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Abstract

This paper presents new results for the assessment of
reliability of predictive interval maps constructed using
a consistency criterion with respect to a finite number
of observations. Given a regression vector, our predic-
tive map returns an interval in which the output of
the unknown system is likely to fall at the next time
instant. The key question we address is then the fol-
lowing: if the map has been constructed based on N
observations, what is the probability that the next (un-
seen) output will actually fall in the interval predicted
by the map? We answer to this fundamental question
in two different settings. In the first setting we assume
that the observations are statistically independent and
identically distributed (i.i.d.), while in the second set-
ting we study the case when the observations are gen-
erated by a mixing remote process. This latter case is
the most relevant in the applications, since it allows for
statistical dependence between past and future obser-
vations.
Keywords: Prediction, Set-valued maps, Learning the-
ory, Convex optimization.

1 Introduction

The following question about any identification ap-
proach to predictive models arises naturally: what can
we say about the reliability of the estimated model?
That is, can we quantify with precision the probability
that the future output will belong to the confidence in-
terval given by the model? In the standard prediction-
error identification setting, [2], [5], a parametric model
structure is first selected, and the parameters of the
model are then estimated using an available batch of
observations. The identified model may then be used
to determine a predicted value for the output of the
system, together with probabilistic intervals of confi-
dence around the prediction. A crucial observation on
this approach is that the interval of confidence deter-
mined as above may poorly describe the actual proba-
bility that the future output will fall in the computed
interval, if the (unknown) system that generates the
observations is structurally different from what it is as-
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sumed in the parametric model. In other words, the
standard approach provides reliable predictions only if
strong hypotheses on the mechanism that generates the
data are satisfied. However, assuming that we know the
structure of the data generation system is often unre-
alistic.

In this paper, we follow a different approach for the
construction of predictor models: instead of insisting
to follow a standard identification route where one first
constructs a parametric model by minimizing an iden-
tification cost, and then uses the model to work out the
prediction interval, we directly consider interval models
(that is, models returning an interval as output) and
use data to ascertain the reliability of such models. In
this way, the procedure for selecting the model is di-
rectly tailored to the final purpose for which the model
is being constructed. We gain two fundamental advan-
tages over the standard identification approach. First,
the reliability of the estimation can be quantified inde-
pendently of the data generation mechanism. In other
words, under certain hypotheses to be discussed later,
we are able to attach to a model a label certifying its re-
liability, whatever the true system is; and, second, the
model structure selection can be performed by directly
optimizing over the final result. Precisely, for a pre-
specified level of reliability, we can choose the model
structure that gives the smallest prediction interval.

The results of the present paper have been inspired by
recent works in which concepts from learning theory
have been applied to the field of system identification,
see for instance [4] and [8]. In particular, in a previous
paper [3] the authors of the present paper proposed an
approach for the evaluation of the reliability of interval
models based on the Vapnik and Chervonenkis (VC)
learning framework. While satisfactory from a concep-
tual point of view, this theory provides lower bounds
on the number of samples required to attain the desired
reliability that may be too large to be of practical in-
terest. The results of [3] were also limited to the i.i.d.
case, an assumption which is not satisfied by generic
dynamical systems possessing memory.

In this paper, we develop a different approach for the
assessment of reliability, that provides a dramatic im-
provement in the bounds on the required number of
samples with respect to the VC theory approach, see
Section 3. Also, in Section 4, we extend the results for



reliability under i.i.d. observations to the case of weakly
dependent observations.

2 Interval predictors and data-consistency

In this section, we introduce the first two key elements
of our approach: models that return an interval as out-
put (Interval Predictor Models) and the notion of η-
consistency with observed data.

Let Φ ⊆ R
n and Y ⊆ R be given sets, denoted re-

spectively as the instance set and the outcome set. An
interval predictor model (IPM) is a rule that assigns
to each instance vector ϕ ∈ Φ a corresponding output
interval. That is, an IPM is a set-valued map

I : ϕ → I(ϕ) ⊆ Y.

Interval models may be described in parametric form
as follows. First, a model class M is considered (for
instance a linear, auto-regressive class), such that the
output of a system in the class is expressed as ξ =
M(ϕ, q), for some parameter q ∈ Q ⊆ R

nq . An IPM is
then obtained selecting a particular feasible set Q, and
considering all possible outputs obtained for q ∈ Q, i.e.
the IPM is defined through the relation

I(ϕ) .= {ξ : ξ = M(ϕ, q), q ∈ Q}. (1)

In this case, the IPM is also indicated by MQ, and the
corresponding output interval is MQ(ϕ). In a dynamic
setting, at each time instant the instance vector ϕ may
contain past values of input and output measurements,
thus behaving as a regression vector. Standard auto
regressive structures AR(n)

ξ(k) = ϕT (k)θ + e(k), |e(k)| ≤ γ,

give rise to (dynamic) IPMs by setting ϕ(k) .= [y(k −
1) · · · y(k − n)]T , q = [θT e]T ∈ R

n+1, and Q = {q :
q[1 : n] = θ, q[n + 1] = e ∈ [−γ, γ]} = {θ} × [−γ, γ].
ARX(p,m) structures can be used similarly, consider-
ing ϕ(k) .= [y(k− 1) · · · y(k− p)u(k− 1) · · ·u(k−m)]T .

More interestingly, we can consider ARX structures
where variability is present in both an additive and
multiplicative fashion

ξ(k) = ϕT (k)θ(k) + e(k), |e(k)| ≤ γ. (2)

Here, the regression parameter is considered to be time-
varying, i.e. θ(k) ∈ ∆ ⊆ R

n, where ∆ is some assigned
bounded set. In our exposition, we assume in particular
∆ to be a sphere with center θ and radius r

∆ .= {θ + δ : θ, δ ∈ R
n, ‖δ‖ ≤ r}. (3)

For the current model structure (2)–(3), the parameters
describing the set Q are the center θ and radius r of ∆,
and the magnitude bound γ on the additive term e(k).
Given ϕ(k), the output of the model is the interval

I(ϕ(k)) = [ϕT (k)θ−(r‖ϕ(k)‖+γ), ϕT (k)θ+(r‖ϕ(k)‖+γ)].

One thing that needs to be made clear at this point is
that models like (2) are not intended to be a parametric
representation of a “true” system. In particular, θ(k)
has not to be interpreted as an estimate of a true time-
varying parameter. It is merely an instrument through
which we defined the interval map I that assigns to
each ϕ(k) an interval I(ϕ(k)), and this map is used for
prediction.

2.1 Model consistency
Assume now that one realization of an unknown bivari-
ate stationary process {x(k)} = {ϕ(k), y(k)}, ϕ(k) ∈
R

n, y(k) ∈ R is observed over a finite time window
k = 1, . . . , N , and that the observations are collected
in the data sequence DN

.= {ϕ(k), y(k)}N
k=1. We have

the following definition.

Definition 1 An interval model (1) is η-consistent
with a given batch of observations DN if, given η ∈
[0, 1]

y(k) ∈ I(ϕ(k)), for k ∈ Kη, (4)

where Kη ⊆ {1, . . . , N} is a set of cardinality Nη
.=

�ηN�, where �·� denotes integer part.

In other words, the above definition requires that the
assumed model is not falsified by (and therefore is
consistent with) a fraction η of the observations. In
particular, when η = 1 we will say that the model
is consistent (or 1-consistent) with (all) the observa-
tions. Notice that, for IPMs described as in (1), the
η-consistency condition means that there exists a fea-
sible sequence {q(k) ∈ Q}k∈Kη

that satisfies the model
equations, i.e. y(k) = M(ϕ(k), q(k)), for k ∈ Kη.

Two fundamental issues need to be addressed at this
point. The first one concerns the algorithmic construc-
tion of data consistent models. The second issue per-
tains to the reliability properties of the constructed
models. In particular, we can ask how large the proba-
bility is that a new unseen datum will still be consistent
with the model.

The first issue has been discussed in [3]. There, the
authors introduced a size measure µQ = γ + αr for the
interval map1 resulting from the structure (2)–(3), and
then constructed an optimal consistent model solving
a Linear Programming problem:

Theorem 1 (Linear IPMs) Given an observed se-
quence DN = {ϕ(k), y(k)}N

k=1, a model order n, and
a “size” objective µQ = γ +αr, where α is a fixed non-
negative number, an optimal 1-consistent linear IPM
is computed solving the following linear programming
problem in the variables θ ∈ R

n, r, γ

minimize γ + αr, subject to:
r, γ ≥ 0

1Note that, if we choose α = E[‖ϕ(k)‖], then µQ measures
the average amplitude of the output interval.



ϕT (k)θ − r‖ϕ(k)‖ − γ ≤ y(k)
−ϕT (k)θ − r‖ϕ(k)‖ − γ ≤ −y(k)
k = 1, . . . , N.

The second issue has also been tackled in [3] using a VC
theory approach. The VC learning framework provides
a theoretical answer to the reliability problem, but has
two main drawbacks: first, the bounds on the number
of observations required to obtain a desired reliability
may be too high to be of practical interest, and second,
this problem is aggravated when the theory is extended
from i.i.d. processes to mixing (weakly dependent) pro-
cesses.

The key objective of this paper is to propose a new
framework for the assessment of reliability of optimal
linear IPMs. This is done in Section 3 for i.i.d. pro-
cesses, and it is extended to weakly dependent pro-
cesses in Section 4. This new approach yields bounds
on the required number of observations which are dra-
matically better than those predicted by the VC the-
ory. In talks with Y. Oishi on occasion of the 15th IFAC
conference, we discovered that similar results have been
independently derived in [6].

3 Reliability of IPMs for i.i.d. observations

In this section, we tackle the fundamental issue of as-
sessing the reliability of a data-consistent model, with
respect to its ability to predict the future behavior of
the unknown system. Suppose that an optimal IPM of
the form (2)–(3) is determined using Theorem 1, given
a batch DN = {x(k)}N

k=1, x(k) .= [ϕT (k) y(k)]T of i.i.d.
observations extracted according to an unknown prob-
ability measure P , and denote with ÎN the resulting
optimal interval map.

Definition 2 The reliability R(ÎN ) of the IPM ÎN is
defined as the probability that a new unseen datum x =
[ϕT y]T generated by the same process that produced
DN , is consistent with the computed model, i.e.

R(ÎN ) .= ProbP {y ∈ ÎN (ϕ)}. (5)

Before moving on to present the main result on relia-
bility of interval models, we briefly illustrate geomet-
rically the construction of an interval map. For ease
of exposition, we fix γ = 0, and consider n = 2. In
this case, at each time instant k, in order to be con-
sistent with an observation, the parameter θ(k) must
lie on the line {θ(k) : ϕT (k)θ(k) = y(k)}. When N
observations are collected, the algorithm in Theorem 1
determines a minimal circle (in the space of parameter
θ) that intersects all the observation lines, as shown in
an example in Figure 1.

Once the optimal model is constructed, we may ask
whether or not a new upcoming observations will still
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Figure 1: Optimal circle for N = 15 and 40 observations.

be consistent with our model. Reliability gives an an-
swer to this question in terms of probability. The main
result for i.i.d. observations is given in the following
theorem.

Theorem 2 Let DN = {x(k) = [ϕ(k)T y(k)]T }N
k=1 be

observations extracted from an i.i.d. sequence with un-
known probability measure P , and let ÎN be the optimal
interval map computed according to Theorem 1. Then,
for any ε, δ > 0 such that

εδ =
n + 2
N + 1

(6)

it holds that

ProbP N

{
R(ÎN ) ≥ 1 − ε

}
≥ 1 − δ. (7)

Proof. Consider N + 1 i.i.d. observations DN+1 =
{z(1), . . . , z(N + 1)}, z(k) .= [ψT (k) η(k)]T , ψ(k) ∈
R

n, extracted according to the unknown probability
measure P . Denote with Îk

N , k = 1, . . . , N + 1, the
optimal interval map which is consistent with the N
observations

Dk
N

.= {z(1), . . . , z(k − 1), z(k + 1), . . . , z(N + 1)}.

Notice that Îk
N is not necessarily consistent with the ob-

servation z(k). The idea of the proof is as follows: first
we notice that R(ÎN ) is a random variable belonging
to the interval [0, 1]. Then, we show that the expected
value of R(ÎN ) is close to 1 and from this we infer a
lower bound on the probability of having reliability not
smaller than 1−ε. Define R̄N

.= EP N [R(ÎN )], where E
is the expectation operator, and, for k = 1, . . . , N + 1,
let

vk
.=

{
1, if z(k) is consistent with Îk

N

0, otherwise,

i.e. the random variable vk is equal to one, if z(k) is
consistent with the model obtained by means of the
batch of the remaining observations Dk

N , and it is zero
otherwise. Let also

ˆ̄RN
.=

1
N + 1

N+1∑
k=1

vk. (8)



We have that

EP N+1 [vk] = EP N

[
EP [vk|Dk

N ]
]

=

EP N

[
ProbP {η(k) ∈ Îk

N (ψ(k))}
]

= EP N [R(Îk
N )] = R̄N ,

which yields
EP N+1 [ ˆ̄RN ] = R̄N . (9)

The key point is now to determine a lower bound for
EP N+1 [ ˆ̄RN ]. We proceed as follows: consider one fixed
realization z(1), . . . , z(N + 1), and build the optimal
map which is consistent with all of this observations,
ÎN+1. This map results from the solution of the convex
optimization problem P in the variables θ ∈ R

n, r, γ

P : minimize γ + αr, subject to:
r, γ ≥ 0
|η(k) − ψT (k)θ| ≤ γ + r‖ψ(k)‖,
k = 1, . . . , N + 1.

The other optimal maps Îk
N result from optimization

problems Pk, k = 1, . . . , N + 1 which are identical to
P, except for that one single constraint relative to the
k-th observation is removed in each problem. From
Theorem 4 (in the Appendix) we know that at most
d = n + 2 of the observations when removed from P
will change the optimal solution and improve the ob-
jective.2 Therefore, at least N + 1− d of the problems
Pk are equivalent to P. From this it follows that there
exist at least N +1−d optimal maps Îk

N , such that z(k)
is indeed consistent with Îk

N . Hence, at least N +1−d
of the vk’s must be equal to one, and from (8) we have
that

ˆ̄RN ≥ N + 1 − d

N + 1
= 1 − n + 2

N + 1
, almost surely.

Therefore, from (9) the expected value of the reliability
is bounded as

R̄N = EP N+1 [ ˆ̄RN ] ≥ 1 − n + 2
N + 1

. (10)

Now, given ε > 0, we can bound the expectation
EP N [R(ÎN )] from above as

EP N [R(ÎN )] ≤ (1 − ε)ProbP N {R(ÎN ) < 1 − ε}
+1 · ProbP N {R(ÎN ) ≥ 1 − ε}. (11)

Letting δ̄
.= ProbP N {R(ÎN ) < 1 − ε}, combining the

bounds (10), (11) we obtain that εδ̄ ≤ n+2
N+1 , from which

the statement of the theorem immediately follows. �

We remark that the bound on the number of sam-
ples derived from (6), which is basically N ≥ O(n/εδ)
greatly improves with respect to the bounds obtained
by means of the VC-theory approach. In particular,
this bound no longer depends on the VC-dimension of
the model class, and the dependence in ε is linear in-
stead of quadratic.

2Whenever one of the problems Pk does not improve the ob-
jective, we select as its optimal solution the optimal solution of
P.

4 Reliability of IPMs for weakly dependent
observations

The results derived in the previous section for the i.i.d.
case are now extended to β-mixing processes.

Definition 3 (β-mixing coefficient, [1]) Let
(Ω,F , P ) be a probability space and let B and C be two
sub σ-algebras of F . The β-mixing coefficient of B and
C is defined as

β
.= E

[
sup
C∈C

|P (C) − P (C | B)|
]

.

Suppose now that {x(k) .= [ϕT (k) y(k)]T }∞k=−∞ is a
strict-sense stationary random process, and let Fj

i de-
note the σ-algebra generated by the random variables
{x(k), i ≤ k ≤ j} (if j = ∞, it is intended that i ≤ k,
and similarly if i = −∞). We have the following defi-
nition.

Definition 4 (β-mixing process) Let

β(T ) .= E

[
sup

C∈F0
0

|P (C) − P (C | σ{F−T
−∞,F∞

T })|
]

.

The function β(T ) is named the β-mixing function as-
sociated with {x(k)}∞k=−∞. If β(T ) → 0 as T → ∞,
the process is said to be β-mixing.

The key result for the reliability of optimal interval
models constructed using dependent observations is
contained in the following theorem.

Theorem 3 Let DN = {x(k) = [ϕ(k)T y(k)]T }N
k=1

be observations extracted from a stric-sense station-
ary sequence, and let ÎN be the optimal interval map
computed according to Theorem 1. Further, let PN

1 be
the N -dimensional probability of the stationary process
and let, for ease of notation, P = P 1

1 (that is P is
1-dimensional marginal distribution). Finally, define
R(ÎN ) as in (5) where [ϕT y]T is independent of DN

(that is, R(ÎN ) is a measure of accuracy of the interval
predictor for unseen data, independent of the observa-
tions through which the predictor has been constructed).
Then, for any ε, δ > 0 such that

εδ = inf
T

{
(n + 2)
�N/T � + β(T )

}
, (12)

where β(T ) is the β-mixing function associated with
{x(k)}∞k=−∞, it holds that

ProbP N
1

{
R(ÎN ) ≥ 1 − ε

}
≥ 1 − δ. (13)

Before proving the theorem, we note that if the obser-
vation process is β-mixing, then β(T ) → 0 as T → ∞
and, for any ε > 0, the confidence parameter δ given
by (12) goes to zero as the number of data points N
tends to infinity.



Proof. The proof extends that of Theorem 2. Here, we
do not introduce any auxiliary sequence {z(k)} (as we
did in the i.i.d. case) since in a mixing context this is
difficult to handle. We also note that even in the i.i.d.
case we could have used the original sequence {x(k)}
in place of {z(k)} with a little loss in the final result:
N + 1 would have been replaced by N . Define

R̄N
.= EP N

1
[R(ÎN )],

and, for k = 1, . . . , N , let

vk
.=

{
1, if x(k) is consistent with Îk

N

0, otherwise,

where Îk
N is the optimal map which is consistent with

Dk
N

.= {x(1), . . . , x(k − 1), x(k + 1), . . . , x(N + 1)},
and

ˆ̄RN
.=

1
N

N∑
k=1

vk. (14)

Moreover, given an index k ∈ {1, . . . , N}, let Pkc be
the (N − 1)-dimensional distribution of Dk

N , and Pk|kc

the conditional distribution of x(k) given Dk
N . Now,

we have

EP N
1

[vk] = EPkc

[
EPk|kc [vk|Dk

N ]
]

= EPkc

[
EPk|kc [1(x(k) ∈ Îk

N )|Dk
N ]

]
≤ EPkc

[
EP [1(x(k) ∈ Îk

N )]
]

+ β(1)

= EPkc

[
R(Îk

N )
]

+ β(1)

≤ EP N
1

[
R(ÎN )

]
+ β(1)

= R̄N + β(1),

which yields

EP N
1

[ ˆ̄RN ] ≤ R̄N + β(1). (15)

Following the same rationale as in the proof of Theorem
2 where equation (9) is replaced by (15), it is easy to
conclude that the result of the theorem holds true for
ε, δ > 0 such that

εδ =
n + 2

N
+ β(1).

The result for a general T is obtained by considering
the data subsequence x(1), x(T + 1), x(2T + 1), . . . �

A Appendix

In this Section, we present the statement and proof of a
key theorem (Theorem 4), which is used in the proof of
the main result (Theorem 2). We first state two tech-
nical lemmas which are used in the proof. The first
lemma is the well known Helly’s result for the intersec-
tion of convex sets (see for instance [7]).

Lemma 1 (Helly) Let {Ci}i=1,...,n be a finite collec-
tion of convex sets in R

p. If every subcollection consist-
ing of p+1 or fewer sets has a non-empty intersection,
then the entire collection has a non-empty intersection.

The second technical result is contained in the following
lemma.

Lemma 2 Given a set S of p + 2 points in R
p, there

exist two points among these, say ξ1, ξ2, such that the
line segment ξ1ξ2 intersects the hyperplane (or one of
the hyperplanes if indetermination occurs) generated by
the remaining p points ξ3, . . . , ξp+2.

Proof. Choose any set S′ composed of p − 1 points
from S, and consider the bundle of hyperplanes passing
through S′. If this bundle has more than one degree of
freedom, augment S′ with additional arbitrary points,
until the bundle has exactly one degree of freedom.
Consider now the translation which brings one point
of S′ to coincide with the origin, and let S′′ be the
translated point set. The points in S′′ lie now in a
subspace F of dimension p−2, and all the hyperplanes
of the (translated) bundle are of the form vT x = 0,
where v ∈ V, being V the subspace orthogonal to F ,
which has dimension 2.

Call x4, . . . , xp+2 the points belonging to S′′, and
x1, x2, x3 the remaining points. Consider three fixed
hyperplanes H1,H2,H3 belonging to the bundle gener-
ated by S′′, which pass through x1, x2, x3, respectively;
these hyperplanes have equations vT

i x = 0, i = 1, 2, 3.
Since dimF = 2, one of the vi’s (say v3) must be a lin-
ear combination of the other two, i.e. v3 = α1v1+α2v2.

Suppose that one of the hyperplanes, say H1, leaves
the points x2, x3 on the same open half-space vT

1 x > 0
(note that assuming vT

1 x > 0, as opposed to vT
1 x < 0 is

a matter of choice since the sign of v1 can be arbitrarily
selected). Suppose that also another hyperplane, say
H2, leaves the points x1, x3 on the same open half-space
vT
2 x > 0. Then, it follows that vT

1 x3 > 0, and vT
2 x3 >

0. Since v3x3 = 0, it follows also that α1α2 < 0. We
now have that

vT
3 x1 = (α1v1 + α2v2)T x1 = α2v

T
2 x1

vT
3 x2 = (α1v1 + α2v2)T x2 = α1v

T
1 x2,

where the first term has the same sign as α2, and the
second has the same sign as α1, therefore vT

3 x1 and
vT
3 x2 do not have the same sign. From this reasoning

it follows that not all the three hyperplanes can leave
the complementary two points on the same open half-
space, and the result is proved. �

We now come to the main result of this Appendix. Con-
sider the convex optimization problem P in the variable
ϑ ∈ R

d

P : minimize s(ϑ) subject to
ϑ ∈ Xi, i = 1, . . . ,m,



where s(ϑ) is a linear objective, and Xi, i = 1, . . . , m
are closed convex sets. Let the convex problem Pk,
k = 1, . . . , m be obtained from P, removing the k-th
constraint

Pk : minimizes(ϑ) subject to
ϑ ∈ Xi, i = 1, . . . , k − 1, k + 1, . . . ,m.

Let ϑ∗ be any optimal solution of P, and let ϑ∗
k be any

optimal solution of Pk. We say that the k-th constraint
Xk is a support constraint for P, if problem Pk has an
optimal solution ϑ∗

k such that s(ϑ∗
k) < s(ϑ∗). We have

the following theorem.

Theorem 4 The number of support constraints for
problem P is at most d.

Proof. If m ≤ d the result is obvious, therefore we
consider the case m > d, and prove the statement by
contradiction. Suppose then that problem P has ns >
d support constraints; in particular we start assuming
ns = d + 1, the case ns > d + 1 will easily follow as
shown below.

Then, there exist d + 1 points (say, without loss of
generality, the first d + 1 points) ϑ∗

k, k = 1, . . . , d + 1,
which are optimal solutions for problems Pk, and which
lie all in the same open half-space {ϑ : s(ϑ) < s(ϑ∗)}.
We show next that if this is the case, then ϑ∗ is not
optimal for P , which constitutes a contradiction.

Consider the line segments connecting ϑ∗ with each of
the ϑ∗

k, k = 1, . . . , d + 1, and consider a hyperplane
H .= {s(ϑ) = c} with c < s(ϑ∗), such that H intersects
all the line segments. Let ϑ̄∗

k denote the point of inter-
section between H and the segment ϑ∗ϑ∗

k. Notice that,
by convexity, the point ϑ̄∗

k certainly satisfies the con-
straints X1, . . . ,Xk−1,Xk+1, . . . ,Xd+1, but it does not
necessarily satisfy the constraint Xk.

Now, if there exist an index k such that ϑ̄∗
k belongs

to the convex hull co{ϑ̄∗
1, . . . , ϑ̄

∗
k−1, ϑ̄

∗
k+1, . . . , ϑ̄

∗
d+1},

then a-priori ϑ̄∗
k satisfies all constraints except pos-

sibly for the k-th, but ϑ̄∗
1, . . . , ϑ̄

∗
k−1, ϑ̄∗

k+1, . . . , ϑ̄
∗
d+1

all satisfy the k-th constraint, therefore all points in
co{ϑ̄∗

1, . . . , ϑ̄
∗
k−1, ϑ̄∗

k+1, . . . , ϑ̄
∗
d+1} satisfy the k-th con-

straint, hence ϑ̄∗
k satisfies the k-th constraint, and

therefore it satisfies all constraints. From this it fol-
lows that ϑ̄∗

k is a feasible solution for problem P, and
has an objective value s(ϑ∗

k) < s(ϑ∗), therefore ϑ∗ is
not optimal for P (contradiction), and we are done.

Otherwise (i.e. if there does not exist a ϑ̄∗
k ∈

co{ϑ̄∗
1, . . . , ϑ̄

∗
k−1, ϑ̄

∗
k+1, . . . , ϑ̄

∗
d+1}) we can always find

two points, say ϑ̄∗
1, ϑ̄

∗
2, such that the line segment ϑ̄∗

1ϑ̄
∗
2

intersects at least one hyperplane passing through the
remaining d − 1 points ϑ̄∗

3, . . . , ϑ̄
∗
d+1. Such couple of

points always exist, by virtue of Lemma 2. Denote with
ϑ̄∗

1,2 a point in this intersection. Notice that ϑ̄∗
1,2 cer-

tainly satisfies all constraints, except possibly the first

and the second. Now, ϑ̄∗
1,2, ϑ̄

∗
3, . . . , ϑ̄

∗
d+1 are d points in

a flat of dimension d − 2. Again, if one of these points
belongs to the convex hull of the others, then this point
satisfies all constraints, and we are done. Otherwise,
we repeat the process, and determine a set of d − 1
points in a flat of dimension d − 3.

If we go on like this, either we will stop the process
at a certain step (and then we are done), or we will
proceed until we determine a set of three points in a
flat of dimension one. In this latter case we are done all
the same, since for three points in a flat of dimension
one, there is always one which lies in the convex hull
of the other two. We therefore proved that problem P
cannot have d + 1 support constraints.

From a geometric point of view, we proved the follow-
ing: for k = 1, . . . , d + 1, let CH

k denote the convex hull
generated by the points ϑ̄∗

1, . . . , ϑ̄
∗
k−1, ϑ̄

∗
k+1, . . . , ϑ̄

∗
d+1.

Then, the convex sets CH
k , k = 1, . . . , d + 1 have at

least one point in common.

Suppose now that ns > d + 1, i.e. there are more than
d + 1 points ϑ̄∗

k all lying in the same open half-space.
By the previous reasoning, for any subset composed of
d + 1 of these points, the corresponding collection of
convex sets CH

k has a non-empty intersection, therefore
by Helly’s theorem (Lemma 1) the whole collection CH

k ,
k = 1, . . . , ns has at least a point in common, and this
completes the proof. �
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