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Abstract: In this paper we consider the problem of constructing confidence sets for the
parameters of general linear models. Based on subsampling techniques and building on
earlier exact finite sample results due to Hartigan, we compute the exact probability that
the true parameters belong to certain regions in the parameter space. By intersecting these
regions, a confidence set containing the true parameters with guaranteed probability is
obtained. All results hold rigorously true for any finite number of data points and no
asymptotic theory is involved. Moreover, prior knowledge on the uncertainty affecting
the data is reduced to a minimum. The approach is illustrated on a simulation example,
showing that it delivers practically useful confidence sets with guaranteed probabilities.
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1. INTRODUCTION

Models of dynamical systems are used in many fields
of science and engineering. It is widely recognised
that a model is of limited use if no quality tag is
attached to it. A good technique or methodology
for model uncertainty evaluation should meet the
following two requirements: 1) It must hold under
general conditions, and 2) It should provide a non-
conservative evaluation of the system uncertainties.

1 This work is partly supported by MIUR under the project ”New
methods for Identification and Adaptive Control for Industrial Sys-
tems”.
2 This research is partly supported by the Cooperative Research
Centre for Sensor Signal and Information Processing (CSSIP) under
the Cooperative Research Centre scheme funded by The Common-
wealth Government

Regarding the first item we note that restrictive as-
sumptions on the noise (e.g. that it is Gaussian or
bounded) means that the theory is no longer appli-
cable to many real life systems. The second point is
important because loose uncertainty evaluations gen-
erate conservativeness in the belief that the model is
less reliable than it actually is. For example, a robust
controller looses in performance as the level of uncer-
tainty increases.

One point that needs to be kept in mind is that, in
system identification (e.g. Ljung (1999)), one always
uses afinite number of data points. Likewise, for
the evaluation of model quality and construction of
confidence sets one will only have a finite amount of
data available. Thus, a sound uncertainty evaluation
method must provide results valid when the number
of data is finite, and, possibly, small.



Quite often, uncertainty evaluations and confidence
ellipsoids are derived based on the asymptotic theory
of system identification. It is common experience that
this theory - though applied heuristically with a finite
number of data points - in many situations delivers
sensible results. On the other hand, the correctness of
the results is not guaranteed, and contributions (e.g.
Garatti et al. (2004)) have appeared that show that the
asymptotic theory fails to be reliable in certain situ-
ations. Moreover, when the available data is scarce,
using asymptotic results makes no sense. Thus, there
is a need for developing techniques that provide results
guaranteed for finite data samples.

In this paper we develop a methodology, ‘Leave-out
Sign-dominant Correlation Regions’ (LSCR), for con-
struction of confidence sets for a general linear system
based on a finite number of data points. The con-
structed confidence sets have guaranteed probability
of containing the true parameter. The developed the-
ory is rigorously valid for any finite data sample and
moreover, it provides non-conservative evaluation of
the model uncertainties.

LSCR works well in cases where the asymptotic the-
ory fails. Asymptotic confidence ellipsoids are based
on a local Taylor expansion around the estimated pa-
rameter and can give misleading results when the es-
timate gets trapped in a local minimum. LSCR will
in those cases typically deliver a confidence set which
consists of disconnected regions around the true pa-
rameter and the local minima which have a predictive
performance comparable to the true system parameter
(see the simulation example in Section 4).

The mathematical approach in this paper is inspired by
Hartigan (1969). The present paper departs from Har-
tigan (1969) in that we consider more general random
sequences which allows us to deal withdynamical
systems. Yet, the main underlying idea is still within
Hartigan’s framework.

Our earlier finite sample results (e.g. Campi and
Weyer (2002) and Weyer and Campi (2002)) were data
independent, in the sense that they were uniform with
respect to the considered class of data generating sys-
tems, and they could essentially be evaluated without
any data. Because of the uniformity, it was realised
that the results could be quite conservative for the par-
ticular system at hand. The approach presented here
is data based and uses data generated by the actual
system at hand, and hence avoids the problems due to
uniformity.

LSCR does not deliver a nominal model. Instead, it
delivers a set of possible models to which the true
system belongs with a guaranteed probability. In this
respect the methodology has a lot in common with
set membership identification, see e.g. Milanese and
Vicino (1991), Bai et al. (1996), Giarre’ et al. (1997).
However, unlike the typical setting in set membership
identification we do not need to assume that the distur-

bances are deterministic or bounded. Loosely speak-
ing, one could view the developed methodology as a
stochastic set membership approach to system identi-
fication, where the setting we consider is the standard
stochastic setting for system identification from e.g.
Ljung (1999) or S̈oderstr̈om and Stoica (1988), but
where the outcomes are more in line with the out-
comes from set membership identification.

The paper is organised as follows. In section 2, we
construct regions which are such that we can calculate
the exact probability that the true parameter belongs to
them. In section 3 the confidence sets are obtained by
taking the intersection of a number of the constructed
regions. A simulation example is given in section 4
demonstrating that the method is practically useful.

2. CONFIDENCE REGIONS FOR LINEAR
SYSTEMS

2.1 Data generating system

The data are generated by a general linear system

yt = G0(z−1)ut + H0(z−1)wt, (1)

whereG0(z−1) andH0(z−1) are stable rational trans-
fer functions. z−1 is the backward shift operator
(z−1yt = yt−1). H0(z−1) is monic and has a sta-
ble inverse andG0(z−1) has a delay of1 or more
time units.{wt} is a zero-mean independent sequence
(noise). No a-priori knowledge of the noise level is
assumed. The system operates in open loop, that is
{wt} and{ut} are independent. Closed loop systems
are discussed in section 3.2.

2.2 Model structure

The model class consists of full order models

yt = G(z−1, θ)ut + H(z−1, θ)wt,

which are parameterised byθ. We assume that there
exists a unique parameterθ0 such thatG(z−1, θ0) =
G0(z−1) and H(z−1, θ0) = H0(z−1). Moreover,
we assume thatθ is restricted to a setΘ such
that H(z−1, θ) is monic,G(z−1, θ), H(z−1, θ) and
H−1(z−1, θ) are stable andG(z−1, θ) has a delay of
1 or more time units for allθ ∈ Θ.

Remark 2.1.It should be noted that the goal of the
present paper is to construct confidence regions for
the system parameter (as opposed to identifying a
nominal model). Similar to other existing techniques
for model quality evaluation (e.g. bootstrap techniques
(Tjärnstr̈om and Ljung (2002))), a full description of
the system is adopted. This does not in any way en-
force a full order nominal model: one can use a re-
duced order nominal model and then verify its relia-
bility using a full order model for quality evaluation.



2.3 Construction of confidence regions

We start by describing procedures for the determi-
nation of setsΘε

r andΘu
s for which we can exactly

calculate the probabilitiesPr{θ0 ∈ Θε
r} andPr{θ0 ∈

Θu
s}. Confidence setŝΘ for θ0 can then be constructed

by taking the intersection of a number of theΘε
r and

Θu
s sets.

Procedure for the construction ofΘε
r

(1) Compute the prediction errors

εt(θ) = yt − ŷt(θ) = (2)

H−1(z−1, θ)yt −H−1(z−1, θ)G(z−1, θ)ut

wheret takes on a finite number of values, say,
1, . . . ,K;

(2) Select anr ≥ 1. Fort = 1 + r, . . . , N + r = K,
compute

f ε
t−r,r(θ) = εt−r(θ)εt(θ);

(3) Let I = {1, . . . , N} and consider a collection
G of subsetsIi ⊆ I, i = 1, . . . ,M , forming a
group under the symmetric difference operation
(i.e. (Ii ∪ Ij) − (Ii ∩ Ij) ∈ G, if Ii, Ij ∈ G).
Compute

gε
i,r(θ) =

∑

k∈Ii

f ε
k,r(θ), i = 1, . . . , M ; (3)

(4) Select an integerq in the interval[1, (M + 1)/2)
and find the regionΘε

r such that at leastq of the
gε

i,r(θ) functions are bigger than zero and at least
q are smaller than zero.

The intuitive idea behind this construction is that,
for θ = θ0, the functionsgε

i,r(θ) assume positive
or negative value at random (εt(θ0) is a zero mean
independent sequence), so it is unlikely that almost
all of them are positive or that almost all of them
are negative. Since point 4 in the construction ofΘε

r

discards regions where allgε
i,r(θ)’s but a small fraction

(q should be taken to be small compared toM , see
Theorem 2.1 below) are of the same sign, we expect
thatθ0 ∈ Θε

r with high probability. This is put on solid
mathematical grounds in Theorem 2.1 below.

The procedure for construction of the setsΘu
s is in

the same spirit. The only difference being that the
empirical autocorrelations in point 2 are replaced by
empirical cross correlations between the input signal
and the prediction error.

Procedure for the construction ofΘu
s

(1) Compute the prediction errors as in equation (2).
(2) Select an integers ≥ 1. For t = 1 + s, . . . , N +

s = K, compute

fu
t−s,s(θ) = ut−sεt(θ);

(3) Let I = {1, . . . , N} and consider a collection
G of subsetsIi ⊆ I, i = 1, . . . ,M , forming a
group under the symmetric difference operation.
Compute

gu
i,s(θ) =

∑

k∈Ii

fu
k,s(θ), i = 1, . . . , M ;

(4) Select an integerq in the interval[1, (M + 1)/2)
and find the regionΘu

s such that at leastq among
functionsgu

i,s(θ) are bigger than0 and at leastq
are smaller than zero.

The next theorem gives the exact probability that the
true parameterθ0 belongs to one particular of the
above constructed sets.

Theorem 2.1.Assume that variableswt admit a den-
sity (so thatPr{wt = c} = 0, for anyt and any real
c) and that they are symmetrically distributed around
zero. Furthermore assume thatPr{ut = 0} = 0, for
all t. Then, the setsΘε

r andΘu
s constructed above are

such that:

Pr{θ0 ∈ Θε
r}= 1− 2q/M, (4)

Pr{θ0 ∈ Θu
s}= 1− 2q/M. (5)

Proof. See Campi and Weyer (2003,2004).

Remark 2.2.The noise assumption is mild enough to
accommodate a number of situations. In particular,
one can describe possible outliers by allowing the
noise to take on large values with small probability.
Importantly, the procedures return regions of guaran-
teed probability despite we do not assume any a-priori
knowledge on the noise level: the noise level enters the
procedures through data only.

Theorem 2.1 quantifies the probability thatθ0 belongs
to the regionsΘε

r andΘu
s . It holds for any finiteN and

introduces no conservativeness at all since1−2q/M is
the exact probability, not a lower bound of it. Each one
of the setsΘε

r andΘu
s is a non-asymptotic confidence

set in its own right. However, each one of these sets
will usually be unbounded in some directions of the
parameter space. A practically useful confidence set
Θ̂ can be obtained by intersecting a number of the sets
Θε

r andΘu
s , i.e.

Θ̂ = ∩nε
r=1Θ

ε
r ∩nu

s=1 Θu
s . (6)

The next obvious question is how to choosenε and
nu in order to obtain confidence sets that are bounded
and concentrated around the true parameterθ0. This
question will be dealt with in the next section. We
conclude this section with a fact which is immediate
from Theorem 2.1.

Theorem 2.2.Under the assumptions of Theorem 2.1,

Pr{θ0 ∈ Θ̂} ≥ 1− (nε + nu)2q/M,

whereΘ̂ is given by (6).



The inequality in the theorem is due to that the sets
{θ0 /∈ Θε

r}, {θ0 /∈ Θu
s}, r = 1, . . . , nε, s = 1, . . . , nu

may be overlapping.

3. CONFIDENCE SETS FOR DIFFERENT
MODEL CLASSES

A good evaluation method must have two properties:
the provided region must have guaranteed probability
(and this is what Theorems 2.1 and 2.2 deliver); and
the region must be bounded, and, in particular, it
should concentrate aroundθ0 as the number of data
points increases. How to choosenε andnu in in order
to achieve this for ARMA and ARMAX models was
treated in Campi and Weyer (2003, 2004). Here we
provide guidelines for a general linear model class.

3.1 General linear models

A first observation is that each time we consider a set
Θε

r or Θu
s we exclude a region in the parameter space

whereθ0 is unlikely to belong. By intersecting some
of these sets without paying too much attention to any
theory a-priori guaranteeing that the obtained region is
bounded around the true parameter, it is likely (and it
is experienced in simulation examples) that we come
up with a satisfying confidence set. Here we develop a
theoretical argument to substantiate the fact that using
correlations permits to spot the trueθ0

Let us consider an infinite number of correlations:
E[ut−sεt(θ)] = 0 for all s ≥ 1 andE[εt−r(θ)εt(θ)] =
0 for all r ≥ 1. Next we show that the only parameter
satisfying them all isθ0 (if ut is sufficiently exciting).

The prediction error is given by

ε(t, θ) =H−1(z−1, θ)(G0(z−1)−G(z−1, θ))ut+

H−1(z−1, θ)H0(z−1)wt,

and the conditionsE[ut−sεt(θ)] = 0 for all s ≥ 1
becomes:∫ π

−π

H−1(e−iω, θ)G̃(e−iω, θ)Φu(ω)eiwsdω = 0,

for all s ≥ 1, where G̃(e−iω, θ) = G0(e−iω) −
G(e−iω, θ). This givesG0(e−iω) = G(e−iω, θ) pro-
vided thatu is sufficiently exciting. Using this we also
find that the conditionsE[εt−r(θ)εt(θ)] = 0 for all
r ≥ 1 can be written as

∫ π

−π

|H−1(e−iω, θ)H0(e−iω)|2λ2
weiwrdω = 0

for all r ≥ 1. It follows thatH−1(e−iω, θ)H0(e−iω)
is constant, and sinceH(z−1, θ) and H0(z−1) are
monic, it follows thatH(e−iω, θ) = H0(e−iω).

In the construction ofΘε
i,r and Θu

i,s, we compute
the sample correlationsgε

i,r and gu
i,s. As N →

∞, the functions 1
Ni

gε
i,r(θ) → E[εt−r(θ)εt(θ)] and

1
Ni

gu
i,s(θ) → E[ut−s(θ)εt(θ)], provided that the num-

ber of elements in each setIi also tends to infinity.
It is easy to construct groups with this property, see
Gordon (1974). The normalisation1/Ni is immaterial
in the construction of the confidence regions, since all
that matters is whethergε

i,r(θ) andgu
i,s(θ) are smaller

or greater than zero.

This means that, if we could compute an infinite num-
ber of correlations, we would, under some additional
uniformity conditions, end up with a confidence set
which concentrates around the true parameter as the
number of data points increases. Computing an infi-
nite number of correlations is of course not feasible,
and moreover the guaranteed probability1 − (nε +
nu)2q/M goes to zero asnε, nu → ∞. However, in
practice one only needs to compute a finite number of
empirical correlations, and we next suggest a heuristic
guideline for computing the correlations.

Guideline 1. Compute as many empirical corre-
lations as there are parameters in the model. Letn
be the number of parameters whichG(z−1, θ) and
H(z−1, θ) have in common,m the number of pa-
rameters which appear exclusively inG(z−1, θ) and
p the number of parameters which appear exclu-
sively in H(z−1, θ). Choose at leastm correlations
ut−sεt(θ), s = 1, . . . ,m, and at leastp correlations
εt−r(θ)εt(θ), r = 1, . . . , p. When choosing the last
n correlations take into account the a priori informa-
tion about the energy in the signalsut and wt and
how exciting they are. Favour correlations of the type
ut−sεt(θ) if ut is the stronger signal and correlations
of the typeεt−r(θ)εt(θ) if wt is the stronger signal.

Note that it is only the shape of the obtained set
which is affected by the guideline. Theorem 2.1 and
2.2 are valid so the confidence set has a guaranteed
probability.

3.2 Closed loop systems

Again consider a general linear system (1), but assume
now that the input is generated by a feedback con-
troller

ut = K(z−1)(r̃t − yt)
wherer̃t is a reference signal, so that the closed loop
system is stable. We have that

ut = (1 + KG0)−1Kr̃t − (1 + KG0)−1KH0wt

yt = (1 + KG0)−1KG0r̃t + (1 + KG0)−1H0wt.

In this context, we consider the closed loop system
with inputs r̃t andwt and computêyt(θ) from the r̃t

andyt signals. The corresponding prediction error is:

ε(t, θ) = (1 + KG0)−1H−1K(G0 −G)r̃t +

(1 + (1 + KG0)−1(G−G0)K)H−1H0wt.



Then, by imposing correlation relationsr̃t−sεt(θ) and
εt−r(θ)εt(θ), nothing change in the probability analy-
sis of section 2 and Theorems 2.1 and 2.2 remain valid.

As in section 3.1, by imposingE[r̃t−sεt(θ)] =
0, ∀s ≥ 1, it follows that G = G0 provided r̃t is
sufficiently exciting, and imposingE[εt−r(θ)εt(θ)] =
0, ∀r ≥ 1 givesH = H0. Therefore, considerations
similar to those in section 3.1 for the choice of the
correlation functions apply in this closed loop context
as well.

4. SIMULATION EXAMPLE

The following example is taken from Garatti et al.
(2004). Consider the system

yt =
b0z−1

1 + a0z−1
ut + (1 + h0z−1)wt, (7)

with θ0 = [a0 b0 h0]T = [−0.7 0.3 0.5]T . {wt} is
white Gaussian noise with variance 1, and the input is
generated by

ut = r̃t − yt (8)

wherer̃t is white Gaussian noise with variance10−6.

In Garatti et al. (2004) it is shown that for this sys-
tem the asymptotic variance expressions from sys-
tem identification theory can give misleading re-
sults. Using a standard quadratic criterionVN (θ) =
1/N

∑N
t=1 ε2(t, θ), the estimate is given bŷθN =

arg minθ VN (θ). Asymptotically θ̂N converges to a
value which minimisesV (θ) = Eε2(t, θ). For r̃t ≡
0, there are two isolated parameters which minimise
V (θ). These values are the true parameterθ0 and
θ∗ = [h0 a0 − h0 + b0 a0]T . When the input
signal is different from zero, but poorly exciting, the
only minimum isθ0, but V (θ0) andV (θ∗) are close,
and since the estimate is found by minimisingVN (θ),
it will often end up being close toθ∗ which is now
only a local minimum.

The asymptotic theory for evaluation of the variance
of θ̂N − θ0 is based on a Taylor series expansion
of
√

NV ′
N (θ) around the true parameterθ0 (′ and ′′

denote first and second derivative w.r.t.θ)

0 =
√

NV ′
N (θ̂N )

=
√

NV ′
N (θ0) + V ′′

N (ξN )
√

N(θ̂N − θ0)

whereξN is a point between̂θN and θ0. When the
asymptotic expressions are used in the finite sample
caseV ′′(ξN ), is replaced byV ′′

N (θ̂N ). This can give
rise to a large error when̂θN is far from θ0 and this
is what happens in this example. The net result is that
the obtained confidence region is deceivingly small

As is clear from above, one reason why the asymp-
totic theory gives unreliable results is that it is local
in nature in the sense that it is based on a Taylor
expansion. It will only deliver a confidence set around

the estimated parameter. This is in contrast to the non-
asymptotic theory developed here which is global in
nature as no local approximations are involved.

Returning to our approach for generating a confi-
dence region we consider a full order modelyt =

bz−1

1+az−1 ut + (1 + hz−1)wt. The prediction errors are
given by

εt(θ) =
1

1 + hz−1
yt − bz−1

(1 + az−1)(1 + hz−1)
ut =

1 + (a + b)z−1

(1 + az−1)(1 + hz−1)
yt − bz−1

(1 + az−1)(1 + hz−1)
r̃t

As the system operates in closed loop, we considerr̃t

as the input signal, and the model structure isyt =
G(z−1, θ)r̃t + H(z−1, θ)wt with

G(z−1, θ) =
bz−1

1 + (a + b)z−1

and

H(z−1, θ) =
(1 + hz−1)(1 + az−1)

1 + (a + b)z−1

We have three parameters, one which belongs to
H(z−1) only, and two which belong to bothG(z−1)
and H(z−1). Using the Guideline in section 3.1,
we compute three correlations, one of them being
εt−1(θ)εt(θ). As r̃t is a poorly exciting signal com-
pared towt, we choose the other two correlations to
beεt−2(θ)εt(θ) andεt−3(θ)εt(θ).

We generated 2047+3 data points(N = 2047) ac-
cording to (7) and (8). The group was constructed as
in Gordon (1974) (M = 2048), and we computed

gε
i,1(θ) =

∑

k∈Ii

εk(θ)εk−1(θ), r = 1, 2, 3

in the parameter space, making the standard assump-
tions that the open and closed loop systems were sta-
ble (|a| < 1, |a+b| < 1) and thatH(z−1, θ) has a sta-
ble inverse, (|h| < 1). We excluded the regions in the
parameter space where 0 was among the 34 smallest
or largest values of any of the three correlations above
to obtain a1 − 3 · 2 · 34/2048 = 0.9004 confidence
set. The confidence set is shown in Figure 1. The set
consists of two separate regions, one around the true
parameterθ0 and one aroundθ∗ the other minimum of
V (θ) whenr̃t ≡ 0. This illustrates the global features
of the approach, producing two separate regions far
apart in the parameter space as the confidence set.

The parameter estimate itself is in this case close
to θ∗ and the asymptotic 90% confidence ellipsoid
is shown in Figure 2 together with the part of our
non-asymptotic confidence set which is concentrated
aroundθ∗. As we can see, the asymptotic theory, due
to its local nature, produces a misleading result, since
the confidence region is situated around a parameter
value corresponding to a local minimum and it does
not include the true parameterθ0. A close up of the
part of the non-asymptotic confidence region around
the true parameterθ0 is shown in Figure 3.
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Fig. 1. 90% confidence region.
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Fig. 2. Asymptotic confidence 90% ellipsoid (-), and
the part of the non-asymptotic confidence set
aroundθ∗ (- -).
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Fig. 3. Close up of the non-asymptotic confidence
region aroundθ0.

5. CONCLUSIONS

In this paper, we have derived a method called ‘Leave-
out Sign-dominant Correlation Regions’ (LSCR) for
the construction of confidence sets for general lin-
ear models. As the name indicates, LSCR is based
on computing empirical correlation functions using
subsamples and discarding regions in the parameter
space where only a small fraction of the empirical
functions are greater or smaller than zero. LSCR is
grounded on a solid theoretical basis, giving guar-
anteed probabilities for the true parameter to belong
to the constructed set for any finite number of data
points. As illustrated by the simulation example, it

produces practically useful confidence sets, and it is
a global approach, delivering disconnected confidence
regions when that is appropriate.
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