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Abstract: In this paper we present preliminary results for a new framework in
identification of predictor models for unknown systems, which builds on recent devel-
opments of statistical learning theory. The three key elements of our approach are: the
unknown mechanism that generates the observed data (referred to as the remote data
generation mechanism – DGM), a selected family of models, with which we want to
describe the observed data (the data descriptor model – DDM), and a consistency cri-
terion, which serves to assess whether a given observation is compatible with the selected
model. The identification procedure will then select a model within the assumed family,
according to some given optimality objective (for instance, accurate prediction), and
which is consistent with the observations. To the optimal model, we attach a certificate
of reliability, that is a statement of probability that the computed model will be consistent
with future unknown data.
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1. INTRODUCTION

Dynamical models of systems and time series are con-
structed for different purposes. Among others, for the
analysis of the system properties, for predicting future
output values, and for designing suitable controllers
to feedback-connect to the system, see the classical
references (Box et al., 1994), (Ljung, 1999).

A data descriptor model is intended as an analytic
model which is able to explain the observed data, and
which has additional desirable features, such as good
prediction capabilities. In this paper we are mainly
concerned with data descriptor models to be used
for prediction. A model of this kind can be used in
all applications where forming a reliable prediction
of the system output is important. Typical examples
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are the forecast of future events, in which case the
model is directly used to the final prediction purpose,
and construction of predictive controllers, where the
model is used as an instrument to foresee the future
system output behavior in dependence of the selected
input.

A good predictor model should always return a pre-
diction value along with a statement on the reliability
of such a prediction. Examples of such statements
are: the future system output is spread around the
prediction value according to a certain probabilistic
distribution; or: the future system output belongs to a
certain interval centered in the prediction value with
given (high) probability. Without a reliability state-
ment, a prediction is of little use. Thus, the following
question about any identification approach to predic-
tion models arises naturally: What can we say about
the reliability of the estimated model? That is, can
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we quantify with precision the probability that the
future output will belong to the interval given by the
model? This question would be easily answered if we
could assume that the true data generation system has
a given particular structure. However, assuming that
we know the structure of the data generation system is
often unrealistic.

The goal of the present paper is to introduce a new
approach for the construction of predictor models.
Instead of insisting to follow a standard identification
route where one first constructs a parametric model by
minimizing an identification cost, and then uses the
model to work out the prediction interval, we directly
consider interval models (that is, models returning
an interval as output) and use data to ascertain the
reliability of such models. In this way, the procedure
for selecting the model is directly tailored to the final
purpose for which the model is being constructed. We
gain two fundamental advantages over the standard
identification approach:

i) The reliability of the estimation can be quantified
independently of the data generation mechanism. In
other words, (under certain hypotheses to be discussed
later) we are able to attach to a model a label certifying
its reliability, whatever the true system is.

ii) The model structure selection can be performed
by directly optimizing over the final result. Precisely,
for a pre-specified level of reliability, we can choose
the model structure that gives the smallest prediction
interval.

The results of the present paper have been made pos-
sible by some recent developments in the statistical
learning literature. In particular, our results build on
Learning Theory results of (Vapnik and Chervonenkis,
1971) and (Vidyasagar, 1997), and on previous works
in which concepts from learning theory have been
applied to the field of system identification, see for
instance (Campi and Kumar, 1998) and (Weyer, 2000).
The purpose of the paper is to provide an introduc-
tory account of the theory of data-consistent models.
The results are preliminary. In particular, the finite-
sample reliability results given in Section 3 rest on the
assumption that the DGM generates i.i.d. sequences.
This assumption is not satisfied by generic dynamical
systems possessing memory. The theory can however
be extended to non i.i.d. processes (in particular to
mixing processes), following the ideas introduced by
(Nobel and Dembo, 1993) and (Yu, 1994). This exten-
sion goes beyond the scope of the present paper, and
it is subject of ongoing research.

2. DATA-CONSISTENT MODELS

Let y(k) ∈ R be the observed output of an unknown
system, and let ϕ(k) ∈ R

n be an explanatory (or
regression) vector constructed from past inputs and
outputs. For the time being, we shall make no as-
sumptions on the nature or structure of the unknown
system, and refer to it as the remote data generation
mechanism (DGM).

Assume we observe one realization of the unknown
process over a finite time window k = 1, . . . , N , and
collect the observations in the data sequence DN

.=
{y(k), ϕ(k)}k=1,...,N . Then, we seek to explain the
observed data using a data descriptor model (DDM).

Our standpoint in this paper is that a DDM is a rule
that assigns to each regression vector ϕ(k) a certain
value interval for the corresponding output. That is, a
DDM is a set-valued map

I(·) : ϕ(k) → I(ϕ(k)) ⊂ R.

For algorithmic reasons, in the sequel we will often
consider DDM that are described in parametric form
as follows. First, a system class M is considered (for
instance a linear, auto-regressive class), such that the
output of a system in the class is expressed as η(k) =
M(ϕ(k), q), for some parameter q ∈ Q ⊂ R

nq .
A DDM is then obtained by selecting a particular
feasible set Q, and considering all possible outputs
obtained for q ∈ Q, i.e. the DDM is defined through
the relation

I(ϕ(k)) .= {η : η = M(ϕ(k), q), q ∈ Q}. (1)

In this case, the DDM is also indicated by MQ and
the corresponding output interval is MQ(ϕ(k)).

A comprehensive theory on set-valued dynamical
models in continuous time has been developed in
(Aubin and Cellina, 1984), (Aubin, 1990). Here, we
consider the problem of identification of set-valued
maps in discrete time.

To the interval model introduced above, we associate a
consistency condition which assesses whether a given
observation is in agreement with the assumed model.
We introduce the following definition.

De£nition 1. A DDM is consistent with the observed
data sequence DN if, for all k = 1, . . . , N , the
following data-consistency condition holds

y(k) ∈ I(ϕ(k)). (2)

This means that the assumed model is not falsified by
the observed data. In particular, for DDM described as
in (1), this means that there exists a feasible sequence
{q(k) ∈ Q}k=1,...,N that satisfies the model equa-
tions, i.e. y(k) = M(ϕ(k), q(k)), for k = 1, . . . , N .

2.1 Common model structures

The abstract model description introduced above spe-
cializes to some well-known model structures used
in system identification. Linear AR(n) models with
bounded noise

y(k) = ϕT (k)θ + e(k), |e(k)| ≤ γ,

with ϕ(k) .= [y(k − 1) · · · y(k − n)]T , are ac-
commodated into the previous structure, taking q =
[θT , e]T ∈ R

n+1, and Q = {q : q[1 : n] = θ, q[n +
1] = e ∈ [−γ, γ]} = θ × [−γ, γ]. ARX(p,m)



models can be accommodated similarly, considering
ϕ(k) .= [y(k−1) · · · y(k−p)u(k−1) · · ·u(k−m)]T .

More interestingly, we can consider ARX model struc-
tures where variability is present in both an additive
and multiplicative fashion

y(k) = ϕT (k)θ(k) + e(k), |e(k)| ≤ γ. (3)

Here, the regression parameter is considered to be
time-varying, i.e. θ(k) ∈ ∆ ⊆ R

n, where ∆ is some
assigned bounded set. This model structure is obtained
from the general one by setting q = [θ, e] ∈ R

n+1,
and Q = {q : q[1 : n] = θ ∈ ∆, q[n + 1] =
e ∈ [−γ, γ]} = ∆ × [−γ, γ]. The computation of the
output interval for these model structures is reported
in Section 4.1, for the case when ∆ is a sphere or an
ellipsoid.

One thing that needs to be made clear at this point is
that models like (3) are not intended to be a parametric
representation of the true system. In particular, θ(k)
has not to be interpreted as an estimate of a true time-
varying parameter. It is merely an instrument through
which we defined a map I(·) that assigns to each
ϕ(k) an interval I(ϕ(k)), and this map is used for
prediction.

2.2 Optimal data-consistent models

Consider now a family of interval models MQ, where
Q can be any member of a specified family of sets.
Among all members of this interval model family
which are consistent with the observed data, we are
interested in those models providing the most “infor-
mative” (i.e. the smallest) output prediction map I(·).
Assume a data descriptor model structure is given, and
let µQ be a scalar parameter that defines the “size” of
the output map associated with the model identified by
Q. Clearly, the choice of a suitable size measure µQ
depends on (and is suggested by) the specific problem
at hand. Then, we have the following definition.

De£nition 2. An optimal data-consistent model (OD-
CM) MQ∗ is such that

MQ∗ = arg min µQ subject to
y(k) ∈ MQ(ϕ(k)), for k = 1, . . . , N.

Two fundamental issues remain now to be discussed.
The first one concerns the reliability properties of
models constructed using the data consistency ap-
proach. In particular, we can ask how large the prob-
ability is that a new unseen datum will be consistent
with the model. The second issue pertains to the algo-
rithmic construction of optimal data consistent mod-
els. The first issue is discussed in Section 3, while
Section 4 is concerned with the second issue. There,
we in particular develop efficient polynomial-time al-
gorithms for computing the ODCM for the ARX struc-
ture (3). Many other issues remain open, however, and
will be discussed in the concluding Section 5.

3. A LEARNING THEORY APPROACH TO
MODEL RELIABILITY

In this section, we tackle the fundamental issue of as-
sessing the reliability of a data-consistent model, with
respect to its ability to predict the future behavior of
the unknown system. To keep the exposition as clear
as possible, we develop our analysis assuming that the
sequence {y(k), ϕ(k)} is an i.i.d. sequence generated
by a stationary remote process. The stationarity of the
process basically means that the DGM is operating in
steady state. As for the i.i.d. assumption, it is indeed
a strong one in the context of system identification.
However, this hypothesis is not critical for our devel-
opments, and can be relaxed by resorting to mixing
processes.

Let a family of interval models MQ be given, where
the set Q can be any element of a specified family of
sets, and let x(k) .= [ϕ(k)T y(k)]T ∈ X ⊆ R

n+1,
for all k. For a fixed model in the class (i.e. fixed
Q), we introduce the consistency function h(x(k),Q)
such that

h(x(k),Q) .=
{

1, if y(k) ∈ MQ(ϕ(k))
0, otherwise. (4)

For each Q, let us define the set AQ of all x(k) which
are consistent with the assumed model

AQ
.= {x ∈ X : h(x,Q) = 1}, (5)

and the collection A of subsets of X , A .= {AQ},
where Q ranges over its specified feasible family
of sets. Let further P be some unknown probability
measure on X , and suppose that, for a fixed Q, it is
desired to compute an empirical estimate of P (AQ).
To this end, we collect N i.i.d. samples of x(k) ∈ X
(drawn according to the density P ) in the multisample
x .= [xT (1)xT (2) · · · xT (N)]T ∈ XN , and define
the empirical probability of AQ as

P̂ (AQ;x) .=
1
N

N∑
j=1

IAQ(x(j)), (6)

where IAQ is the indicator function of the set AQ, i.e.

IAQ(x(k)) .=
{

1, if x(k) ∈ AQ
0, otherwise.

The following theorem is a direct application of a fun-
damental result of learning theory (see (Vidyasagar,
1997)), and provides an assessment of the reliability
of the empirical estimate P̂ (AQ;x), for any AQ ∈ A.

Theorem 1. (Vapnik and Chervonenkis, 1971). Let all
symbols be defined as above, and let

p(N, ε,A) .= Prob{x ∈ XN :

∃AQ ∈ A such that |P̂ (AQ;x) − P (A)| > ε}.
If the collection of sets A has finite Vapnik-Chervonenkis
dimension, say VC-dim (A) ≤ d, then, for N ≥ d,
ε > 0

p(N, ε,A) ≤ 4
(

2eN

d

)d

exp(−Nε2/8), (7)

for all probability measures P .



Interpreted in our model-consistency setting, the above
theorem means the following: given any model in
the considered family (i.e. given any Q), and given
a data multisample x ∈ XN , the empirical prob-
ability of consistency converges (for increasing N )
to the true probability, irrespective of the underlying
distribution P , i.e. the underlying DGM. In this case,
we say that the collection of sets A has the property
of distribution-free uniform convergence of empirical
probabilities (UCEP), (Vidyasagar, 1997).

It is evident form the above result that it is of
paramount importance to assess wether a given family
A has finite VC-dimension, and, if this is the case, to
determine an upper bound d on this quantity. In this
paper, we will study in particular the case (relevant in
the identification applications discussed in the sequel)
when the consistency condition (2) can be expressed
in terms of the satisfaction of t polynomial inequali-
ties, i.e.

h(x,Q) =
{

1, if τ1(x, ω) > 0, . . . , τt(x, ω) > 0
0, otherwise, (8)

where τ1(x, ω), . . . , τt(x, ω) are polynomials in x, ω,
of maximum degree g, and where ω ∈ R

nω rep-
resents a vector of variables needed to describe the
consistency conditions by means of polynomial in-
equalities. In this case a result of (Karpinsky and
Macintyre, 1997), proved in the refined form below
in (Vidyasagar, 1997) Chapter 10, provides an upper
bound for the VC-dimension of A (see also the in-
troductory exposition from (Sontag, 2000) for general
results on the computation of the VC-dimension of
classes of concepts).

Theorem 2. With all symbols defined as above, and
being e the Neper constant, we have

VC-dim (A) ≤ d, with d = 2nω log2(4egt). (9)

With these premises, we now state a first key result on
the reliability of optimal data-consistent models.

Theorem 3. Let {y(k), ϕ(k)} be an i.i.d. sequence
generated by a stationary remote process (our DGM),
and let DN

.= {y(k), ϕ(k)}k=1,...,N be the sequence
of data observed over the time window k = 1, . . . , N .
Consider a data descriptor model (DDM) for which
the consistency condition can be checked via feasibil-
ity of a set of t polynomial inequalities

τ1(x, ω) > 0, . . . , τt(x, ω) > 0,

where τ1(x, ω), . . . , τt(x, ω) are a polynomials in x, ω
of maximum degree g. Assume an ODCM MQ is
constructed based on the observation sequence DN .
Define the reliability R(MQ) of the ODCM as the
probability of consistency of the model with “future”
unknown data

R(MQ) .= Prob{x(k) = [ϕT (k) y(k)]T :

h(x(k),Q) = 1, for k > N}. (10)

For any fixed accuracy 0 < ε < 1 it may be asserted
with confidence 1 − δ(N, ε, d) that

R(MQ) > 1 − ε, (11)

being

δ(N, ε, d) = 4
(

2eN

d

)d

exp(−Nε2/8), (12)

d = 2nω log2(4egt). (13)

The proof of this theorem is an immediate conse-
quence of Theorem 1 and Theorem 2.

4. ODCM FOR ARX STRUCTURES WITH
PARAMETRIC AND ADDITIVE NOISE

In this section, we discuss in detail the construc-
tion and reliability analysis for a class of ARX
model structures with additive and multiplicative
time-varyability. We assume the following descriptor
model

y(k) = ϕT (k)θ(k) + e(k), (14)

where the regression parameter is considered to be
time-varying, i.e. θ(k) ∈ ∆, being ∆ a sphere with
center θ and radius r, i.e.

∆ .= {ξ : ξ = θ + δ, ‖δ‖ ≤ r}. (15)

Subsequently, we will also consider the more general
case when the bounding set for the parameters is an
ellipsoid. The additive noise e(k) is an unknown-but-
bounded sequence, i.e. |e(k)| ≤ γ, where γ ≥ 0 is
a model parameter. Thus, the parameters describing
the set Q are the center θ and radius r of ∆, and
the magnitude bound γ on the additive term e(k).
Models of this type have already been considered by
the authors in (El Ghaoui and Calafiore, 2000).

In the following section we present efficient algo-
rithms for computing the ODCM in this setting, and
provide explicit results for their reliability.

4.1 Computing the ODCM for time-varying ARX
structures

The objective is to determine the parameters θ ∈ R
n,

r, γ > 0 of an ARX model, that minimize a “size”
measure µQ, under the model consistency constraints.
Here, we take µQ = γ + αr, α ≥ 0. Note that, if α =
E[‖ϕ(k)‖], µQ measures the average amplitude of the
output interval. The optimal model can be computed
by means of Linear Programming, as detailed in the
following theorem.

Theorem 4. (Spherical parameter set). Given an ob-
served sequence DN = {y(k), ϕ(k)}, and a “size”
objective µQ = γ + αr, where α is a fixed non-
negative number, an optimal consistent ARX model is
computed solving the following linear programming
problem in the variables θ, r, γ

minimize γ + αr, subject to: (16)

r, γ ≥ 0 (17)

ϕT (k)θ − r‖ϕ(k)‖ − γ ≤ y(k) (18)

−ϕT (k)θ − r‖ϕ(k)‖ − γ ≤ −y(k) (19)

k = 1, . . . , N.



Proof. For each k, the model equation (14) with the
additive noise bound |e(k)| ≤ γ defines a slab of
allowable parameters θ(k)

{θ(k) : |y(k) − ϕT (k)θ(k)| ≤ γ}. (20)

In turn, the parameter θ(k) is bound in the sphere
θ(k) = θ + δ(k), ‖δ(k)‖ ≤ r, therefore, the k-th
observation is consistent with the assumed model if
and only if the slab intersects the sphere. Geometri-
cally, for fixed γ, the problem amounts to finding the
sphere of minimum radius that intersects all the slabs
(20), for k = 1, . . . , N .

The intersection condition between the slab and the
sphere can be expressed as

|y(k) − ϕT (k)θ| ≤ γ + r‖ϕ(k)‖, (21)

which are indeed linear constraints on the decision
variables, and the statement of the theorem immedi-
ately follows. �

As a generalization of the previous theorem, we next
consider ARX models where the parameter is bound
in an ellipsoid, i.e.

∆ = {ξ : ξ ∈ E(θ, P )}, (22)

where E(θ, P ) denotes the ellipsoid of center in θ and
“shape matrix” P 	 0

E(θ, P ) =
{

x :
[

P (x − θ)
(x − θ)T 1

]
	 0

}
.

In this case, computing the optimal model amounts to
determine the parameters θ, P, γ describing Q, such
that the consistency conditions are fulfilled, and a
“size” objective µQ is minimized. In particular, we
choose µQ = γ + Tr PW , being W 	 0 a weight
matrix. We show in the next theorem that the optimal
model in this case can be computed efficiently, solving
a semidefinite programming problem, i.e. a convex
optimization problem with linear objective and LMI
constraints, see (Vandenberghe and Boyd, 1996) for
details.

Theorem 5. (Ellipsoidal parameter set). Given an ob-
served sequence DN = {y(k), ϕ(k)}, a model order
n, a weight matrix W 	 0, and parameter set de-
scribed as in (22), an optimal consistent ARX model
is computed solving the following semidefinite pro-
gramming problem in the variables P , θ, γ, and in the
slack variables εk

minimize γ + Tr PW, subject to: (23)

P 	 0, γ ≥ 0 (24)[
ϕT (k)Pϕ(k) y(k) − ϕT (k)θ − εk

y(k) − ϕT (k)θ − εk 1

]
	 0, (25)

εk ≤ γ, εk ≥ −γ, (26)

k = 1, . . . , N.

Proof. The proof follows the same line as for Theorem
4: For each k, the model equation (14) with the addi-
tive noise bound |e(k)| ≤ γ defines a slab of allowable
parameters θ(k)

{θ(k) : |y(k) − ϕT (k)θ(k)| ≤ γ}. (27)

In turn, the parameter θ(k) is bound in the ellipsoid

E(θ, P ) = {θ(k) : θ(k) = θ+δ(k), δ(k) ∈ E(0, P )}.
Therefore, the k-th observation is consistent with the
assumed model if and only if the slab intersects the
ellipsoid. Geometrically, for fixed γ, the problem
amounts to finding the ellipsoid of minimum size (in
the sense of the weighted measure Tr PW ) that inter-
sects all the slabs (27), for k = 1, . . . , N .

The intersection condition between the slab and the
ellipsoid can be expressed as

|y(k) − ϕT (k)θ| ≤ γ + ‖ϕT (k)E‖,
where E is a symmetric matrix square root of P , i.e.
P = EET . This condition is equivalent to: ∃εk such
that |εk| ≤ γ, and |y(k)−ϕT (k)θ−εk| ≤ ‖ϕT (k)E‖.
Taking the square of this condition we get

(y(k) − ϕT (k)θ − εk)2 ≤ ϕT (k)EET ϕ(k), (28)

and using Schur complements, we easily obtain the
LMI constraints stated in the theorem. �

Once a descriptor model of the form (14) has been
identified using the discussed approach, it is straight-
forward to obtain an interval of prediction. Since the
parameter vector θ(k) lies in the ellipsoid E(θ, P ), and
|e(k)| ≤ γ, the possible values for the model output
at time N + 1 lie in the interval IN+1 = [y+(N +
1) y−(N + 1)], where

y±(N + 1) = ϕT (N + 1)θ ±
(
(ϕT (N + 1)Pϕ(N + 1))1/2 + γ

)
.

Of course, the actual output of the system is guaran-
teed to lie in the computed interval, up to the reliability
and confidence of the identified model.

4.2 Reliability analysis for ARX ODCMs

The reliability of ARX optimal models under i.i.d.
hypotheses on the data generation mechanism can
be studied by direct application of Theorem 3. The
results for the spherical and ellipsoidal noise cases are
reported in the following corollaries.

Corollary 1. (Reliability of “spherical” ARX).
Let MQ be the optimal ARX model with spherical
parameter noise, computed according to Theorem 4,
using N observations. Then, for any 0 < ε < 1, it can
be asserted with confidence greater than 1−δ(N, ε, d)
that the reliability R(MQ) of the computed model is
ε-close to one, being δ(N, ε, d) defined in (12), and

d = 2(n + 2) log2(16e), N ≥ d.

Proof. From Theorem 4, the consistency condition
for this class of models may be checked by means
of the four linear inequalities (17)–(19), in the vector
of variables ω = [θ, r, γ], therefore we have
t = 4 (number of polynomial inequalities), nω =
n + 2 (number of variables entering the consistency
inequalities) and g = 1 (maximum degree of the



polynomial inequalities). From Theorem 2 we then
determine d = 2(n + 2) log2(16e). The statement of
the theorem then follows from direct application of
Theorem 3. �

Corollary 2. (Reliability of “ellipsoidal” ARX).
Let MQ be the optimal ARX model with ellipsoidal
parameter noise, computed according to Theorem 5,
using N observations. Then, for any 0 < ε < 1, it can
be asserted with confidence greater than 1−δ(N, ε, d)
that the reliability R(MQ) of the computed model is
ε-close to one, being δ(N, ε, d) defined in (12), and

d = (n2 + 3n + 4) log2(24e), N ≥ d.

Proof. From Theorem 5 (and from the relative proof),
the consistency condition for this class of models may
be checked by means of the two quadratic inequalities
(28), ε2k ≤ γ2, and the linear inequality γ ≥ 0,
Therefore the total number of polynomial inequalities
is t = 3, and their maximum degree is g = 2. The
variables ω involved in the consistency inequalities
are the n(n + 1)/2 independent entries of E, the n
entries of θ, and γ, εk, therefore nω = n(n + 3)/2 +
2, and from Theorem 2 we determine d = (n2 +
3n + 4) log2(24e). The statement of the theorem then
follows from direct application of Theorem 3. �

5. DISCUSSION AND FUTURE DIRECTIONS

In this paper we presented preliminary results for
the identification of predictive set-valued models for
unknown systems. The result of identification is a
set-valued map which associates to the regressor a
predicted output interval. To the predicted interval,
we attach a reliability statement guaranteeing that the
actual future output will fall in the computed interval,
with a certain (high) probability.

The rationale behind the proposed approach is to de-
rive a direct procedure for going from data to pre-
diction intervals, assuming as little as possible on the
remote mechanism that generates the data. Learning
Theory seems to be the most natural framework for
this purpose.

Many directions of research are still open. In partic-
ular, the i.i.d. assumption on the DGM can be re-
placed with a weak dependence (β-mixing) assump-
tion. Based on the results of (Nobel and Dembo,
1993) and (Yu, 1994), we can anticipate that the key
ideas and results presented in this paper remain valid
also for mixing processes, but the reliability bounds
δ(N, ε, d) should be recomputed accordingly.

Another aspect which is mentioned but not treated in
this paper is model structure optimization. Given a
certain level of reliability, and for fixed confidence, we
need to study which model structure and order gives,
for instance, the smallest prediction interval, for a cer-
tain number N of observations. Also, we remark that
all the theory could be restated in terms of “partially
consistent” models, i.e. models which are consistent
only with a given fraction of the observations. Of
course, this makes a lot of sense if we are to derive

models that are insensitive to possible outliers in the
data.

As a final comment, we point out that a general criti-
cism of VC-dimension approaches is that the number
of observations required to attain a reasonable level
of reliability is usually very high. This situation is
aggravated if we depart from the i.i.d. assumption and
move to mixing processes. At the time of this writing,
we are developing a different approach to the problem,
which is not based on the VC-theory, and which seems
to be very promising in the direction of achieving
the desired level of reliability using a much smaller
number of data.
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