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Abstract We consider the scenario approach for chance constrained programming
problems. Building on existing theoretical results, effective and readily applicable
methodologies to achieve suitable risk-return trade-offs are developed in this paper.
Unlike other approaches, that require solving non-convex optimization problems, our
methodology consists of solving multiple convex optimization problems obtained by
sampling and removing some of the constraints. More specifically, two constraint re-
moval schemes are introduced, one greedy and the other randomized, and a compari-
son between them is provided in a detailed computational study in portfolio selection.
Other practical aspects of the procedures are also discussed. The removal schemes
proposed in this paper are generalizable to a wide range of practical problems.
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1 Introduction

Scenario-based (or sample-based) approximations to chance constrained program-
ming (CCP) problems has been an active area of research in recent years and several
important theoretical developments have emerged, leading to different strategies to
solve those problems. In [1], the authors employ a large deviation-type approxima-
tion, referred to as the “Bernstein approximation,” which is convex and can be effi-
ciently solved. Another approach, described in [2, 3], requires finding the finite set
of p-efficient points of a probability distribution in order to derive equivalent prob-
lem formulations. In the case where uncertainty is given by a discretely distributed
random vector, it is possible to formulate an equivalent mixed integer program of
large dimension, which includes “big-M” constraints. Such problems are computa-
tionally challenging, and some promising lines of research have appeared recently in
the literature. In [4], the authors propose a new method based on irreducibly infea-
sible subsystems and show some promising computational experiments in a vaccine
allocation problem. The work of [5] and the more recent publication [6] propose an
efficient method to solve chance constrained problems, in which only the right-hand
side is random and this random vector follows a finite distribution. In [7], the author
takes a different path and proposes a pattern recognition method to efficiently solve
stochastic programs with a larger number of scenarios.

This paper presents a case study in portfolio selection based on the scenario ap-
proach discussed in [8–10]. Scenario-based approaches do not require restrictive as-
sumptions on the distribution of the random parameters, which increases their gen-
erality and flexibility. For instance, dependence among random parameters can be
incorporated into sampling frameworks avoiding the intractable task of computing
multidimensional integrals. If the dependence is given, e.g., by a known copula, gen-
erating samples requires minimal computational effort [11]. While some computer
languages require customized header files in order to be able to generate random
numbers, other software packages for scientific computing include built-in routines
for random number generation, making the implementation of these approaches quite
straightforward.

On the other hand, the challenge in applying scenario-based frameworks is that
they tend to produce conservative solutions for their corresponding CCP problems.
In [12], some of these methods were tested in a portfolio selection problem and the
authors concluded that the methods indeed proved to be too conservative. In this
paper, we explore the idea, recently introduced in [10], of utilizing constraint removal
as a means for achieving high-quality, nonconservative solutions to CCP problems,
an idea that presents practical challenges, mainly tractability.

More precisely, while [10] has set the theoretical basis for a scenario approach
with constraint removal, the main goal of this paper is to provide guidelines for us-
ing this framework in practice in a portfolio selection problem. To this purpose, we
further develop the framework’s theoretical foundation, and moreover provide sim-
ulation studies to confirm our analysis. In [10], Campi and Garatti state that any
constraint removal algorithm can be employed and provide a theoretical bound that
relates constraint removal to feasibility. We specialize their work by proposing two
distinct constraint removal schemes: one greedy and the other randomized.
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The important consequence of removing constraints in the context described in
[10] is that the found solution is less conservative, and thereby this approach over-
comes the difficulties pointed out in [12] and allows a practical application of the
scenario methodology to CCP problems. While our numerical study is conducted on
a portfolio selection problem, the methodology of constraint removal and the find-
ings of this paper have broader scope and can be readily applied to other chance
constrained problems.

The remainder of the paper is organized as follows. In Sect. 2, we define the
portfolio selection problem on which we later apply our methodology. The solution
methodologies for constraint removal are introduced in Sect. 3, and Sect. 4 presents
an extensive computational study in portfolio selection. Section 5 summarizes our
contributions and discusses future research directions.

2 A Portfolio Selection Problem

We consider a portfolio problem taken from [12]. A robust version of this problem
was considered in [13]. The goal of this problem is to allocate a percentage x of an
initial capital amongst n possible assets, so that the expected growth of the capital
is maximized while requiring some minimum desired return v per unit of capital
invested. In order to increase the potential for growth, the investor is willing to accept
a certain degree of risk, and the minimum desired return v is only enforced with a
high probability 1 − ε, where ε represents the risk. For example, if v = 0.90 and
ε = 5 %, the investor wishes to have less than a 5 % chance of losing more than 0.10
of the initial investment. This portfolio problem can be formulated as the following
chance constrained program:

Max ξ̄ T x s.t. P
{
ξT x ≥ v

} ≥ 1 − ε,

n+1∑

i=1

xi = 1, x ∈ [0,1]n+1, (1)

where ξ is a random vector representing the returns of the n + 1 possible assets1 and
ξ̄ = E[ξ ] is its expected value. Each component of ξ represents the quotient between
the price at some future time, the unknown, and the current price, which is known.
We assume that xn+1 represents the percentage invested in a risk-free asset with a
constant return of 1, so that a percentage of the initial capital can be simply retained
as cash without generating additional returns. The inclusion of this risk-free asset is
important from a practical perspective and, moreover, it ensures that, for all v ∈ [0,1],
there is always a feasible investment strategy.

In our case study, data are generated artificially from a known distribution, which
we estimated from historical data. In practice, when applying our methodology, as
explained later, one could work directly with the historical data. However, the purpose
of this paper is to introduce and analyze constraint removal methodologies, and using

1Note that the dimension of our problem is actually n, since once percentages x1, . . . , xn are allocated,
xn+1 must become the remaining unallocated percentage.
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an artificial distribution turns out to be convenient because one can a posteriori test
the quality of the obtained results, since the underlying distribution is known.

We assume that ξ follows a multivariate lognormal distribution, which is consis-
tent with the classical Black and Scholes framework. It is also an interesting experi-
mental assumption, since the chance constraint in (1) becomes a sum of lognormals,
which does not have a known distribution and, therefore, cannot be converted into a
deterministic constraint. In contrast, under assumptions of normality, it is well known
(e.g., [14], page 16) that the chance constraint in (1) can be converted via the error
function into a deterministic second-order conic constraint.

This portfolio model is intended to serve as an example to test the scenario ap-
proach methodologies for CCPs. In terms of risk measures, the chance constraint
in (1) is equivalent to a Value-at-Risk constraint [15]. However, from an applied
financial perspective, the portfolio model we consider is naive in that it does not
incorporate several crucial features of real markets, e.g., cost of transactions, short
sales, lower and upper bounds on holdings, etc. For more realistic models, we refer
the reader, e.g., to [16], where the authors include market frictions and discuss the
best distribution function for asset returns, and to [17], where the author incorporates
lower and upper bounds on the holdings of both individual assets and asset groupings.

In the next section, we contextualize problem (1) within the more general CCP
framework and define concepts that we use in developing our scenario-based solution
methodologies.

3 Chance Constrained Problems

Problem (1) is a particular case of the general chance constrained problem:

Max
x∈X

cT x s.t. P
{
g(x, ξ) ≤ 0

} ≥ 1 − ε, (2)

where c is a deterministic vector in R
n, ξ is the random vector, 1 − ε ∈ [0,1] is the

reliability level and X ∈ R
n is a convex and closed set. We assume the convexity of

g(·, ξ) as a function of x, while no assumption on ξ is made. Multiple constraints
gj (x, ξ) ≤ 0, j = 1, . . . ,m, can be equivalently replaced via the max-function, so,
without any loss of generality, we can consider the single constraint case. Of course,
in some cases (e.g., random technology matrix), the max operator may hide some
useful property of the original functions, and the difficulty of the resulting problem
may increase significantly. In the context of problem (1), g(x, ξ) = v − ξT x. Lin-
earity of the objective function is without any loss of generality, since any problem
with a convex objective function can be written with a linear objective plus a convex
constraint by an epigraphic reformulation. For instance, if the objective function is
to minimize f (x), then, by introducing an auxiliary variable θ , one can consider the
equivalent problem of minimizing θ subject to having θ greater or equal to f (x),
which has a linear objective and a convex constraint.

The following definition refers to the complement of the left-hand side of the
chance constraint, which is the crucial information for determining if a candidate
solution satisfies the required reliability level.
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Definition 3.1 Let x ∈ X be a feasible solution for (2). The violation probability of
x is defined by

V (x) := P
{
ξ : g(x, ξ) > 0

}
,

where we assume that {ξ : g(x, ξ) > 0} is measurable.

In the context of (1), the violation probability V (x) measures the probability with
which the minimum required level of return v is not achieved.

3.1 The Scenario Approach

Sample approaches have been studied extensively over the last 10 years as a means
of identifying good candidate solutions to problem (2). They have been referred to
as randomized or scenario approaches in [1, 8, 9, 18], and as sample average ap-
proximation in [5, 12, 19]. The idea behind these approaches is straightforward and
intuitive. Aside from trivial cases, chance constrained problems cannot be converted
into tractable deterministic optimization problems. Therefore, in order to solve these
problems, we have to rely on approximations. The following definition provides one
such possibility.

Definition 3.2 Let ξ1, . . . , ξN be an independent and identically distributed sample
of size N , extracted according to probability P (this is the same probability appearing
in the definition of the chance constraint in (2)). The scenario program associated
with problem (2) is defined as

Max
x∈X

cT x s.t. g
(
x, ξ i

) ≤ 0, i = 1, . . . ,N. (3)

Calafiore and Campi [8] and Campi and Garatti [9] have shown how the sam-
ple size N should be chosen in problem (3) to ensure that, with an arbitrarily high
confidence, the optimal solution x̂N of (3) is feasible for the original problem (2).
However, there is no guarantee that the solution x̂N of (3) will obtain a value cT x̂N

close to the true optimal value cT x∗ of (2).
In fact, we have reasons to expect that the solution x̂N will be conservative for

the original CCP. Indeed, based on results derived in [9], the distribution function
of V (x̂N ) is bounded by a beta distribution with parameters n and N − n + 1, and
imposing that V (x̂N ) ≤ ε holds with high confidence implies that V (x̂N ) will be
much less than ε in many cases, resulting in a conservative solution.

3.2 The Scenario Approach with Constraint Removal

To identify less conservative solutions x̂N , we build upon a general framework intro-
duced by Campi and Garatti in [10] for relaxing problem (3). Their approach allows
one to remove k constraints out of the N scenario constraints in (3); as shown in [10],
feasibility for problem (2) is retained with confidence 1 − β , provided the following
inequality is satisfied:

(
k + n − 1

k

) k+n−1∑

j=0

(
N

j

)
εj (1 − ε)N−j ≤ β, (4)
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(
(
m
p

)
is the binomial coefficient:

(
m
p

) = m!
p!(m−p)! ). This result holds true independently

of probability P, that is, (4) is a distribution-free result. To achieve the least con-
servative solution possible, for a given N,ε,n and β , we always choose, in the fol-
lowing, the largest k satisfying (4). We would like to stress that we are not remov-
ing constraints from the original problem (2), but from the scenario approximation
(3). Therefore, the well-known theory of sensitivity analysis with respect to the con-
straints’ coefficients and KKT conditions are not readily applicable here because the
constraints removed do not change the original feasible set of problem (2).

The result in [10] holds true independently of the procedure for eliminating k

constraints. On the other hand, the removed constraints impact the value of cT x̂N .
One optimal way of removing constraints consists in discarding those constraints
that lead to the largest possible improvement of the cost function. This approach is
implemented by the following integer program, which has been considered in [12]
and [19]:

Max
x∈X

cT x s.t. g
(
x, ξ i

) − MZi ≤ 0, i = 1, . . . ,N,

N∑

i=1

Zi ≤ k, Z ∈ {0,1}N, (5)

where M is a constant large enough so that, if Zi = 1, then the constraint is sat-
isfied for any candidate solution x. Formulation (5) is a relaxation of (3) since the
allowed violation expands the feasible set of (3). For k = 0, these two formulations
are equivalent.

By construction, problem (5) provides a framework for optimally selecting the
constraints to be removed based on Campi and Garatti’s inequality (4). However,
solving (5) may be computationally challenging due to the increase in complexity
from (3) to (5) that arises from the introduction of one binary variable per each of the
N scenarios.

3.3 Greedy and Randomized Constraint Removal Procedures

In this paper, we introduce and study greedy and randomized constraint removal
methods for obtaining feasible solutions to problem (5), by solving multiple prob-
lems of the form (3). Our greedy procedure iteratively removes k constraints. At each
iteration i, an initial linear program of form (3) with N − i + 1 constraints is solved
to determine the set of ni active constraints. We then remove the active constraints
one at a time and solve the corresponding ni additional linear programs of form (3),
each with N − i constraints. The final step at each iteration is to identify the active
constraint whose elimination yields the greatest improvement in the objective value,
and remove it. The greedy removal algorithm requires solving 1 +∑k

i=1 ni problems
of form (3).

We also introduce a randomized removal algorithm, where at each iteration we at
random remove one active constraint, so that they are all equally likely to be removed.
This improves tractability by requiring that only 1 + k problems of the form (3) are
solved.
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4 Computational Study

We designed computational experiments to study the tractability of constraint re-
moval approaches for obtaining high-quality solutions to the original portfolio op-
timization chance constrained problem. While all our experiments were performed
in the context of a portfolio optimization problem, the constraint removal scheme
proposed here is directly and readily applicable to other CCP problems.

The key points we present in this section can be summarized as follows:

1. In the limit as N → ∞, k/N approaches ε in inequality (4) (this result has been
proven in [10]). We provide examples that demonstrate the practical limitations of
this result (4) due to computational issues.

2. The practical limitations in the use of inequality (4) can be alleviated by the use
of efficient constraint removal procedures, specifically of greedy and randomized
types.

3. We compare the greedy and the randomized procedures and show that the latter
performs nearly as well as the former for sufficiently large N . However, the latter
has the advantage of being much less computationally demanding.

4. Importantly, one can run the scenario algorithm more times and pick the maxi-
mum solution obtained over the different runs. We show that this is an effective
technique to improve the solution, while rigorously preserving high confidence
that the violation is below ε.

5. Upper bounds for the true optimal value, which can be efficiently obtained, can be
used to provide optimality gaps with arbitrarily high probability.

4.1 Selecting the Sample Size and the Number of Constraints to Be Removed

Intuitively, it seems advantageous to choose the number k of constraints to remove,
and the number of scenarios N in (4), so that k/N becomes as close as possible to the
original violation ε. Theoretically, as N → ∞, we can choose k/N arbitrarily close
to ε, while guaranteeing feasibility to problem (2). However, choosing excessively
large values of N would result in computationally intractable problems.

For our asset portfolio problem (1) with n = 20 and for β = 10−9, Fig. 1 shows
the convergence of k/N to ε = 5 % as N increases. The x-axis is in a log base 2 scale
and, for example, over one million scenarios would be needed to achieve values of
k/N greater than 4.5 %. In our experiments, we selected values of N up to 20000,
with ratios of k/N up to 2.9 %. (Recall: This does not imply that the solution will have
a violation level of 2.9 %; rather, the solution is guaranteed with confidence greater
than or equal to 1 − β = 1 − 10−9 to have a violation level of less than ε = 5 %).

4.2 Design of the Experiments

We consider three minimum desired return values v: 0.85, 0.90, and 0.95. For each
one, we consider the four sample sizes N ranging from 2500 up to 20000 listed in Ta-
ble 1, along with the number k of removed constraints, ratio k/N and the confidence
parameter β . The value of β was obtained from inequality (4). It is the probability of
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Fig. 1 Number of scenarios
versus k/N , β = 10−9

Table 1 Sample sizes N , along
with the corresponding max
number of constraint removals
k, ratio k/N , and probability β

of obtaining an invalid solution
to the original chance
constrained problem with
ε = 5 %

N k k/N β

2500 18 0.007 7.16 × 10−11

5000 76 0.015 9.67 × 10−11

10000 220 0.022 1.57 × 10−12

20000 582 0.029 9.93 × 10−9

obtaining an infeasible solution to the original chance constrained problem (1) with
ε = 5 %.

Our experiments consisted of 30 runs for each combination of the minimum de-
sired return v and N . Different seeds were used in different runs, and for each run
we used the same seed for both the greedy and randomized constraint removal pro-
cedures, so that the performance of these procedures can be compared objectively.

Designing our experiment with 30 runs for each set of parameters serves two pur-
poses. The first is that it allows us to gain experimental evidence on the variability
of a highly complex and analytically evasive optimization method. The second ben-
efit is of a methodological nature: we can select the best solution over a group of 30
runs (instead of a single run) as a means to achieve a solution carrying an improved
performance. Regarding this latter point, the following theoretical observation is in
order: a repeated application of the result stated in (4) allows one to perform several
runs, take the best solution and still be guaranteed that the violation is no more than
ε with large confidence. Indeed, we have that

P
{

max
r=1,...,30

V
(
x̂r
N

) ≤ ε
}

= P
{
V

(
x̂1
N

) ≤ ε, . . . , V
(
x̂30
N

) ≤ ε
} ≥ 1 − 30β,

where r is a parameter running over the various runs. Since β is very small, we can
guarantee that the best solution over 30 runs has a probability of violation below ε

with high confidence; this relates to the fact explained in [10] that confidence is very
“cheap,” so that having 30β instead of β impacts only very marginally the values of
k and N .
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Table 2 The 20 assets included in our numerical experiments (with their ticker symbols in parentheses)

Assets

Boeing Company (BA) Chevron Corporation (CVX)

Walt Disney Company (DIS) Eastman Kodak Company (EK)

Ford Motor Company (F) Goodyear Tire & Rubber Company (GT)

Honeywell International (HON) Johnson & Johnson (JNJ)

Kellogg Company (K) Coca-Cola Company (KO)

Kroger Company (KR) Lockheed Martin Corporation (LMT)

McDonald’s Corporation (MCD) 3M Company (MMM)

Merck & Company Inc (MRK) Pepsico Inc (PEP)

Procter & Gamble Company (PG) Wal-Mart Stores Inc. (WMT)

Exxon Mobil Corporation (XOM) Xerox Corporation (XRX)

The final component of our experiment consists of computing upper bounds for
the values of the original problem (1) following [1] and [12]. These upper bounds are
obtained by solving many small sampled problems without constraint removal and
using the U th largest objective value, where the choice of U comes from a binomial-
type formula (see p. 7 of [12] for more details). In this way, we obtain interesting
information on the optimality gap of the solution obtained through the scenario ap-
proach.

We implemented and solved our model using Mosel Xpress. All computations
were performed on identical machines each having x86_64 architecture, an Intel
Xeon @2.5 GHz processor, 16 GB RAM, and running CentOS 5 Linux.

4.3 Data

We gathered data from Yahoo Finance2 for the 20 assets in Table 2. For all assets, we
used monthly data covering a 25 year span from the beginning of 1985 through the
beginning of 2010. Additionally, we include a risk-free asset with a return equal to 1,
that is, any amount allocated to the risk-free asset would be held as cash.

To smooth the data, we considered the price of each month over the closing price
one year prior. We assumed these quotients follow a multivariate lognormal distribu-
tion and estimated the parameters of the distribution using the usual unbiased estima-
tors for means and covariances [20].

4.4 Computational Results: Greedy Constraint Removal

Table 3 provides both the mean and maximum objective function values, as well as
the mean percentage invested in the risk-free asset, over 30 runs for each set of param-
eters. In addition, Table 3 provides upper bounds for the optimal values of the chance
constrained problem (1) for each minimum desired return considered obtained, as in-
dicated at the end of Sect. 4.2. As explained in Sect. 4.2, one can select the allocation

2http://finance.yahoo.com/.

http://finance.yahoo.com/
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Table 3 The conservativeness
of solutions decreases as k/N

increases, where the mean and
max are taken over 30 runs that
use the greedy removal
algorithm

k/N Mean
objective
function

Mean
risk-free
asset

Max
objective
function

v = 0.85

0.007 1.0370 0.34 1.04071

0.015 1.0406 0.28 1.04231

0.022 1.0434 0.23 1.04505

0.029 1.0459 0.19 1.04709

Upper bound = 1.06497

v = 0.90

0.007 1.0248 0.56 1.02666

0.015 1.0272 0.51 1.02807

0.022 1.0289 0.49 1.02946

0.029 1.0307 0.46 1.03131

Upper bound = 1.05208

v = 0.95

0.007 1.0124 0.78 1.01306

0.015 1.0136 0.76 1.01409

0.022 1.0143 0.74 1.01486

0.029 1.0153 0.73 1.01582

Upper bound = 1.02635

leading to the maximum objective value while preserving high confidence that the
violation is below 5 %.

There are two key observations, which hold true for all three levels of 0.85, 0.90,
and 0.95 minimum desired returns. The first is that, as k/N increases, the solutions
obtained become less and less conservative. This decrease in conservativeness is evi-
denced both in the mean and maximum objective values, as well as in the decreasing
percentage of capital invested in the risk-free asset. The second important observation
is that the solutions achieved for larger sample sizes (which correspond to larger k/N

values) show less variation, as it can be seen by inspecting the gap between the mean
and maximum statistics is shrinking as N increases. In addition, we observe that the
impact of the value k/N on the percentage allocated to the risk-free asset is larger for
lower values of v. This indicates that, for low values of v, the scenario approach can
introduce conservativeness if k/N is not selected large enough.

Since no closed-form exists for evaluating the violation V (·) from Definition 3.1,
we computed estimates for the optimal solutions via Monte Carlo sampling with a
required sample standard deviation of 0.001. Table 4 provides the minimum, mean,
and maximum violation estimates V̂ (·) over the 30 runs. It can be noted that the
violation is always below the required risk ε = 5 %; indeed, the fact that the violation
is upper bounded by 5 % is a result theoretically guaranteed with the high confidence
1 − β given in Table 1.

In Table 4, the real violation is well below 5 %. This is due to the stochastic nature
of the violation; specifically, the violation is subject to stochastic fluctuation (com-
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Table 4 Violation estimate
statistics for 30 runs k/N Min violation Mean violation Max violation

v = 0.85

0.007 0.8 % 1.2 % 2.0 %

0.015 1.3 % 1.8 % 2.1 %

0.022 1.9 % 2.4 % 2.8 %

0.029 2.6 % 2.9 % 3.2 %

v = 0.90

0.007 0.7 % 1.2 % 1.8 %

0.015 1.4 % 1.9 % 2.4 %

0.022 2.1 % 2.4 % 2.7 %

0.029 2.6 % 3.0 % 3.3 %

v = 0.95

0.007 0.8 % 1.3 % 1.8 %

0.015 1.5 % 1.9 % 2.2 %

0.022 1.9 % 2.3 % 2.8 %

0.029 2.5 % 3.0 % 3.4 %

pare, e.g., the minimum with the maximum violations in Table 4), so that the practical
implication of ensuring that the violation stays below 5 % with high confidence is that
the achieved violation is normally not close to the limit ε.

4.5 Computational Results: Greedy vs. Randomized Constraint Removal

Figures 2 and 3 compare the performance of the greedy and randomized constraint
removal algorithms. In Fig. 2, the comparison is for a single run, whereas Fig. 3 com-
pares the mean performance over 30 runs. One salient feature that is worth noting
is that, while for smaller values of k the greedy algorithm (GA) outperformed the
randomized algorithm (RA), for larger values of k the gap in terms of objective func-
tion value became almost negligible. An explanation of this behavior can be found in
Table 5.

Table 5 shows that the mean percentage of constraints removed both by the GA
and the RA (what we call overlap) over 30 runs remains roughly constant for a given
number of removals k while varying N , while it increases significantly with k. In-
deed, a striking statistic in Table 5 is that the mean percentage overlap increases
significantly as the number of removals increases from 18 to 582, climbing from just
over half to 92 %. Another way of interpreting the results is that, for values of k

much larger than n = 20 (the number of optimization variables), such as 220 and
582, a constraint removed by the GA will eventually be removed by the RA as well
with high probability. This explains why in Fig. 2, for N = 20000 and k = 582, both
curves are almost indistinguishable: the GA and the RA removed essentially the same
set of constraints. As a practical guideline, after k and N have been selected, we sug-
gest using RA if k is large enough, as compared with n due to its superior running
time, which is shown in Table 6.
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Fig. 2 Single run

4.6 Large Scale Experiments

We ran a second set of experiments with 200 assets to demonstrate the scalability of
the RA approach and confirm its suitability for solving large scale portfolio problems
with a VaR constraint. We obtained monthly data from Yahoo Finance spanning the
20-year period between 1990 and 2010. Our goal with the low-dimensional 20 asset
experiments was both to investigate the relationship between k/n and ε and to com-
pare the random and the greedy removal approaches. We established that, for larger
sample sizes, the two approaches become almost indistinguishable, with RA taking
significantly less computational time.

The experiments with 200 assets confirm these findings. By running both GA
and RA with 20000 samples and 582 removals, we can see in Table 7 that for
v = 0.85,0.90 and 0.95 the objective function values obtained for both methods are
nearly identical. This provides further evidence that RA should be used instead of
GA, because its computational time is significantly lower.

It is interesting to compare Table 7 with Table 3. By starting with the same num-
ber of samples (20000) and removals (582), as in our original 20 asset experiment,
we observe that the additional investment opportunities significantly increase the ex-
pected returns. Moreover, with 200 assets available, no investment in the risk free
asset was needed for v = 0.85 and v = 0.90. Even for v = 0.95, the amount invested
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Fig. 3 Averages

in the risk free asset is still only 36.7 % (RA) and 34.9 % (GA), which is roughly
half of what is invested in the 20 assets case. On the other hand, the guaranteed risk
with 200 assets is lower than with 20 assets, and an application of formula (4) shows
that with β = 9.93 × 10−9 (as in Table 1 for the 20 assets experiment) one obtains
ε = 9.5 %. Thus, with a number of assets 10 times larger, ε does increase, but only by
a factor 2 or so. This relatively moderate increase of ε is related to constraint removal,
a fact that can also be appreciated by looking at formula (4), where n appears always
summed to k so that k smooths down the effect of large variations in n.

We ran additional experiments using only RA for sample sizes 40000 and 80000
with 1164 and 2328 removals, respectively, maintaining a constant k/N ratio of
roughly 2.9 %. Table 8 provides the obtained objective function values. Compar-
ing Table 8 with Table 7, we see that the objective values are alike in the two cases.
Taking β = 9.93 × 10−9 in (4), with N = 40000 gave ε = 7.4 %, while ε = 3.8 %
was obtained for N = 80000.

With 20 assets and N = 20000, the mean execution time for GA was more than 10
times greater than for RA, as shown in Table 6. With 200 assets and N = 20000, the
ratio increased to 16.5 and the execution time for RA is over an hour, suggesting that
GA may become impractical for larger problems. Table 9 provides detailed running
times for RA with 200 assets.
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Table 5 Mean percentage
overlap of constraints removed N Mean overlap

after first 18
removals

Mean overlap
after first 76
removals

Mean overlap
after first 220
removals

Mean overlap
after first 582
removals

v = 0.85

2500 55 %

5000 56 % 79 %

10000 58 % 79 % 88 %

20000 55 % 77 % 87 % 92 %

v = 0.90

2500 54 %

5000 60 % 78 %

10000 59 % 78 % 87 %

20000 58 % 78 % 87 % 92 %

v = 0.95

2500 58 %

5000 56 % 78 %

10000 60 % 80 % 88 %

20000 55 % 79 % 87 % 92 %

Table 6 Average running times
for the greedy and the
randomized algorithms over 30
runs

N k Mean running
time greedy (s)

Mean running time
randomized (s)

2500 18 15.1 2.3

5000 76 138.0 14.8

10000 220 875.3 86.0

20000 582 5412.4 504.6

Table 7 Results for
N = 20000, k = 582 and 200
assets

Algorithm Mean
objective
function

Mean
risk-free
asset

Max
objective
function

v = 0.85

RA 1.16052 0.0 1.16133

GA 1.16112 0.0 1.16197

v = 0.90

RA 1.13903 0.0 1.14161

GA 1.14050 0.0 1.14249

v = 0.95

RA 1.07812 0.37 1.08048

GA 1.08042 0.35 1.08311
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Table 8 Results for N = 40000
and 80000 samples and
k = 1164 and 2328, respectively

Sample size Mean
objective
function

Mean
risk-free
asset

Max
objective
function

v = 0.85

40000 1.16071 0.0 1.16154

80000 1.16096 0.0 1.16130

v = 0.90

40000 1.13964 0.0 1.14093

80000 1.140129 0.0 1.14099

v = 0.95

40000 1.07878 0.37 1.08180

80000 1.07864 0.37 1.07995

Table 9 Average running times
with 200 assets for RA over 30
runs

N k Mean running time
randomized (s)

20000 582 5521

40000 1164 26307

80000 2328 120535

5 Summary and Conclusions

Scenario programs with constraint removal have been considered in this paper, and
practical constraint removal methods have been proposed. Specifically, two easily im-
plementable polynomial-time methods have been discussed, one greedy and the other
randomized. Our methodology has been applied to a value-at-risk portfolio problem,
in which an investor wants to maximize the expected return while controlling the
probability of significant losses. We ran two sets of experiments, the first with 20
assets aiming at testing the methodology and obtaining insight about the removal
schemes, and a second one with 200 assets to test the feasibility of our approach
for problems with a larger pool of assets. It was shown that when the number of
scenarios is sufficiently large, the greedy and randomized methods produce compa-
rable solutions, but in vastly different running times. The decreased running time of
the randomized method allows for larger numbers of scenarios and, therefore, better
solutions in practice.

One very important feature of the scenario approach is the distribution-free as-
sumption of the underlying theorems. The absence of any distributional assumptions,
such as finite moments and finite support, allows one to use the actual historical data
(e.g., the Yahoo Finance data) as the scenarios, and then assess the properties of
the obtained solutions by an application of the theorems without knowing the actual
distribution that produced the data. In this paper, we pursued a different, indirect,
approach by using data to first construct a probability distribution from which we
sampled the scenarios. We did this because we wanted to test the performance of
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our method and to verify the correctness of the theoretical results. To improve the
applicability of the method, future work includes devising scenario methods that ex-
hibit lower scenario complexity. One promising line in this direction is represented
by the introduction of a regularization term, possibly of L1 type, in the optimization
procedure.
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