedness 
property is satisfied if and only if the following condition holds 
true (see [16] for the interpretation of this condition): 

37 > 0,6 > 0, xo > 0 such that sup ((pp'$(t))' < x) 
IIPII=1 

5 yx6,vx : 0 < x < x0,vt. (10) 

Going through the proof of this result and taking into account 
the independence property of vectors $(.), it is not difficult 
to see that the existence of an integer N such that matrix 

$(i)$(i)' is invertible in the mean sense is equivalent 
to the existence of an integer A4 such that xzil $(i)+(i)'  
is invertible in the mean squared sense. Starting from this 
consideration, some simple elaborations of the rationale in [ 161 
allow one to conclude that condition (10)-with p ( t )  in place 
of $(t)-is also necessary and sufficient for our assumption 
A.4 to be satisfied. 

Equation (9) points out the major role played by ma-$x P ( t )  
in determining the amplitude of the estimation error d ( t ) .  The 
proposition below provides a quantitative upper bound for the 
size of this matrix when assumptions A.3 and A.4 are met. 

Proposition: Under assumptions A.3 and A.4, 
1imsup,,,llP(t)llL./(1 - p )  5 s N 2 .  

Remark: Note that the dependence law of matrix P ( t )  on 
the value of the forgetting factor p coincides with that valid 
under deterministic excitation assumptions; see, e.g., [ 151. 

Pro08 Let 

observation vector does not contain past values of the system 
output, and the system inputs are not computed from a 
feedback law. This is, for instance, the case of ExamDles 1 

The following recursive inequality for Xmin{@(-m, .)} holds 
true (see the Appendix for its derivation): 

-112 and 3 of Section I-A. 
For this section, we also introduce the following condition: 
A.4 

{ E[(Xmin{@(-m: .)})-'I} 
3 s , k  > 0 such that 
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By iteratively using inequality (11) starting from 7 = t one 
gets 

t - . s )})-2]}- l i2  

The statement of the proposition easily follows by observing 
that the left-hand side of (12) coincides with (llP(t)ll~~)-l 
and that, thanks to Assumption A.4, {E[(Xm;,{@(t- 

0 
Now, consider the inverse of the covariance matrix 

(P(t)-’) .  Observing that vectors (p are bounded from above 
by b ,  (see (3a)), from definition (4c) of matrix P ( t ) ,  it 
follows that IlP(t)-lll 5 b:/(l - /I.).&. Hence, bearing in 
mind the independence Assumption A.3, expression (9) for 
the estimation error gives 

( r  + 1)s + l , t  - r s ) } ) - ” } - ’ / 2  2 p“- lk - l /2 ,V7.  

Ilml$ 
t 

T = - m  

x ( [ b $ / (  1 - p)’]A2 + b$a2). 

Inserting in this expression the bound for IIP(t)llL~ given in 
the Proposition, one finally gets 

1 
X 

1119(t)11;2 5 C’X + c”- (13) 

where c‘ and c’’ are linearly depend on A’ and m2 respectively, 
and the inequality is valid for sufficiently large values of the 
algorithm memory length. 

The applicability of the results worked out in this section can 
be suitably evaluated by considering the examples introduced 
in the previous section. For the linear combiner model, condi- 
tion (lo), and hence A.4, is met whenever the input signal 
ut(.) ,  z = 1 , 2 , .  . . , n, have a sufficiently rich distribution 
probability. It can be readily seen that this happens, for exam- 
ple, if U , ( . )  are white Gaussian noise (ut( . )  - WGN(0, A:), 

> 0) independent of each other. Then, the bound (13) 
holds true if the system variables cp(.), 679 ’ ( . )  and d ( . )  satisfy 
A.l-A.3, which are conditions that do not look particularly 
restrictive in the linear combiner case. On the contrary, the 
facile framework of this section does not suit the situations 
described in Example 2 (Autoregressive model). In fact, in 
this case, the observation vector at time t depends on all the 
past values of the disturbance and the parameter drift so that 
Assumption A.3 is not met. It is also instructive to discuss 

the above assumptions in connection with the Hammerstein 
model. In particular, this allows one to better understand the 
role played by Assumption A.4. Suppose, for instance, that 

if lu’(t)l 5 k { t!.:kn ( ~ ’ ( t ) ) ,  otherwise u( t )  = 

where k is a given constant, and U’(.)  - WGN(0, A’) (note 
that considering a “cut input” is reasonable in connection with 
nonlinear gain with saturation effects). Then, by making p 
orthogonal to vector [l k k 2  .. ‘ P I ’ ,  it is easily seen that 
condition (10) is not met; therefore, Assumption A.4 turns 
out to be too tight in this case. 

The above considerations show that the assumptions intro- 
duced in this section are too stiff to be applicable to many 
situations of interest. In the next section, we will introduce a 
wider analysis framework and, by some additional work, we 
will show that the dependence law (13) still holds true. The 
resulting theory looks quite powerful and can be applied, for 
instance, to Examples 2 and 3. 

Iv .  THE DEPENDENT CASE 

In this section, the following persistent excitation assump- 

A S  3 s , k l  > O,k2 > 0 such that 
tion of conditional type will be assumed: 

2 k2,Vr.  

Roughly, condition A S  requires that whatever the past evolu- 
tion of the system might have been, with probability kz ,  the 
“amount of information” carried by data over the next s time 
points is greater than IC1 in any direction of the parameter 
space. 

This assumption is much weaker than A.4 in that it does 
not prevent that information is missing on events with nonzero 
probability. To show its generality, consider, for instance, the 
Hammerstein model introduced in Section I (Example 3), and 
assume that it is fed by 

if lu‘(t)l 5 k { f!.fkn ( U ’ @ ) ) ,  otherwise u(t)  = 

IC > 0 given constant, and U’(.) - WGN(0,X2) and 
X2 > 0, independent of m(Sd0(.) ,d( . ) ) .  Then, A S  reduces 
to p(~,i,{C‘+~+., cp(i)cp(i)’} 2 k1) 2 1 c 2 , ~ r .  This last 
condition is trivially verified by observing that E[cp(i)cp(i)’] 2 
A > 0 and that p(.) is a sequence of independent random 
variables. In addition, the case of autoregressive processes 
(Example 2 in Section I) can be studied under assumption 
AS. The corresponding analysis, however, is much more 
complicated than that for the Hammerstein model and is 
reported in a forthcoming paper. 

Theorem: Under assumptions A. 1, A.2, and AS,  there exist 
X such that for any X 2 - 

(14) 
1 llt?(t)11$ I c1A’X + c2a2- x 

where c1 and c2 are constant, which depends on s, ICl, and 
k2 only. 
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Pro08 For notational convenience, we introduce the fol- 
lowing two a algebras: 

p t - m s  - - a(q( j ) , j  5 t - ms; d ( t  - ICs), 

P-"" = a(q ( j ) , j  5 t - ms; d ( t  - ICs), 
Sd"( t  - k s ) , k  2 m), m 1 0, 

6d" ( t  - ICs), IC 2 m + I) ,  m 2 0. 

Assumptions A. 1 and A.2, respectively, entail 

d ( t  - m s )  independent of a(P-"",6d0(t  - m s ) ) ,  m 1 0 
6do(t - ms) independent of a(3t--ms1 d( t  - ms)), m 1 0, 

so that the CT algebra p-ms turns out to be independent of 
a(d(t - ms),6d0(t  - ms)), m 2 0. 

Point 1: Construction of an independent set of events 
{Aj} j?o such that 

A) ~ j !  c {Amin (~:i:':(~+~)~+~ P(~)cP(v)  1 kl}, j L 0 
B) p ( A j )  = k z ,  j 1 0 
C) a ( P - m s ; { A j } j > o )  independent of a(d(t  - ms) ,  

Note first that property C) is met if ( A j } o < j < ,  satisfies, 
for any n, the following two conditions (see the Appendix for 
the proof of this claim): 

i) A j ,  j = m,m + 1 , .  . .n) independent of 

ii) a(Pt-ms;  A j ,  j = m, m + 1 , .  . . n) independent of 

The construction of the set of events {Aj} j?o is performed 
recursively. Then, suppose that the { A j } ~ l j l n  satisfy A) and 
B) with j 5 n and i) and ii). For the definition of A,+1 
{ ~ ~ i , ,  ( C f ~ ~ ~ ~ ~ ~ 2 ) s + ,  p(i)cp(i)r) L kl}, first impose that 

6d0(t - ms)),  m 1 0. 

a(d(t - ms), S P ( t  - ms) ) ,  0 5 m 5 n; 

a(Am-1), 1 5 m 5 n + 1. 

P(A,+l Ip t - (n+2)s )  = k2 (15) 

(note that this is possible in view of Assumption AS, provided 
that the probability space is sufficiently rich). Equation (15) 
defines the conditional distribution of event A,+1 with respect 
to Pt-(n+2)s and implies condition B) with j = n + 1. Next, 
for m = n + 1, n, n - 1 , .  . . , l , O ,  recursively impose the 
following double independence condition: 

a(A,+1) independent of a(@ - ms) ,  6do(t - ms) )  
conditionally to a(3t--ms; Aj , j = m, m+ 1 ,. . ., n)  

(16) 

and 

a(An+l) independent of a(A,-1) conditionally to 

a(pt-m";A. J , 3 - m l m + l , . . . , n ) .  .-  (17) 

For m = n + 1, condition (16) can be imposed because of 
the independence between P-("+')" and a(d(t  - (n  + l)s), 
6do(t-(n+l)s)).Condition(16), withm 5 nand(17)canbe 
imposed in view of the fact that { A j } o l j ~ ,  satisfies i) and ii). 

From (15)-(17), properties i) and ii) with n + 1 in place 
o f n  follow (in the Appendix, a detailed proof of this fact is 
given). This ends point 1. 

By means of the sequence { A j } j > ~ ,  we can now construct 
the following matrix (fake information matrix): 

Do 

j = O  

identity matrix on Aj  
0 otherwise. where IA, = 

Note that property C) of { A j } j ~ o  implies that Pl(t)  is 
independent of u(d(t - ICs), SdO(t - ICs), k 2 0). Moreover, 
from property A), it follows that Pl(t)-' 5 P(t)-'.  
Point 2-Bounding E[IIP1(t)112]: Denoting by 1~ the indi- 

cator function associated with the set A and taking into account 
that events {Aj}j>o constitute an independence sequence, one 
has 

r 

L 

(using jensen's inequality). 

Observing that 
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from ( 1  8), one immediately has 

so that there exists k < oc such that 

l i m s u p ~ [ I I ~ l ( t ) I 1 ~ ] / ( 1  - p12 I K .  (19) 

Point 3-Bounding llt?(t)llL.: The determination of the 
bound for a(.) is performed by replacing P ( t )  with the 
auxiliary covariance matrix Pl( t ) .  This allows one to resort 
to standard probabilistic techniques such as those used when 
cp(.) is independent of Sd"(.) and d( . ) .  

We start by considering the effect of the disturbances 
{ d ( t  - k s ) ,  k 2 0} and the drift terms {Sd"(t - k s ) ,  k 2 0) on 
the tracking error 8( t ) .  The effect of { d( t - k s  - 2). IC 2 0} and 
{Sdo(t - k s  - z ) , k  2 0}, z = 1.2 . .  . . , s  - 1 can be studied 
in the same way. 

2 
P(t)2.  Consequently, the effect of { d ( t  - k s ) , k  2 O} and 
{Sdo(t - k s ) ,  k 2 0} on the L2 norm of the parameter 
estimation error 8( t )  can be given an upper bound as follows 
(see (9)): 

P-1 

From property A) of {A,},>o, it follows that 

30 

p k S P ( t )  [ - P(t  - ks)-'hiY"(t - k s )  

I121 

1 1  1 + cp(t - k s ) d ( t  - k s ) ]  

11 + cp(t - k2s)d(t - k*s)]  

+ cp(t - k2s)d(t  - k2s)] . 11 
By the independence property C), it turns out that the only 
terms to be nonzero in the right-hand side of (20) are the 
synchronous terms containing either No(.) or d(.).  Let us 
show, for instance, that the term that contains SdO(t - k l s )  

Now, observe that property C) entails that PI ( t )  is independent 
of o(d ( t  - k s ) ,  Sdo(t  - k s ) ,  IC 2 0). Thus, in fully analogy 
with the independent case, from inequality (20), one gets 

03 

- k ~ ) - ~ S d " ( t  - ICs) 

1121 

ll 1 + cp(t - ICs)d(t - k s ) ]  

03 

I ~~2k""[ l IPl( t ) l12]  @;/(I - p ) 2 ] A 2  + b2,a2)(21) 
k=O 

Inserting in (21) the bound for E[IIP1(t)l12] given by (19), one 
can finally conclude that for p sufficiently close to 1 ,  the effect 
of { d ( t  - ICs), N 0 ( t  - ICs), k 2 0} on the L2 norm of d ( t )  
is bounded by the quantity 

2Kb$A2/(1 - p2") + 2Kb2,a2(1 - ~ ) ~ / ( 1  - p2") .  

Handling in an analogous way { d ( t  - k s  - i), M0(t - k s  - 
z), k 2 O}, i = 1 , 2 , .  . . , s - 1, the statement of the theorem 
follows. 0 

Remark: Note that according to (14), if A2 = 0 (no drift in 
the true parameterization), the L2 norm of the estimation error 
tends to zero as the forgetting factor tends to 1 .  In other words, 
the parameter estimate approaches the true parameterization at 
will, provided that the memory length of the algorithm is taken 
sufficiently long. 0 

V. CONCLUSION 

One of the crucial points in the analysis of identification 
algorithms is the description of how stochastic information 
can compensate for uncertainty in the parameter estimation. 
Reportedly, this task turns out to be particularly hard for 
RLS-type algorithms, especially in the truly dynamic case, 
when the observation vector depends on the past history of 
both disturbance and parameter drift. In this paper, a new 
approach is proposed to cope with this problem. The basic 
idea consists of "cleaning" the information pattern by its 
"dependent components." Then, the analysis is carried out by 
focusing on the "independent information component" of data. 
It is interesting to note that under mild excitation assumptions 
of conditional type, the independent component turns out to 
be rich enough to guarantee good tracking performance. 
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The proposed approach allows one to extend to RLS-type 
algorithms for the identification of systems with dependent 
regressors the following fundamental law, which is well known 
for LMS-type algorithms: 

1 
X I&t) - g o ( t ) \ ) i 2  I CIA + c"-, x = memory length. 

We end the paper by indicating two directions worthy of 
further research. 

i) Equation (14) gives an upper bound for the estimation 
error that explicitly depends on the memory length of the 
algorithm and the variance of the parameter drift and the noise. 
Moreover, based on the proof of the theorem, it is not hard 
to work out explicit expressions for the constants c1 and e2 

as functions of s, k1, and k2. On the contrary, more work 
is required in order to state explicitly the dependence of the 
error on the size of the observation vectors. This is a main 
issue for applications where the selection of the dimension of 
regressors plays often a crucial rule. 

ii) In this paper, the theory has been developed for exponen- 
tially weighted LS identification algorithms only. Extensions 
to more general classes of LS algorithms are expected. 

APPENDIX 
PROOF OF (11): 

Using inequality Xmin{A + B} 2 X,;,{A) + Amin{B}, 
A 2 0, B 2 0, the left-hand side of (1 1) can be given a lower 
bound as follows: 

Applying twice the Jensen's inequality to the right-hand side of 
(22) as well as taking into account the independence between 
@(T - s+ 1 , ~ )  and @( -00, T - s ) ,  one obtains the expressions 
at the top of the page. This last expression is easily seen to 

0 be coincident with the right-hand side of (1 1). 

PROOF OF THE FACT THAT i), ii) =+ c) 
From ii), it follows that a ( F m s ; A j ,  j = m,m + 

1,. . . ,n )  is independent of a ( A j , j  = 0,1,. . . , m  - I), 
1 5 m 5 n. Hence, also using i), one immediately 
has that u ( P - ~ ~ ;  Aj ,  j = 0,1, .  . . , n)  is independent of 
a(d(t  - ms) ,6d0( t  - ms)), 0 5 m 5 n. Observing that 
U, u ( P - ~ ~ ;  A j ,  j = 0,1,. . . , n)  is a T algebra that generates 

{Aj}j?o), property C) straightforwardly follows 
(see, e.g., vol. 1 of [20] for the concept of T algebra and 
related results). 0 

PROOF OF THE FACT THAT (1 6) + i) WITH n + 1 IN PLACE OF 
n AND (17) + (15) + ii) WITH n + 1 IN PLACE OF n 

We only show that (16) + i). The implication (17) + (15) 

For a given m E [0, n + 11, consider the set of events 
+ ii) can be shown in a similar way. 

S is independent of a(d(t - ms) ,  S6'(t - ms)). Indeed, for 
any B E a(d(t - ms), M0(t - ms)), one has 
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and, analogously p((A,+lnF)flB) = p(A ,+l f lF )p (B) .  Ob- [I31 T. Adali and S. H. Ardalan, “Fixed-point roundoff error analysis of the 
serving that S is a T algebra that generates c ~ ( P - ~ ’ ;  A,, j = 
m, m + 1,. . . , n + l), the thesis follows. 

RLS algorithm with time-varying channels,” IEEE Int. Coni Acoustic, 
Speech, Signal Processing (Toronto), 1991, pp. 1865-1868. 

[I41 R. L. Lozano, “Identification of time-varying linear models,’’ in Proc. 
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