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SUMMARY

This paper deals with the problem of recovering the input signal applied to a linear time-invariant system
from the measurements of its output and the a priori knowledge of the input statistics (blind equalization).
Under the assumption of an i.i.d. non-Gaussian input sequence a new iterative procedure based on
phase-sensitive high-order cumulants for adjusting the coefficients of a transversal equalizer is introduced.
The main feature of the proposed technique is the automatic selection of the equalization delay so as to
improve the equalization performance. A method for the a posteriori evaluation of the obtained accuracy in
PAM systems is also introduced. It consists of the computation of an upper bound on the probability of
error depending on certain moments of the equalizer output and the statistics of the channel input and
therefore can be used in a blind equalization context. Based on the result of such a computation, it can be
decided whether it is necessary to consider a longer equalization filter in the iterative procedure. ( 1997 by
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Blind equalization1 deals with the recovery of the input to an unknown system from the
measurements of its output and the a priori knowledge of the input statistics. In a digital
communication link the input is the sequence of transmitted signals, while the system represents
the distortion caused by the transmission channel between the information source and the
receiver. In this context, blind equalization is useful to recover a transmission after a severe
distortion without having to send over the channel a training sequence (a priori known sequence
of transmitted data); once the channel has been equalized, the blind algorithm that leads to the
coefficients of the equalization filter is turned off.

The attempt to cancel the channel distortion so as to obtain a delayed version of the
transmitted message is usually pursued through an adjustable FIR linear system called an
equalizer, while the channel is modelled by a possibly non-minimum phase linear system.

¹his paper was recommended for publication by editor C.F.N. Cowan

*Correspondence to: M. C. Campi, Dipartimento di Elettronica per l’Automazione, Facoltà di Ingegneria, Università
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A classical approach to blind equalization is to optimize a non-quadratic cost function of the
equalizer output with a gradient search algorithm.2~4 The cost function depends on the equalizer
coefficients and its optimization leads to a matching of the probability density function of the
individual recovered symbols with the probability density function of the individual input
symbols. If the input is i.i.d. and non-Gaussian, the fulfillment of this condition implies that the
channel has been equalized,3 but the algorithm globally converges only under the unrealistic
assumption of the use of a non-causal IIR equalizer and for particular input probability
distributions.3,5

Recently, Shalvi and Weinstein have presented a different approach6 which imposes no
restrictions on the input distribution except for non-Gaussianity. It is based on the observation
that solving the blind equalization problem requires the equalization of just a few moments of the
input and output probability distributions. In practice it is sufficient to equalize the variance and
the fourth-order cumulant.

To improve the approach proposed in Reference 6, in the interesting paper of Reference 7,
Jelonnek and Kammeyer suggest a quality criterion, still based on the fourth-order cumulant,
which can be optimized in a closed-form solution and therefore is computationally convenient.
The corresponding algorithm is known under the acronym EVA (eigen vector approach). The
analysis of EVA presented in Reference 8 shows that the procedure is strictly connected to Shalvi
and Weinstein’s approach.

A first objective of this paper is to critically analyse the EVA approach and to introduce a new
improved iterative procedure still based on the closed-form solution presented in Reference 7.

A second objective consists of the design of an a posteriori measure to evaluate the equalizer
accuracy reached by the proposed algorithm. This measure is applicable to PAM (pulse-
amplitude-modulated) systems and gives an upper bound on the probability of error (i.e. the
probability that an individual recovered symbol is different from the corresponding transmitted
symbol), which represents a fundamental measure of performance.9 The alternative technique
based on correlation estimates on the output of the equalizer,10 in contrast with the method
developed in the present paper, is applicable only when the channel has a finite impulse response
of known length.

The evaluation of the error probability is generally a difficult problem. In References 11—18
such an evaluation is addressed by assuming that the filter coefficients of the cascaded channel
—equalizer are known. Typically an approximate value for the error is obtained by truncation on
the impulse response11~13 or using standard statistical inequalities.14~18 More experimental
approaches for error rate monitoring based only on the equalizer output are proposed in
References 19—21. In References 19 and 20 a set of possible models for the description of the
equalizer output statistics is assumed to be available a priori. By comparing the corresponding
probability distribution with the distribution estimated from the data, a selection of the most
suitable model is made and the probability of error is finally computed based on the chosen
model. The main drawback of this approach rests on the fact that the output sequence is assumed
to be independent, an assumption which looks unrealistic in the case of significant intersymbol
interference, which may still be present if the equalizer is not performing as expected. A similar
approach is considered in Reference 21 for the estimation of small probabilities of error. The
fundamental hypothesis is that the output distribution belongs to a given parametrized family, so
that the problem consists of the determination of a particular distribution in such a family. Again
an independence assumption is made in the mathematical developments. For a review of the
existing methods for error probability evaluation the reader is referred to Reference 22.
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The paper is organized as follows. A brief review of the EVA algorithm is given in Section 2,
while the method for the automatic search of the best delay is presented in Section 3. In Section 4,
basic concepts on PAM transmission systems are introduced and a preliminary expression for the
probability of error is derived. The upper bound on the probability of error is then determined in
Section 5, while some simulations are provided in Section 6.

2. BRIEF REVIEW OF EVA ALGORITHM

Consider a linear, time-invariant and (possibly) non-minimum phase channel described by the
transfer function

H (z)"
=
+
k/0

h (k)z~k

The signal d (·) transmitted through the channel is assumed to be an i.i.d. sequence of
non-Gaussian random variables with zero mean and variance p2

d
. The received signal

v(t)"
=
+
k/0

h (k)d(t!k)

is processed by an equalizer with transfer function E (z), which we describe as a tapped delay line
with a fixed number n of parameters:

E (z)"
n~1
+
k/0

e(k)z~k

The output of the equalizer with input v (·) is denoted by x(·). The EVA algorithm proposed in
Reference 7 is based on the use of an additional filter, the so-called ‘reference system’. It is
a tapped delay line with the same number n of parameters as the equalizer:

F (z)"
n~1
+
k/0

f (k)z~k

The output of the reference system with input v(·) is named y (·). The complete block diagram of
the introduced systems is shown in Figure 1.

Figure 1. Basic block diagram for EVA algorithm

OPTIMAL DELAY ESTIMATION 623

Int. J. Adapt. Control Signal Process., 11, 621—640 (1997)( 1997 by John Wiley & Sons, Ltd.



The EVA algorithm can be explained as follows.
Recall that the fourth-order cross-cumulant between two zero-mean stationary stochastic

processes p (·) and r (·) is defined as

cpr
4

(n
1
, n

2
, n

3
) :"E[p (t) r (t#n

1
) p(t#n

2
) r(t#n

3
)]!E[p(t) r(t#n

1
)] E[p (t#n

2
) r (t#n

3
)]

!E[p(t)p(t#n
2
)]E[r(t#n

1
) r(t#n

3
)]!E[p(t) r(t#n

3
)]E[r(t#n

1
) p(t#n

2
)]

When process p (·) coincides with r (·), we simply speak of the fourth-order cumulant of the process
(see Reference 23, pp. 279—280 for a comprehensive presentation of cumulants and related
properties).

Let us consider the synchronous (i.e. n
1
"n

2
"n

3
"0) fourth-order cross-cumulant of pro-

cesses x(·) and y(·), namely cxy
4

(0, 0, 0)"E[x2 (t)y2 (t)]!2(E[x (t)y(t)])2!E[x2(t)]E[y2(t)]. By
exploiting the relation x (t)"+n~1

k/0
e(k)v(t!k), a simple computation shows that

cxy
4

(0, 0, 0)"eT Cyv
4
e (1)

where

e"[e (0) e(1) . . . e(n!1)]T

is the equalizer coefficient vector and

Cyv
4
"C

cyv
4

(0, 0, 0) cyv
4

(!1, 0, 0) 2 cyv
4

(!n#1, 0, 0)
cyv
4

(!1, 0, 0) cyv
4

(!1, 0, !1) 2 cyv
4

(!n#1, 0, !1)
F F } F

cyv
4

(!n#1, 0, 0) cyv
4

(!n#1, 0, !1) 2 cyv
4

(!n#1, 0, !n#1)D
The variance p2

x
of x (·) can be expressed as a quadratic function of e as well:

p2
x
"eTR

vv
e (2)

with

R
vv
"C

r
vv

(0) r
vv

(1) 2 r
vv

(n!1)
r
vv

(1) r
vv

(0) 2 r
vv

(n!2)
F F } F

r
vv

(n!1) r
vv

(n!2) 2 r
vv

(0) D
where r

vv
(k) denotes the correlation coefficient E[v(t#k)v(t)].

In the EVA algorithm the reference system is supposed to be fixed in advance (later in this
section, when discussing the iterative EVA procedure, we shall focus on the way in which the
reference system is actually selected). If we accept that F (z) is fixed (and known), a sample estimate
of matrices Cyv

4
in (1) and R

vv
in (2) can be obtained from the data v(·) (i.e. the channel output) and

the filtered signal y(·)"F (z)v(·) by simply replacing expectations with empirical averages. As
a matter of fact it is known that such sample estimates are consistent (see e.g. References 24
and 25). Name Cª yv

4
and Rª

vv
such matrices. Below we first introduce the EVA algorithm and then

discuss the intuitive rationale for it.

EVA algorithm

Maximize the cost function DcL xy
4

(0, 0, 0) D"DeTCª yv
4

e D subject to the constraint

pL 2
x
:"eTRª

vv
e"p2

d
(recall that p2

d
is the variance of the transmitted message)

(3)
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The solution to this maximization problem is obtained as the solution to the classical
generalized eigenvector problem

Cª yv
4

e"jRª
vv
e

where j is the generalized eigenvalue with the maximum absolute value (DjD"
maxMDj

1
D, . . . , Dj

n
DN), with the constraint on the norm of vector e provided by the relation

eTRª
vv
e"p2

d
. From this comes the name ‘eigen vector approach’ (EVA) of the algorithm (see

Reference 7 for more details). It is worth noting that the EVA algorithm requires a computational
effort lower than that required by other standard algorithms2~6 based on the stochastic gradient
method (see Reference 8 for further discussion on this point).

To understand that the problem (3) leads to coefficients e which equalize the channel H (z), let
us introduce the notation s (k)"h (k)*e (k) (i.e. s (k) is the impulse response of the channel
—equalizer cascade) and w (k)"h (k)* f (k). With this notation the left-hand sides of equations (1)
and (2) can be rewritten as

cxy
4

(0, 0, 0)"cdd
4

(0, 0, 0)
=
+
k/0

w2(k) s2(k) (4)

p2
x
"p2

d

=
+
k/0

s2 (k) (5)

Suppose that coefficients Ms(k)N can be selected freely in the maximization problem (this is in fact
not the case, since s(k)"h (k)*e(k) and Me (k)N is formed by a finite number of coefficients). In this
case, if MDw (k) DN has a unique maximum value Dw (k

0
) D, maximizing Dcxy

4
(0, 0, 0) D subject to p2

x
"p2

d
obviously leads to s(k)"$d (k!k

0
), i.e. to channel equalization. In the non-ideal situation in

which the number of coefficients e(k) is finite, the equalization objective can only be partially
achieved and the obtained solution depends on the value of coefficients Mw (k)N. In this case, in
order to improve the equalization result over the performance achievable with the one-step
method (3), it can be convenient to resort to an iterative procedure8 as explained below.

Iterative EVA procedure

1. Fix an initial reference system F(0)(z) and set j"0.
2. Solve the optimization problem (3) with reference system F( j)(z) and denote by E( j ) (z) the

corresponding solution. Set j"j#1.
3. Set F( j ) (z)"E( j~1)(z).
4. If j)N (N is an a priori fixed integer), go to step 2.

The intuitive idea behind this iterative procedure is as follows. At the first iteration the
reference system is fixed somehow arbitrarily and therefore coefficients Mw(k)N are fixed to
a somewhat random value. In particular there is no reason why Mw(k)N should have a dominant
coefficient. When maximizing Dcxy

4
(0, 0, 0) D"Dcdd

4
(0, 0, 0)+=

k/0
w2 (k)s2(k) D (see equation (4)), se-

quence Ms(k)N will tend to have a dominant coefficient s(k
0
) corresponding to the maximum value

Dw (k
0
) D of sequence MDw(k) DN. Moreover, s (k

0
) will be more dominant over the other coefficients to

the extent by which coefficient w (k
0
) dominates over the other w (k). In the second iteration the

condition that Mw(k)N has a dominant coefficient is enforced by replacing the reference system
with the equalizer computed at the first iteration. By repeating this procedure several times, it is
expected that the final equalizer will exhibit improved equalization properties with respect to
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those obtained through a single iteration. As a matter of fact in Reference 8 it is shown that the
equalization performance can be improved in just a few iterations.

As an additional remark we note that, because of the above-explained mechanism, the iterative
EVA procedure has a natural tendency to maintain the position of the dominant coefficient of
Ms(k)N in subsequent iterations. Thus, if k

0
is the initial position of the dominant coefficient (i.e.

Ds(k
0
)D'Ds(k) D, ∀kOk

0
), it is probable that s(k

0
) will be dominant even at the end of the procedure.

In the next section we critically discuss the iterative EVA procedure and point out some of its
drawbacks. A modified version is then introduced to circumvent these difficulties. This leads to an
equalization algorithm in which the equalization delay in the reconstructed message is optimally
selected so as to maximize the performance of the equalizer.

3. TOWARDS AUTOMATIC SEARCH FOR OPTIMAL DELAY

For convenience let us introduce the term equalization delay as the index of the dominant
coefficient in the impulse response of the channel—equalizer cascade:

equalization delay"arg max
k

MDs(k) DN

Roughly the equalization delay is the time interval which separates the reconstruction of the
transmitted message at the output of the equalizer from the time it was sent over the channel.

As mentioned at the end of the previous section, the iterative EVA procedure has a natural
tendency to maintain the equalization delay in subsequent iterations. As a consequence, if k

0
is

the initial equalization delay, i.e. k
0
"arg max

k
Dh(k)*e(0) (k) D, where e(0)(k) represents the

equalizer coefficients at iteration 0, it is highly probable that the final equalization delay will be
k
0

as well. This statement is confirmed by the simulation results in Section 6.
On the other hand, one can notice the following.

(a) The best achievable equalization accuracy for a given equalization delay k1 dramatically
depends on the value of k1 . In other words,

min
Me(k)N

E[(e(k)*h (k)*d (k)!d (k!k1 ))2] (6)

significantly depends on k1 . The intuitive reason for this can be easily understood. In
expression (6) the term e(k)*h (k)*d(k) represents the response of the equalizer fed by the
channel output h (k)*d (k). When the channel is minimum phase, sample d (t) can be
reconstructed from the channel output up to the current instant point t (simply by inverting
the channel transfer function). On the other hand, when the channel is non-minimum phase,
this is not possible (the inverse channel transfer function would be unstable!) and the
reconstruction of d (t) can be improved by using also future channel outputs. Therefore we
see that increasing the equalization delay k1 may have a beneficial effect on the reconstruc-
tion capability. On the other hand, the equalization delay cannot be enlarged at will. This is
because the equalizer length is finite and increasing k1 to be too large results in a decrease in
the number of past samples of d (t) used in the reconstruction. A significant example of this
behaviour can be found later in Section 6 (see Figure 8).

(b) The initial equalization delay k
0

is not known. As a matter of fact, k
0
"

arg max
k
Dh (k)*e(0)(k) D depends on the channel coefficients Mh (k)N which are unknown.
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From (a) it follows that it is highly desirable to select a suitable value of the equalization delay.
Point (b), however, shows that the iterative EVA procedure is not suitable in this respect. These
observations prompt the need to modify the original iterative EVA algorithm so as to correctly
adjust the equalization delay to reach a better equalization performance than the one obtained
with the initial equalization delay.

The basic iteration of the proposed algorithm is still based on the maximization problem (3),
which is an effective and computationally convenient way to search for the equalizer that
reconstructs the transmitted messages with a certain delay. However, differently from the iterative
EVA procedure, during a single iteration of the new algorithm, three sets of equalizer coefficients
(e

0
, e

~1
, e

1
) are evaluated, one corresponding to a given reference system F(z) and the other two

corresponding to zF (z) and z~1F(z). By means of this simple modification a joint optimization of
the equalizer coefficients and of the equalization delay can be achieved.

To be specific, vectors e
0
, e

~1
and e

1
are computed as follows.

1. Vector e
0

is computed by maximizing the absolute value of the cross-cumulant between x (·)
and y (·) under the constraint p2

x
"p2

d
.

2. Vector e
~1

is computed by maximizing the absolute value of the cross-cumulant between
x (·) and y

~1
(·), where y

~1
(·) is obtained as the output of the shifted reference system

F
~1

(z)"zF (z) (Mw
~1

(k)N"Mw(k#1)N) (Figure 2), under the same constraint p2
x
"p2

d
.

3. Vector e
1

is computed by maximizing the absolute value of the cross-cumulant between x (·)
and y

1
(·), where y

1
(·) is obtained as the output of the shifted reference system

F
1
(z)"z~1F(z) (Mw

1
(k)N"Mw(k!1)N) (Figure 3), under the same constraint p2

x
"p2

d
.

To understand the effect on the equalization delay of the shifting of y(·), notice that if
coefficients Ms (k)N could be selected freely and MDw (k) DN had a unique maximum Dw (k

0
) D, the three

maximization problems would imply perfect channel equalization with delay k
0

and shifted

Figure 2. Block diagram to determine equalizer e
~1

Figure 3. Block diagram to determine equalizer e
1
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delays k
0
!1 and k

0
#1 respectively. In the real case, where Ms(k)N cannot be selected freely

because Me(k)N is formed by a finite number of coefficients, this fact does not hold true rigorously.
However, in normal applications it is still approximately correct as shown by simulation results
(see Section 6).

Remark 1

Two main exceptions to the general shifting rule described above are obtained as a result of
‘boundary effects’.

(a) When k
0
"0, Dw

~1
(!1) D is the maximum value of MDw

~1
(k) DN but does not influence the

cross-cumulant value

cxy~1
4

(0, 0, 0)"cdd
4

(0, 0, 0)
=
+
k/0

w2
~1

(k)s2 (k)

since the channel and the equalizer are both causal.
(b) When channel is an FIR system and k

0
"q, where q is the index of the last non-zero

coefficient of the channel—equalizer cascade, Dw
1
(q#1) D is the maximum value of MDw

1
(k) DN

but does not influence the cross-cumulant value

cxy1
4

(0, 0, 0)"cdd
4

(0, 0, 0)
q
+
k/0

w2
1
(k)s2(k)

since s (k)"0 for k'q.

In the presence of these two types of ‘boundary effect’ the equalization delay corresponding
respectively to e

~1
and e

1
depends on the position of max

kOk0
MDw (k) DN. K

In an EVA iteration the cross-cumulant absolute value between the equalizer and reference
system outputs represents the performance index to determine the equalizer coefficients. At each
iteration of the new algorithm we choose among e

~1
, e

0
and e

1
by comparing the three

cross-cumulant absolute values as well.

Remark 2

Observe that the modified EVA procedure requires a computational effort per iteration which
is less than three times that of the EVA procedure. In fact one has to solve three eigenvector
problems and to compute a sample estimate of the three matrices Cyv

4
, Cy~1v

4
and Cy1v

4
. However, as

can be easily verified, most elements of these three matrices are coincident and therefore need to
be estimated only once. K

On the grounds of the above discussion we introduce the following new procedure for channel
equalization.

Modified iterative EVA procedure

1. Fix an initial reference system F(0)(z) and set j"0.
2. Solve the optimization problem (3) with reference system F( j ) (z) and denote by E( j )(z) the

corresponding solution.
3. Set j"j#1 and F( j )(z)"E( j~1)(z).
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4. Compute each of the three sets of equalizer coefficients e
~1

, e
0

and e
1

by solving the
optimization problem (3) with zF( j )(z), F( j ) (z) and z~1F( j ) (z) respectively as reference
system.

5. Select the equalizer leading to the greatest cross-cumulant value. Denote it by E( j ) (z).
6. If j(N (N is an a priori fixed integer), go to step 3.

The procedure is described in the block diagram of Figure 4.
The modified iterative EVA procedure can be applied to any non-Gaussian i.i.d. input signal.

In the next section we focus on the particular case of PAM (pulse-amplitude-modulated)
communication. In this case a bound on the probability of error for the a posteriori evaluation of
the equalization performance can be derived. This result can be used to design a suitable stop
criterion for the modified EVA algorithm.

4. PROBABILITY OF ERROR IN PAM SYSTEMS

The typical communication system known under the acronym PAM9 is characterized by
a transmitted signal d (·) belonging to a finite alphabet A. We assume that d(·) is an i.i.d. sequence
with an even number M of equiprobable values. Precisely,

d(t)3A"M!(M!1), !(M!3),2 ,M!3, M!1N

Pr(d (t)"2i!M!1)"1/M, i"1, 2,2, M

In PAM systems it is common practice to add at the output of the equalizer E(z) a non-linear
memoryless system called a nearest-neighbour M-ary quantizer (Figure 5). It is a threshold device
which is introduced to cancel the residual distortion to which the equalized signal x(·) can still be
subject.

Specifically, the quantizer output x
2
(t) is the value in the alphabet A nearest to the equalized

signal x(t), i.e.

x
2
(b)"

M@2~1
+

j/1~M@2

sgn(b#2j )

where

sgn(b)"G
1, b'0

0, b"0

!1, b(0

Denoting by k1 the equalization delay, i.e. the index of the dominant coefficient in the impulse
response of the channel—equalizer cascade, we say that an error occurs when
x
2
(t)Osgn(s(k1 ))d(t!k1 ). Consequently, a meaningful measure of the overall PAM system

performance is provided by the probability P
%
of the event x

2
(t)Osgn(s(k1 ))d (t!k1 ), considering

all possibilities of transmitted symbols, i.e. d (t!k1 )"2i!M!1, i"1, 2,2 ,M.
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Figure 4. Block diagram of modified iterative EVA procedure

Figure 5. Complete block scheme for PAM communication system
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Applying the theorem of total probability, P
%
can be computed as

P
%
"

M
+
i/1

PrMx
2
(t)Osgn(s(k1 ))d(t!k1 )/d(t!k1 )"2i!M!1N PrMd(t!k1 )"2i!M!1N

"

1

M

M
+
i/1

PrMx
2
(t)Osgn(s(k1 ))d(t!k1 )/d(t!k1 )"2i!M!1N

where PrMA/BN denotes the conditional probability of A given B.
In the following we assume that the channel output samples used to compute the equalizer

coefficients are independent of the realization on which the equalizer performance is tested.
Therefore coefficients Ms(k)N will be regarded as deterministic and not a function of d (·). In this
case the expression of P

%
can be simplified by observing that x (t) is given by

x (t)"s(k1 ) d (t!k1 )#m (t)

where m (t) :"+
kOk1 s(k)d (t!k), which denotes the intersymbol interference, is independent of

s(k1 )d (t!k1 ) and symmetrically distributed. This implies that

PrMx
2
(t)Osgn(s(k1 ))d (t!k1 )/d(t!k1 )"2i!M!1N

"PrMx
2
(t)Osgn(s(k1 ))d (t!k1 )/d(t!k1 )"2(M#1!i)!M!1N, i"1, 2,2 ,M/2

from which it follows that

P
%
"

2

M

M
+

i/M@2`1

PrMx
2
(t)Osgn(s(k1 )) d(t!k1 )/d (t!k1 )"2i!M!1N

We now introduce the technical assumption

A1: (M!1) Ds (k1 ) D'M!2

which is satisfied if Ds (k1 ) D is close enough to one. Under this hypothesis an error occurs only if m (t)
makes x (t) go beyond the boundaries of the quantization interval in which s(k1 )d (t!k1 ) falls.
P
%
can then be calculated as

P
%
"

2

M A
M~1
+

i/M@2`1

[1
2
PrMDm (t) D*(2i!M!1) Ds(k1 ) D!(2i!M!2)N

#1
2
PrMDm (t) D*(2i!M)!(2i!M!1) Ds(k1 ) DN]

#1
2
PrMDm (t) D*(M!1) Ds(k1 ) D!(M!2)NB (7)

Equation (7) provides a rigorous expression for computing the probability of error P
%
.

The evaluation of the different terms in (7) would, however, require the knowledge of s(k1 ) and of
the statistical properties of m (t), quantities which are obviously not available. In the next section
we first show a means to evaluate the range of possible values for s(k1 ) based on measurements.
Then we determine an upper bound for P

%
which only depends on s (k1 ), so that P

%
can be

estimated.
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5. UPPER BOUND ON PROBABILITY OF ERROR

Denote by a the normalized fourth-order cumulant of the equalizer output x (t), i.e.

a :"cxx
4

(0, 0, 0)/cdd
4

(0, 0, 0)

It is easily seen that a can be expressed in terms of the coefficients of the cascaded channel—
equalizer as (from now on, all summations are computed from k"0 to R)

a"+
k

s4(k)

a can be estimated from a realization of the equalizer output and can thus be used to define an
admissible range for s (k1 ). In fact, under the condition

+
k

s2(k)"1

directly imposed by both the EVA and modified EVA procedures (see (5) and remember that the
condition p2

x
"p2

d
is imposed in the EVA and modified EVA procedures), we have that if

a"1, s(k1 ) can only have unitary modulus (and s (k)"0, ∀kOkM ), while if a(1, then the
following proposition holds.

Proposition 1

Let Ms (k)N be subject to the conditions

+
k

s2(k)"1 (8)

+
k

s4 (k)"a (9)

Then, for a'1
2
, s2 (k1 ) :"max

k
Ms2(k)N is unique and satisfies the inequality

1#J(2a!1)

2
)s2 (k1 ))Ja (10)

Proof. See Appendix. K

Remark 3

(a) It is easy to see that for a)1
2
, it may happen that the sequence Ms2(k)N admits more than

a single absolute maximum. In this case Proposition 1 is no longer valid. On the other
hand, for the equalization performance to be acceptable, a must be close to one (if this is not
satisfied, the dominant coefficient Ds (k1 ) D cannot be close to one!). Therefore the case a)1

2
is

of no practical interest.
(b) As a matter of fact it is easy to show that the lower and upper bounds in (10) cannot be

improved. In other words, there exist sequences Ms(k)N such that s2(k1 ) approaches at will
such bounds. K
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Our goal is the determination of an upper bound on P
%
based on s (k1 ), which, in view of (10), can

be successively expressed as a function of a only.
We see from (7) that P

%
is the sum of terms all of the form

Pr(Dm (t) D*A) (11)

where A is a function of s(k1 ).
In order to compute the upper bound for such a probability, one can resort to one of the

following three well-known inequalities (which one of these three inequalities is convenient to use
depends on the actual values of s (k1 ) and a; see below):

Pr(Dm (t) D*A))
var m (t)

A2
(Tchebycheff inequality26) (12)

Pr(Dm(t) D*A))2 expA!
1

2

A2

var m(t)B (Chernoff inequality15) (13)

Pr(Dm(t) D*A))
E[m4(t)]

A4
(Markov inequality27) (14)

The right-hand sides of equations (12)— (14) can be computed in terms of s(k1 ) and a. This is
obvious for (12) and (13), since varm(t)"(1!s2 (k1 ))p2

d
, while as far as equation (14) is concerned,

note that

E[m4 (t)]" +
kOk1

s4(k)cdd
4

(0, 0, 0)#3(var m (t))2 and +
kOk1

s4(k)"a!s4 (k1 )

The upper bound for the probability (11) is then determined as

Pr(Dm(t) D*A)"minG1,
(1!s2 (k1 ))p2

d
A2

, 2expA!
1

2

A2

(1!s2(k1 ))p2
d
B ,

(a!s4 (k1 ))cdd
4

(0, 0, 0)#3(1!s2(k1 ))2p4
d

A4 H (15)

By inserting (15) into (7) and using bounds (10), a simple but tedious computation leads to the
following final upper bound on P

%
:

P
%
)

1

M

M
+

i/M@2`1

¸
i

(16)

where

¸
i
"minG1,

(1!f (a))p2
d

a
i

, 2expA!
1

2

a
i

(1!f (a))p2
d
B ,

(a!f 2(a))cdd
4

(0, 0, 0)#3(1!f (a))2p4
d

a2
i

H
#minG1,

(1!f (a))p2
d

b
i

, 2expA!
1

2

b
i

(1!f (a))p2
d
B,

(a!f 2(a))cdd
4

(0, 0, 0)#3(1!f (a))2p4
d

b2
i

H
for i"M/2#1,2 ,M!1 and

¸
M
"minG1,

(1!f (a))p2
d

a
M

, 2expA!
1

2

a
M

(1!f (a))p2
d
B ,

(a!f 2(a))cdd
4

(0, 0, 0)#3(1!f (a))2p4
d

a2
M

H
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Figure 6. Upper bound on probability of error P
%

with

a
i
"[(2i!M!1)Jf (a)!(2i!M!2)]2

b
i
"[(2i!M)!(2i!M!1)Jg (a)]2

f (a)"
1#J(2a!1)

2
, g(a)"Ja

The upper bound for P
%
is displayed for different values of M in Figure 6. It can be shown that for

a +1 the tightest bound is obtained by means of the Chernoff inequality, which corresponds to
the third element under the sign of ‘min’ in the expression for ¸

i
. The Markov and Tchebycheff

inequalities give better bounds for lower values of a. The joint use of the three inequalities
provides a tight bound for a wide range of values of a.

Bound (16) quantifies the equalization accuracy and can be used as a measure to decide
whether the equalizer performance is satisfactory. Obviously such a measure works no matter
which blind algorithm is being used. On the other hand, we can note that its introduction in the
modified EVA procedure does not require additional computational effort. The reason for this
lies in the fact that an estimate of the fourth-order equalizer output cumulant is directly available
as the final value of the performance index for the algorithm. Depending on the bound of the
probability of error, a decision can be made whether it is necessary to increase the length of the
equalizer. If the probability of error is high, one can enlarge the equalizer length so as to ascertain
a better equalization accuracy. Moreover, in doing so, one can exploit the actual equalizer as
initial reference system so as to reduce the number of iterations needed to determine the new
equalizer.
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6. SIMULATION EXAMPLE

In this section we present an example which illustrates the performance of the new procedure
introduced in this paper. In order to make a significant comparison, we fix the same initial
reference system (F

0
(z)"z~p with 0)p)n!1) for the EVA and modified EVA procedures.

Among other things, in the case of an i.i.d. 4-ary equiprobable input we obtain that the upper
bound on the probability of error for the modified EVA algorithm solution is lower than the
corresponding EVA solution, as expected.

Consider a telephone channel9 with transfer function

H (z)"0·04!0·05z~1#0·07z~2!0·21z~3!0·50z~4#0·72z~5#0·36z~6#0·21z~8

#0·03z~9#0·07z~10

fed by a 4-ary i.i.d. equiprobable signal with values in M!3,!1, 1, 3N, and a five-tap equalizer.
The performances obtained by the two procedures are shown in Figure 7, describing the

evolution of the equalization delay and of the normalized cumulant a of the equalizer output for

Figure 7. (a) Iterative EVA procedure. (b) Modified iterative EVA procedure
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Figure 8. Performance index of mean square error equalizer

all possible values of the initial reference system delay p. In the simulations all the expected
values are computed as sample averages from a realization of 1000 samples of the channel
input d (·).

As discussed in Section 3, we find that the iterative EVA procedure tends to maintain the initial
equalization delay, while the new procedure gives the same final delay regardless of the initializa-
tion. As indicated by the mean square restoration error

J (k)"
1

p2
d

min
Me(k)N

E[(x(t)!d(t!k))2]

displayed in Figure 8, the procedure presented in this paper leads to an equalization delay that
corresponds to an optimal mean square error solution delay. Moreover, if we normalize the
coefficients of the mean square error equalizer minimizing J (k) so that the variance of the
reconstructed input is equal to the input variance, we find the equalizer

E@(z)"0·1319#0·2836z~1#0·2996z~2#0·8218z~3!0·4664z~4

which is quite close to the solution

E (z)"0·1396#0·2809z~1#0·2993z~2#0·8199z~3!0·4668z~4

obtained by means of the proposed algorithm.
The value of bound (16) can be further used as an a posteriori measure to estimate the

performance of the obtained equalizer and decide whether it is convenient to increase the
equalizer length.

The tightness of the bound has been tested by simulation on both the modified EVA and EVA
solutions determined for p"2. Ten records, of 10 000 samples each, have been considered in both
cases. It is shown that the bound gives results which are conservative by approximately a factor of
three with respect to simulations. Discrepancies between the theoretical bound and practical
experiments can be expected, since the bound in equation (16) must remain valid for any
channel—equalizer cascade and not only for the one considered in the simulations.
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EVA solution (p"2)

The normalized fourth-order cumulant estimated from the equalizer output is a"0·7986. The
corresponding upper bound for the probability of error is 0·4760. Table I displays the number of
errors for each simulation of 10 000 samples.

Modified EVA solution (p"2)

The normalized fourth-order cumulant estimated from the equalizer output is a"0·8270. The
corresponding upper bound for the probability of error is 0·3572. Table II displays the number of
errors for each simulation of 10 000 samples.

As a final experiment we have generated 10 independent realizations, of 1000 samples each, of
the input process and determined the corresponding equalizers by the EVA and modified EVA
procedures. In Table III the characteristics of the final equalizers (obtained after five iterations of
the procedures) are displayed in terms of the mean value and standard deviation (SD) of the
output normalized cumulant a.

Table I. Simulation results (EVA, p"2,
10 000 samples/record)

Simulation Number of errors

Record 1 1857
Record 2 1764
Record 3 1775
Record 4 1845
Record 5 1805
Record 6 1800
Record 7 1810
Record 8 1797
Record 9 1842
Record 10 1877

Table II. Simulation results (modified EVA,
p"2, 10 000 samples/record)

Simulation Number of errors

Record 1 1614
Record 2 1703
Record 3 1660
Record 4 1619
Record 5 1647
Record 6 1616
Record 7 1673
Record 8 1648
Record 9 1669
Record 10 1711
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Table III. Summary of EVA and modified EVA procedure solutions

Iterative EVA procedure Modified iterative EVA procedure

Initialization Equalization delay a (mean$SD) Equalization delay a (mean$SD)

p"0 5 0·6574$0·0399 8 0·8224$0·0294
p"1 6 0·7253$0·0326 8 0·8224$0·0294
p"2 7 0·7920$0·0261 8 0·8225$0·0293
p"3 8 0·8225$0·0293 8 0·8225$0·0293
p"4 9 0·5774$0·0488 8 0·8225$0·0293

7. CONCLUSIONS

We have presented an iterative procedure for blind equalization based on fourth-order statistics,
which automatically searches for the optimal equalization delay and at the same time tries to
determine the best equalizer for the final delay. Therefore the algorithm copes with the problem of
the selection of a suitable value for the equalization delay. This problem is particularly relevant
because of the strong dependence of the equalization accuracy on this delay. We have introduced
an upper bound on the probability of error in PAM systems. Since this bound only depends on
the equalizer output measurements and on the input statistics, it is suitable for the a posteriori
evaluation of the blind equalizer performance. It was identified that for high values of the
normalized output fourth-order cumulant a such a bound is better obtained with the use of the
Chernoff inequality. On the other hand, the Tchebycheff and Markov inequalities provide
a tighter bound when a gets small.

Simulation results are included. They show that the proposed procedure identifies an equalizer
similar to the best achievable one in the mean square sense and that the bound on the probability
of error can provide an estimate of the reached equalization accuracy.

APPENDIX: PROOF OF PROPOSITION 1

The following equation is easily derived from (8):

A+
k

s2 (k)B
2
"+

k

s4(k)#+
k

s2 (k) +
jOk

s2 ( j )"1

which can be simplified by (9), leading to

+
k

s2(k) +
jOk

s2 ( j )"1!a

By extracting the term s2(k1 ), it can be rewritten as

2s2(k1 ) +
jOk1

s2 ( j )# +
kOk1

s2 (k) +
jOk,k1

s2 ( j )"1!a (17)
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Obviously

+
jOk,k1

s2 ( j )*1!2s2(k1 ), ∀k (18)

Thus (17) and (18) entail the inequality

2s2(k1 ) +
jOk1

s2 ( j )# +
kOk1

s2(k) (1!2s2 (k1 )))1!a

which can be reduced to

s2(k1 )*a (19)

If a'1
2
, it is then evident that no other coefficient but s(k1 ) has its square greater than

a and consequently s2(k1 ) is the only maximum value of the sequence Ms2(k)N.
From equation (17) we also have, by discarding the second term after the ‘#’ sign,

2s2 (k1 ) (1!s2(k1 )))1!a

which leads to

s2(k1 ))
1!J(2a!1)

2
or s2(k1 )*

1#J(2a!1)
2

(20)

Since (19) and (20) have to be satisfied simultaneously, s2 (k1 ))[1!J(2a!1)]/2 in (20)
must be discarded, so that we finally obtain

s2 (k1 )*
1#J(2a!1)

2

which is the lower bound in equation (10).
The upper bound immediately follows from condition (9).
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