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Abstract: In this paper, we propose a data-based auto-tuning method for industrial PID
controllers, which does not rely on a model of the plant. The method is inspired by the Virtual
Reference Feedback Tuning approach for data-based controller tuning, but it is taylored to
the framework of PID controller design. The method is entirely developed in a deterministic,
continuous time setting, where the assumption of stationarity is not needed. The effectiveness
of the proposed approach is tested on a benchmark example that has been recently proposed
for the evaluation of PID controllers.
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1. INTRODUCTION

Proportional-Integral-Derivative (PID) control technology
is the most widely used approach for feedback regulation
of automatic systems. It is estimated that, nowadays, more
than 90% of practical control systems employs such a
technology (see Li et al. [2006a]). The reasons are many,
but certainly one of the most significant motivations is the
fact that, with only three parameters, a PID controller
can effectively fulfill the most common requirements of
typical industrial control problems, ranging, e.g., from
zero steady-state error in tracking a constant setpoint to
disturbance rejection (see Li et al. [2006b]).

Over the years, the everlasting popularity of PID con-
trollers has led to the development of several tuning meth-
ods, which try to offer effective strategies that are also
fast and simple. More specifically, due to the need of
fast recalibration of existing systems, both academic and
industrial people have dedicated a significant amount of
time and effort in the development of PID autotuning
methods, the first of them being the Ziegler and Nichols
approach in Ziegler and Nichols [1942].

Since 1942, several approaches to PID auto-tuning have
been proposed and applied to a huge number of different
applications. For an overview of the main scientific ap-
proaches, see Vilanova and Visioli [2012], whereas Kocijan
[2008] presents an accurate survey of the methods for PID
auto-tuning proposed as patents. From such readings, it
becomes evident how large the world of available tech-
niques is, and that the assessment of one method with
respect to the others is deeply related to the specific
application, as also observed and discussed in Leva and
Donida [2009].

⋆ This work has been partially supported by the Lombardia Region
“GreenMove” project. E-mail to: simone.formentin@polimi.it.

A complete taxonomy of PID auto-tuning methods is
difficult to draw up here. However, it can be noted that the
majority of the existing approaches is either characterized
by the use of semi-empirical rules or derived from model-
based methods employing low-order data-based models
(see again Li et al. [2006b]). This observation is very
important, because it means that strong guarantees on
the real system cannot be provided: on the one hand,
semi-empirical rules are not based on optimization theories
and one can only hope to obtain a suitable tuning for
the application at hand; on the other hand, low-order
models are always approximate, and modeling errors might
strongly jeopardize the performance of the closed-loop
system (see Hjalmarsson [2005]).

To overcome these problems, in the last decades people
in systems and control have investigated data-based con-
troller tuning techniques aimed to design suitable feedback
controllers directly from data without the need of identify-
ing a model of the system. The advantages of such a change
of perspective are evident, and the last ten years gave birth
to a large variety of methods, among which Iterative Feed-
back Tuning (IFT, see Hjalmarsson et al. [1998]), data-
driven loop-shaping (see Formentin and Karimi [2013]),
Virtual Reference Feedback Tuning (VRFT, see Campi
et al. [2002], Lecchini et al. [2002], Campi et al. [2003]) and
Correlation-based Tuning (CbT, see van Heusden et al.
[2011]). In particular, the last two methods, which are
based on non-iterative optimization, showed to be com-
parable - in terms of statistical performance - to standard
model-based design approaches from data (see Formentin
et al. [2013b]), since the control problem can be completely
recast into a system identification problem. This is a great
advantage in that a lot of established results for improving
estimation performance can be employed also to improve
the performance of controller design, see, e.g., optimal
input design in Formentin et al. [2013a].
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VRFT and CbT have been developed in the stochas-
tic set-up described in Ljung [1999], where the involved
processes are stationary and evolve in discrete-time. In
contrast to the previous studies, the aim of this work is
to reformulate the VRFT method introduced in Campi
et al. [2002], so as to better fit into the framework of
PID control design for industrial use. Specifically, in this
novel form, Input/Ouput (I/O) signals are not treated as
stochastic processes and the theory can be fully interpreted
in continuous time. A first attempt to adapt the VRFT
method to PID controller design has been proposed, within
an internal model control (IMC) framework, in Rojas and
Vilanova [2012].

The outline of the paper is as follows. In Section 2, we will
first present the algorithm with the tuning rules for the
PID gains. The theoretical details behind the approach will
be given in Section 3, but the reading of this section is not
necessary for the understanding of the rest of the paper.
We then provide an illustrative example in Section 4 and
some concluding remarks in Section 5. The proofs of the
theorems will be omitted for space limitations; however,
they are available from the authors upon request.

2. ALGORITHM FOR THE USER

Let G be the plant to be controlled. Suppose that G is
open-loop stable or that it is operated in closed-loop with
a (possibly poorly performing) stabilizing PID controller.

The desired frequency behaviour for the closed-loop sys-
tem is described as M(jω), where M(jω) is given, or,
alternatevely, it is derived from user requirements. For
example, if a desired settling time of 1s is required, the
frequency response M(jω) = 1/(j0.2ω + 1) can be used.
In any case, let M(j0) = 1. Assume also that the closed-
loop model matching has to be weighted according to the
frequency weight W (jω). If no weighting is provided, take
W (jω) = 1, ∀ω.

Finally, consider the frequency response of the PID con-
troller C(jω, ρ) = ρTβ(jω), where ρ = [Kp Ki Kd]

T are
the parameters to tune and

β(jω) =

[

1,
1

jω

jω

1 + jωTd

]T

,

and select the time constant of the derivative part Td as
twice the sampling time.

The Virtual Reference Feedback Tuning algorithm to
design the PID gains is then as follows.

VRFT algorithm (given M , W , Td, stability of G)

(1) [Input selection] If G is open-loop stable (CASE A),
set an input sequence u(t). Alternatively (CASE B),
set a reference sequence r(t).

(2) [Experiment] Run the experiment on the real sys-
tem, using u(t) in open-loop (CASE A) or r(t) in
closed-loop (CASE B). Record the input signal u(t)
(or r(t)) and the corresponding output signal y(t)
from the starting time t0 to the final instant tf .

(3) [Virtual signals for controller identification]
Compute the virtual reference signal rv(t) as the

output of M−1(jω) 1 when it is fed by y(t) and the
virtual error signal ev(t) as ev(t) = rv(t)− y(t).

(4) [Filter selection] Select a filter F such that

F (jω)U(ω) = M(jω) (1−M(jω))W (jω), ∀ω,

holds, where U(ω) is the Fourier transform of u(t)
(see Gröchenig [2001]). Then, filter the controller
I/O signals as UF (ω) = F (jω)U(ω) and EF (ω) =
F (jω)Ev(ω) to get uF (t) and eF (t).

(5) [Pre-processing] Build the regressors:

ϕF (t) = [ϕ1(t), ϕ2(t), ϕ3(t)]
T , (1)

where

ϕ1(t) = eF (t), ϕ2(t) =

∫ tf

t0

eF (t) dt,

and ϕ3(t) is the output of Φ(jω) = jω/(jωTd + 1)
when it is fed by eF (t).

(6) [Instrumental variable] Identify a (possibly inac-

curate) low-order model Ĝ between u(t) and y(t).

Compute ŷ(t) as the simulated output of Ĝ when
the input is u(t), and the corresponding êF (t). Then,
define the instrumental variable ξ(t) = ϕ̂F (t), where
ϕ̂F (t) is computed according to (1), but using êF (t)
instead of eF (t).

(7) [PID tuning] Compute the PID gains as in (2),
where

xij =

∫ ∞

−∞

ξi(t)ϕj(t)dt, i, j = 1, 2, 3,

xiu =

∫ ∞

−∞

ξi(t)uF (t)dt, i = 1, 2, 3

and ξi(t) and ϕj(t) denote, respectively, the ith ele-
ment of ξ(t) and the jth element of ϕF (t).

In the following sections, we will show that the above
algorithm allows the resulting PID controller achieves the
desired closed-loop behavior when it is possible and, in any
case, minimizes a suitable frequency-wise model matching
error (also when the output signal is corrupted by some
measurement noise).

3. THE THEORY BEHIND

In this section, we provide the assumptions and the tech-
nical details behind the algorithm presented in Section 2.
This section is intended for the interested reader and its
reading is not necessary for the understanding of the rest
of the paper.

3.1 Preliminaries on Signals and Systems

A complex-valued function x(t) is said to be in L2 if it is
measurable and square-integrable, i.e.,

∫ ∞

−∞

|x(t)|
2
dt < ∞.

In this paper, a signal is always a real-valued function
that belongs to L2. According to Plancherel theorem,
see Gröchenig [2001], each x(t) ∈ L2 has a Fourier

1 As it is reasonable for a tracking control problem, we assume
M(jω) 6= 0 on the imaginary axis. If the roots of the numerator
of M(jω) have positive real parts, we filter y(t) backward in time.
This is possible due to that y(t) is processed off-line.
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TUNING RULES

Kvr
p =

x2
23x1u − x12x23x3u + x13x22x3u − x13x23x2u + x12x33x2u − x22x33x1u

x33x2
12 − 2x12x13x23 + x22x2

13 + x11x2
23 − x11x22x33

(2a)

Kvr
i =

x2
13x2u − x12x13x3u + x11x22x3u − x13x23x1u − x11x33x2u + x12x33x1u

x33x2
12 − 2x12x13x23 + x22x2

13 + x11x2
23 − x11x22x33

(2b)

Kvr
d =

x2
12x3u − x12x13x2u − x11x22x3u + x11x23x2u − x12x23x1u − x13x22x1u

x33x2
12 − 2x12x13x23 + x22x2

13 + x11x2
23 − x11x22x33

(2c)

transform X(ω) ∈ L2, indicated with the capital letter,
and, viceversa, each X(ω) ∈ L2 is the Fourier transform
of a function x(t) ∈ L2.

Given x(t) ∈ L2, if the distributional derivative of x(t) of
order i, written x(i)(t), is in L2 for all i ≤ p, then x(t)
is said to belong to Hp, the Sobolev space of order p (see
Adams and Fournier [2003]).

Consider now the linear Ordinary Differential Equation
(ODE)

Z :

n
∑

i=0

αiv
(i)(t)−

m
∑

i=0

βix
(i)(t) = 0.

An equation like Z represents the dynamics of a system.

For notational convenience, introduce the polynomials

A(jω) =

n
∑

i=0

αi(jω)
i, B(jω) =

m
∑

i=0

βi(jω)
i.

The ratio Z(jω) = B(jω)/A(jω) is called the frequency
response of Z.

We assume that αn 6= 0 (this is not a real condition, it
simply means that the largest derivative of v(t) in the
ODE has order n), and, for the time being, also assume
that A(jω) 6= 0 on the imaginary axis (this condition is
removed later). Note that this condition does not prevents
the ODE to be unstable, that is, the roots of the numerator
of A(jω) can have positive real parts. If x(t) ∈ Hm, then
∑m

i=0 βix
(i)(t) is in L2, and, by Plancherel theorem, it has

Fourier transform B(jω)X(ω) ∈ L2. Consider V (ω) :=
[B(jω)/A(jω)]X(ω). Clearly, V (ω) is in L2, so that, based
again on Plancherel theorem, it is the Fourier transform
of a function v(t) ∈ L2. In fact, we know more, that is,
v(t) ∈ Hn. This follows by applying Plancherel theorem
to (jω)iV (ω), i ≤ n, the Fourier transform of the ith
distributional derivative of v(t), which is in L2.

We claim that this v(t) is the only solution in L2 of
the ODE Z. To show this, note that A(jω)V (ω) is the
Fourier transform of

∑n
i=0 αiv

(i)(t). On the other hand,
A(jω)V (ω) = B(jω)X(ω), which is the Fourier transform
of

∑m
i=0 βix

(i)(t). Thus,
∑n

i=0 αiv
(i)(t) =

∑m
i=0 βix

(i)(t)
and v(t) satisfies the ODE Z. It is in fact the only solution
in L2 of Z since any other solution is obtained by adding
to this v(t) a linear combination of the modes of Z, which
is not a function of L2.

As a short-hand, throughout the paper given x(t) ∈ Hm

the only solution of Z in L2 is written as Z[x(t)].

The above reasoning extends to when A(jω) annihilates on
the imaginary axis, provided that these zeros are canceled
by X(ω) so that [B(jω)/A(jω)]X(ω) is in L2. As an

example, suppose that the ODE is the integrator

v(1)(t)− x(t) = 0,

and x(t) = sgn(t)e−|t| (which has 0 dc-component),
then X(ω) = −2jω/(1 + ω2) and [B(jω)/A(jω)]X(ω) =
−2/(1 + ω2) ∈ L2, which corresponds to v(t) = −e−|t|.

3.2 Problem formulation

Let the plant dynamics be described by the linear ODE

G :

na
∑

i=0

aiy
(i)(t)−

nb
∑

i=0

biu
(i)(t) = 0. (3)

We assume that u(t) belongs to suitable Sobolev spaces,
such that y(t), and all the other signals derived from it,
are in L2.

The PID controller is instead described by

Cρ : Tdu
(2)(t) + u(1)(t)− (Kd +KpTd)e

(2)(t)+

− (Kp +KiTd)e
(1)(t)−Kie

(0)(t) = 0, (4)

where e(t) = r(t) − y(t), r(t) is the reference signal,
ρ = [Kp, Ki, Kd]

T is the vector of tuning parameters
and Td is fixed. The frequency response of Cρ is

C(jω, ρ) = ρTβ(jω), (5)

where

β(jω) =

[

1,
1

jω
,

jω

1 + jωTd

]T

.

In (5), the classical PID controller structure can be clearly
distinguished.

Finally, let M be an ODE representing the desired closed-
loop system and M(jω) its frequency response such that
M(j0) = 1. Moreover, let W (jω) be a user-defined fre-
quency weight.

We can now formally define the model-reference control
problem addressed in this work.

Problem 1. (Model-reference design). Find a controller of
the form in (4) minimizing the model-reference cost func-
tion

Jmr(ρ) =

∫

+∞

−∞

∣

∣

∣

(

G(jω)C(jω, ρ)

1 +G(jω)C(jω, ρ)
−M(jω)

)

W (jω)

∣

∣

∣

2

dω. (6)

Definition 1. (Optimal controller). The optimal solution
to Problem 1, assuming that it exists and is unique, is
the PID controller Co with frequency response

C(jω, ρo) = ρTo β(jω), (7)

where

ρo = argmin
ρ

Jmr(ρ).
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In most of the cases, Co does not yield Jmr(ρ) = 0, due
to that the controller is constrained to belong to the PID
class.

In many real-world applications, the frequency response
G(jω) of the plant is unavailable. To compensate for such
a lack of knowledge, in this paper, it is assumed that we
are allowed to run experiments on the plant G and we will
use the collected I/O trajectories u(t) and y(t) to solve
Problem 1, without a need of deriving a model of the plant.

3.3 The VRFT approach

In this subsection, we show how the controller design issue
in Problem 1 can be recast into a data-based controller
identification problem, which does not require a direct
knowledge of G. We will first deal with noise-free data;
noisy data will be considered in the second part of the
section. From now on, the argument jω will be often
omitted.

The main idea

Consider the “virtual” loop depicted in Figure 1, where
u(t) and y(t) are the actual signals that are recorded
during an experiment on the plant. The virtual reference

Fig. 1. The “virtual loop” and the real plant.

signal rv(t) and the virtual error signal ev(t) are computed
respectively as

rv(t) = M−1[y(t)],

ev(t) = rv(t)− y(t).

The relation rv(t) = M−1[y(t)] denotes the L2 signal
generated by M when y(t) is seen as the input signal.

The control design problem can then be reduced to an
identification problem, where the system to be identified
is the controller that generates u(t) when it is fed by ev(t).
Such a controller can be defined as follows.

Definition 2. (VR controller). The VR controller Cvr is
the PID controller (4) with frequency response

C(jω, ρvr) = ρTvrβ(jω), (8)

where
ρvr = argmin

ρ
Jvr(ρ)

and Jvr(ρ) is the VR cost function. Specifically,

Jvr(ρ) =

∫ +∞

−∞

(uF (t)− Cρ[eF (t)])
2
dt, (9)

where
uF (t) = F [u(t)], eF (t) = F [ev(t)]

and F is a data-prefilter with frequency response F (jω).

From now on, F (jω) is assumed to be a fractional rational
function of its argument with maximum power of the

numerator nf ≤ nu. Moreover, being Jvr quadratic in ρ,
by assuming that ρvr exists, the minimum point is unique.

Remark 1. Notice that the integral term in (9) requires
infinite trajectories, whereas in reality u(t) and y(t) are
known only over a finite observation time [t0, tf ]. However,
notice that the trajectory of any signal x(t) ∈ L2 can
always be extended to (−∞, ∞), by assigning x(t) = 0,
for all t /∈ [t0, tf ].

✷

Remark 2. Notice that, if M is characterized by non-
minimum phase dynamics,M−1 is an unstable system and
rv might not be in L2. However, since rv is computed off-
line, the solution of M−1[y(t)] can be integrated backward
in time, thus leading to a stable filtering operation and
rv(t) ∈ L2.

✷

For analysis purposes, let us now introduce the extended
controller C+

ρ as a controller, parameterized with ρ+ =

[ρT , Kδ]
T , with frequency response

C+(jω, ρ+) = C(jω, ρ) +Kδδ(jω), (10)

where δ(jω) is the frequency response of a system δ such
that

J+
mr(ρ

+
o ) = 0 (11)

holds, being ρ+o = [ρTo , 1]T and

J+
mr(ρ

+) =

∫

+∞

−∞

∣

∣

∣

∣

(

G(jω)C+(jω, ρ+)

1 +G(jω)C+(jω, ρ+)
−M(jω)

)

W (jω)

∣

∣

∣

∣

2

dω.

(12)

Under the assumption that ρ+o exists and is unique, the
ideal controller achieving M in closed-loop operation can
be defined as follows.

Definition 3. (Ideal controller). The ideal controller C+
o is

an extended controller with frequency response

C+(jω, ρ+o ) = C(jω, ρo) + δ(jω). (13)

Under very mild assumptions on F - which come out in
the proof of the theorem herein omitted - the following
relationship between Co and Cvr holds.

Theorem 1. (Model-Data equivalence). Assume that the
ideal controller C+

o is a PID, i.e. δ(jω) = 0, ∀ω in (10).
Then, for any selection of F , it holds that

ρvr = ρo.

✷

The result in Theorem 1 is fundamental in motivating the
VRFT approach since, in the case where a PID controller is
sufficient to achieve the desired closed-loop behavior, such
a statement establishes the theoretical equivalence between
model-based design (minimizing Jmr) and data-based con-
troller identification (using the method introduced here).

However, since G is supposed to be unknown, the assump-
tion on C+

o in Theorem 1 cannot be verified in practice,
nor can M be modified accordingly. Nevertheless, in the
more realistic case where C+

o is not a PID, we can still
use the data prefilter F for bias shaping, in order to
obtain a controller that closely resembles Co. The following
statement is helpful in deriving a relationship between Co
and Cvr and provides a suitable selection of F .
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Theorem 2. (Filter selection). Consider the general case
where C+

o is any controller. If the frequency response of
the data prefilter F satisfies

F (jω)U(ω) = M(jω) (1−M(jω))W (jω), ∀ω, (14)

it holds that

ρvr = argmin
ρ

J̄+
mr([ρ, 0]T ),

where

J̄+
mr(ρ

+) = (ρ+ − ρ+o )
T ∂2J+

mr

∂ρ+2

∣

∣

∣

∣

ρ+
o

(ρ+ − ρ+o ). (15)

✷

From a practical perspective, Theorem 2 means that,
although generally ρvr 6= ρo, when δ(jω) is small ∀ω
and F is suitably selected, the minimizer of Jvr can
approximately be rewritten as

ρvr = argmin
ρ

J̄+
mr([ρ, 0]T ) ≈ argmin

ρ
J̄mr(ρ), (16)

where

J̄mr(ρ) = (ρ− ρo)
T ∂2Jmr

∂ρ2
(ρ− ρo),

that is,
ρvr ≈ ρo.

Dealing with output noise

Consider now the case where the output data is corrupted
by an additive noise v(t) ∈ L2, namely

yv(t) = y(t) + v(t).

It can be shown that minimization of (9) using the noisy
dataset does not lead to the previous minimizer ρvr = ρo.
As a matter of fact, the virtual error signal corresponding
to the new output is

evF (t) = eF (t) + ev(t) = eF (t) +M−1[v(t)]− v(t)
and the VR cost function becomes

Jv
vr(ρ) =

∫

+∞

−∞

(uF (t)− Cρ[e
v
F (t)])2 dt

= Jvr(ρ) +

∫

+∞

−∞

(

Cρ

[

M−1[v(t)]− v(t)
])2

dt+

− 2

∫

+∞

−∞

(uF (t)− Cρ[eF (t)])Cρ

[

M−1[v(t)]− v(t)
]

dt,

which is generally not minimized by ρo, as the two addi-
tional terms are zero at ρ = 0 (i.e., corresponding to the
open loop configuration).

However, the tuning procedure can be suitably modified
in order to obtain the noiseless estimate even in presence
of noisy data.

To start with, build now the following regressors:

ϕF (t) = [ϕ1(t), ϕ2(t), ϕ3(t)]
T , (17)

ϕ1(t) = eF (t), ϕ2(t) =

∫ ∞

−∞

eF (t) dt

ϕv
F (t) = ϕF (t) + ϕv(t),

ϕv(t) = [ϕv
1(t), ϕv

2(t), ϕv
3(t)]

T ,

ϕv
1(t) = ev(t), ϕv

2(t) =

∫ ∞

−∞

ev(t) dt

where ϕ3(t) is the solution of

ϕ
(1)
3 (t) =

1

Td

(

−ϕ3(t) + e
(1)
F (t)

)

and ϕv
3(t) is the solution of

ϕ
v(1)
3 (t) =

1

Td

(

−ϕv
3(t) + ev(1)(t)

)

.

Then, define the instrumental variable ξ(t) as ξ(t) =
ϕF (t) + ϕξ(t), where ϕξ(t) is a user-defined 3× 3 matrix,
and the estimate using noisy data as

ρvvr =

(
∫ ∞

−∞

ξ(t)ϕvT
F (t) dt

)−1 ∫ ∞

−∞

ξ(t)uF (t) dt. (18)

We have the following result.

Theorem 3. (Noisy data). Assume that u(t) and v(t) sat-
isfy

∫ +∞

−∞

ϕF (t)ϕ
vT (t) dt = 0, (19a)

∫ +∞

−∞

ϕF (t)ϕ
T
F (t) dt > 0. (19b)

If ϕξ(t) is selected such that
∫ +∞

−∞

ϕξ(t)δ[eF (t)] dt = 0, (19c)

∫ +∞

−∞

ϕξ(t)ϕT
F (t) dt = 0, (19d)

∫ +∞

−∞

ϕξ(t)ϕvT (t) dt = 0, (19e)

then (18) yields the minimizer of the cost function Jvr(ρ)
with noiseless data, i.e.,

ρvvr = ρvr.

✷

Theorem 3 provides the most general tuning rule, accord-
ing to which the optimal controller for the second order
approximation of the extended cost function can be found
for any selection of M and any value of the Signal-to-Noise
ratio (SNR).

Recall that, when ξ(t) is selected as suggested in Section

2, Ĝ has to be computed. However, we could still say that
the method is “model-free”, since, as already mentioned,
Ĝ does not need to be an accurate model of the plant, but
only to satisfy the assumptions of Theorem 3.

The PID gains given by the VRFT method can be explic-
itly computed, and Equations (2) (where ϕF (t) is replaced
by ϕv

F (t) in case of noisy data) give the exact expressions.

4. SIMULATION EXAMPLE

The performance of the proposed design approach is eval-
uated on a benchmark system proposed in Morilla [2012]
for PID tuning. The system describes a typical drum boiler
as given in Åström and Bell [2000].

The function of a drum boiler is to deliver steam of a given
quality (temperature and pressure) either to a single user,
such as a steam turbine, or to a network of many users.
For a proper functioning of the boiler, several requirements
need to be satisfied, e.g. the ratio of air to fuel must be
carefully controlled in order to obtain efficient combustion
and the level of water in the drummust be controlled at the
desired level to prevent overheating or flooding of steam
lines. Finally, a desired steam pressure must be maintained
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at the outlet of the drum despite variations in the quantity
of user steam demand. In this work, we will concentrate
on the last objective, i.e. steam pressure control via fuel
flow, and we will assume that the drum water level and
the oxygen concentration are controlled independently by
means of two additional loops.

To design the PID controller via the proposed method, the
simple reference model

M : y(1)(t) = −0.033y(t) + 0.033r(t− 17). (20)

is considered, where the pure delay of 17 s can be easily
found by means of a step excitation test. To obtain the
data needed for tuning the controller, we inject in the
simulator, as a fuel flow trajectory, a PRBS signal with
mean value of 60% and amplitude of ±20%. Then, we
collect the corresponding (noisy) steam pressure sequence
y(t). For the computation of the instrumental variable, an
ARX model of order 2 is used.

The results of a closed-loop step test using the achieved
PID controller are illustrated in Figure 2, where the VRFT
controller is also compared to the desired response, i.e.,
the step response of M in (20). In the same figure, the
response with the benchmark controller embedded in the
toolbox provided in Morilla [2012] is also shown.

It can be noticed that the VRFT controller shows sightly
better performance than the benchmark PID with the
advantage of being tunable using only one set of I/O data
and without deriving a model of the drum boiler.
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Fig. 2. Comparative test: step excitation (dotted), re-
sponse of M (dash-dotted), PID of Morilla [2012]
(dashed) and PID tuned via VRFT (solid).

5. CONCLUDING REMARKS

In this paper, the Virtual Reference Feedback Tuning
method has been revisited to fit the framework of PID
controller tuning. The proposed reformulation is fully
developed in continuous time and in a deterministic set-
up. The effectiveness of the method has been shown on a
benchmark simulation example.
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