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Abstract. In adaptive control, a standard approach is to resort to the so-called certainty
equivalence principle which consists of generating some standard parameter estimate and then using it
in the control law as if it were the true parameter. As a consequence of this philosophy, the estimation
problem is decoupled from the control problem and this substantially simplifies the corresponding
adaptive control scheme. On the other hand, the complete absence of dual properties makes certainty
equivalent controllers run into an identifiability problem which generally leads to a strictly suboptimal
performance.

In this paper, we introduce a cost-biased parameter estimator to overcome this difficulty. This
estimator is applied to a linear quadratic Gaussian controller. The corresponding adaptive scheme is
proven to be stable and optimal when the unknown system parameter lies in an infinite, yet compact,
parameter set.
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1. Introduction. Consider a linear time-invariant system

xt+1 = A◦xt +B◦ut + wt+1,(1)

where xt ∈ Rn is the state, ut ∈ Rm the control variable, and wt is a noise process of
independent, Normal N(0, 1) random variables. The system matrices A◦ and B◦ are
unknown.

Our control objective is to select the input ut in such a way as to minimize the
long-term average quadratic cost criterion

lim supt→∞
1

t

t∑
s=1

[
xTs Qxs + uTs Rus

]
, Q = QT ≥ 0, R = RT > 0.(2)

To this purpose, we observe the state xt and, based on this, we first generate an
estimate of the system matrices A◦ and B◦ and then exploit these estimates in a
certainty equivalence fashion.
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A common way to generate an estimate of A◦ and B◦ is to resort to the least
squares method which corresponds to minimizing the performance index

Vt(A,B) =
t∑

s=1

‖xs −Axs−1 −Bus−1‖2.(3)

It is well known, however, that the corresponding certainty equivalent adaptive control
law can suffer from an identifiability problem and that this can result in a degradation
of the control system performance; see [1, 2, 3, 4]. In particular, for the case where
matrices A◦ andB◦ belong to a finite known set, it is shown in [2] that the least squares
estimate can converge with positive probability to a false estimate, which then leads
to a strictly suboptimal value of the long-term average cost criterion. For the case
of controlled Markov chains, such a counterexample had earlier been exhibited in [1].
Parameter consistency is guaranteed under certain conditions which are satisfied only
in specific adaptive control situations, as, e.g., studied in [5] and [6].

This inability to identify the open loop system from closed-loop measurements
is one of the fundamental obstacles to self-optimizing adaptive control. To overcome
this, one approach is to occasionally probe the system. This can be done by either
adding dither to the control or by occasionally breaking the control loop. However,
such perturbations should be of small enough magnitude or infrequent enough so that
they do not in themselves add to the cost incurred. An account of this approach can
be found in Chen and Guo [7, 8, 9, 10, 11, 12].

To overcome this general problem of identifiability in closed loop, a very different
approach, which still preserves the certainty equivalent structure of the adaptive con-
troller and holds out the promise of general self-optimizing controllers, was proposed
in [13] for the class of controlled Markov chains. The novelty of this adaptive con-
troller is the employment of a cost-biased maximum likelihood parameter estimator,
rather than the usual maximum likelihood parameter estimator. This cost biasing
modifies the log-likelihood criterion by incorporating an additional term which favors
parameter estimates with smaller optimal costs. For controlled Markov chains with
a finite parameter set, it was shown in [13] that such a cost biasing eliminates pa-
rameters with costs larger than the optimal cost from occurring as limit points of the
estimator. As a consequence, the corresponding adaptive controller was proved to
provide optimal performance. This result was extended in [14] to the case of general
parameter sets, for controlled Markov chains with finite state spaces. Another exten-
sion to the case of a finite parameter set, but allowing for a general state space and
nonlinear systems, was provided in [15]. In the reference most pertinent to this paper,
[2], it was shown that the cost-biased maximum likelihood-based certainty equivalent
controller yielded an optimal cost for linear systems with quadratic costs, as in (1)
and (2), provided that the parameter set is finite.

The assumption that the parameter set is finite is crucial in the derivations of
[2]. Indeed, it was shown in [2] that the log-likelihood ratio Vt(A

◦, B◦) − Vt(A,B)
stays bounded for any fixed parameter (A,B), and, therefore, a wrong fixed parameter
(A,B) can gain, at most, a finite advantage over the true parameter (A◦, B◦) in the
standard least squares criterion. Thus, when the number of possible parameters is
finite, the maximum of these finite advantages is still finite, and so a mild biasing
is sufficient to prevent elements (A,B) with larger cost than the optimal cost from
occurring as limit points of the parameter estimator. This mildness of the biasing is
important in order not to destroy the ability of the least squares estimate to identify
closed-loop dynamics. Unfortunately, this argument is no longer true when turning to
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a more general setting allowing for infinitely possible true parameterizations. Indeed,
in such a case, inf(A,B)[Vt(A

◦, B◦) − Vt(A,B)] is no longer bounded and the above
argument valid for the finite case fails to apply. As a consequence of this and other
difficulties, the infinite parameter set case has remained so far unsolved.

It is the purpose of this paper to establish the optimality of a certainty equiva-
lent controller based on the cost-biased maximum likelihood parameter estimator for
linear quadratic Gaussian systems, in the case of compact parameter uncertainty set.
The aforementioned difficulty that the log-likelihood ratio Vt(A

◦, B◦) − Vt(A,B) is
unbounded is circumvented by resorting to a Bayesian embedding approach. In this
setting, one can show that the least squares estimate converges along the directions of
diverging information to the true parameter value. As a consequence, a sequence of
parameters (A′t, B

′
t) can be determined with the property that it converges to the true

parameter (A◦, B◦) and for which inf(A,B)[Vt(A
′
t, B

′
t) − Vt(A,B)] remains bounded.

Loosely speaking, (A′t, B
′
t) can be used in the analysis in place of (A◦, B◦) and, by a

careful use of continuity arguments, the optimality of the adaptive controller can be
established.

The paper is organized as follows. Our adaptive control scheme is described in
section 2. In section 3, the properties of the cost-biased maximum likelihood param-
eter estimator are worked out. Section 4 is devoted to the study of the self-tuning
properties of the adaptive scheme, and its stability and optimality are established in
section 5.

2. The adaptive control system. Throughout this paper, let [A,B] ∈
Rn×(n+m) denote the matrix obtained by concatenating matrices A ∈ Rn×n and B ∈
Rn×m.

In our adaptive control problem, matrices A◦ and B◦ of system (1) are unknown
and belong to a known compact set Θ as precisely stated in the following assumptions.

(A.i) There is a known compact set Θ ⊂ Rn×(n+m) such that

[A◦, B◦] ∈ interior(Θ).

(A.ii) (A,B) is reachable and (A,Q1/2) is observable, ∀[A,B] ∈ Θ.
Given the system parameters [A,B] ∈ Θ, the control law minimizing the cost

(2) for the system xt+1 = Axt + But + wt+1 is easily derived (see, e.g., Kumar and
Varaiya [16] or Bertsekas [17] for a comprehensive presentation of linear quadratic
control problems). First, one has to compute the positive semidefinite solution to the
algebraic Riccati equation

P = ATPA−ATPB(BTPB +R)−1BTPA+Q.

The existence and uniqueness of such a solution is a consequence of the reachability
and observability assumption (A.ii). Denoting such a solution by P (A,B), the control
law is then given by

ut = K(A,B)xt,(4)

where K(A,B) is the linear quadratic Gaussian (LQG) optimal gain defined by

K(A,B) = −(BTP (A,B)B +R)−1BTP (A,B)A.(5)

The corresponding optimal cost is denoted by J(A,B).
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When one is facing an adaptive control problem, the system matrices (A◦, B◦) are

not known and some estimates Ât and B̂t of them are needed. Once these estimates
have been generated, in the certainty equivalence approach they are simply used as
if they were the true system matrices. Correspondingly, the adaptive control law is
given by

ut = K(Ât, B̂t)xt.(6)

The heart of our adaptive control scheme lies in the cost-biased least squares
estimator of the system matrices as described below.

Choose a deterministic sequence µt such that µt →∞ and µt = o(log t) as t→∞.

The parameter estimate sequence {[Ât, B̂t]} is given by

[Ât, B̂t] =


arg min[A,B]∈Θ

{
t∑

s=1

‖xs −Axs−1 −Bus−1‖2 + µtJ(A,B)

}
, for t even,

[
Ât−1, B̂t−1

]
, for t odd

(7)

(when there is more than one minimizer, any of them can be chosen).
The distinguishing feature of the criterion (7) is the term µtJ(A,B), which in-

troduces a mild bias in favor of parameters (A,B) with lower optimal costs. The
biasing is “mild” because µt = o(log t). On the other hand, it is nonnegligible be-
cause µt → ∞. Without this term one would simply have the usual least squares
parameter estimator, with its attendant difficulty in identifying the system in closed
loop.

The intuitive rationale for the cost biasing in the least squares criterion is as
follows. Suppose that one simply employs a straightforward least squares parameter
estimator. Then, generically, it can be shown that the least squares parameter esti-
mates sequence [ÂLSt , B̂LSt ] converges to a limiting random variable [ÂLS∞ , B̂LS∞ ] (see

[18]). Such a limiting estimate results in a limiting controller ut = K(ÂLS∞ , B̂LS∞ )xt.
It is natural to expect that the least squares estimator will asymptotically identify,
at a minimum, the closed-loop behavior of the system. Thus, one expects that the
behavior of the true system with the loop closed by ut = K(ÂLS∞ , B̂LS∞ )xt will be the
same as the closed-loop estimated system, i.e., their closed-loop gains are equal:

A◦ +B◦K(ÂLS∞ , B̂LS∞ ) = ÂLS∞ + B̂LS∞ K(ÂLS∞ , B̂LS∞ ).

This implies that the cost of running the true system (A◦, B◦) with the feedback gain

K(ÂLS∞ , B̂LS∞ ) is the same as the cost of running the estimated system (ÂLS∞ , B̂LS∞ )

with the feedback K(ÂLS∞ , B̂LS∞ ). The latter is, however, the optimal configuration

for the system xt+1 = ÂLS∞ xt + B̂LS∞ ut + wt+1, while the former is not necessarily an
optimal configuration for the true system. Thus one has

J(ÂLS∞ , B̂LS∞ ) ≥ J(A◦, B◦).

This means that the least squares estimator has a natural tendency to return estimates
with larger optimal cost than the optimal cost associated with the true system. This
motivates the idea of somehow introducing a bias into the parameter estimator so
that it favors parameters (A,B) with smaller values of J(A,B).

Thus, one conceives of adding a term such as µtJ(A,B) to the squared error in
(7). However, one needs to choose µt with care. One does not want to destroy the
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ability of the least squares estimator to identify the closed-loop dynamics. This is
achieved by choosing µt small enough so that µt = o(logt). On the other hand, one
definitely wants the µtJ(A,B) term to assert itself, and this is achieved by choosing
µt →∞. Hence, we arrive at the cost-biased least squares parameter estimator (7).

Notation. For brevity, the following notation will be used throughout the paper:
P ◦ := P (A◦, B◦), P̂t := P (Ât, B̂t), K

◦ := K(A◦, B◦), K̂t := K(Ât, B̂t), J
◦ :=

J(A◦, B◦), and Ĵt := J(Ât, B̂t).

3. The properties of the parameter estimates. In this section, we study
the properties of the estimates [Ât, B̂t] returned by the estimator (7). Our main result
is that the introduction of the cost-bias term µtJ(A,B) in the identification criterion
prevents parameters [A,B] with cost J(A,B) strictly larger than the optimal cost

from occurring as limit points of [Ât, B̂t] (Theorem 2). In this way, our modification
is proven successful in counteracting the natural tendency of least squares to return
estimates with larger cost than the optimal one. In addition, we show that the
estimator preserves the capability of the least squares method of identifying the control
system closed-loop dynamics (Theorem 3).

We start by summarizing some known results on the least squares estimates rel-
evant to the forthcoming developments.

Denote by [ÂLSt , B̂LSt ] the least squares estimate of [A◦, B◦]:[
ÂLSt , B̂LSt

]
:= arg min[A,B]∈Rn×(n+m)

t∑
s=1

‖xs −Axs−1 −Bus−1‖2 .

The partial ability of the least squares estimates (ÂLSt , B̂LSt ) to estimate a por-
tion of the open-loop system can be stated precisely using the notion of the excited
subspace, originally introduced in [19].

Definition 1. Defining vTs := [xTs uTs ], the subspace

E⊥ :=

{
z ∈ Rn+m : zT

∞∑
s=1

vsv
T
s z <∞

}
is called the unexcited subspace. Its orthogonal complement E is the excited subspace.

Given [A,B], let [A,B]E and [A,B]E⊥ denote the matrices in Rn×(n+m) formed
by projecting the rows of [A,B] onto E and E⊥, respectively.

The main properties of the least squares estimate are stated in Theorem 1 below
(the proof of point (i) can be derived as a slight modification to that of Theorem 1 in
[18], whereas point (ii) follows from Theorem 2 in [20] and Theorem 2 in [21]).

Theorem 1. There exists a set N ∈ Rn+m with zero Lebesgue measure such
that, if [A◦, B◦] does not belong to N , then

(i)

lim
t→∞[ÂLSt , B̂LSt ] = [ÂLS∞ , B̂LS∞ ] a.s.,

where [ÂLS∞ , B̂LS∞ ] is an almost surely (a.s.) bounded random variable.
(ii)

[ÂLS∞ , B̂LS∞ ]E = [A◦, B◦]E a.s.

In particular, point (ii) asserts that the asymptotic estimation error is confined
to the unexcited subspace. This is not surprising since the uncertainty in the excited
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directions is overcome by the information, which diverges with time. This turns out
to be a crucial property in the derivation of several results concerning our adaptive
scheme.

Throughout, we assume that [A◦, B◦] does not belong to N .

Our first result on the cost-biased estimate [Ât, B̂t] proves that it abandons the
region with costs larger than the optimal cost, for t large enough. A key role is played
by the composite estimate

[A′t, B
′
t] := [ÂLSt , B̂LSt ]E + [A◦, B◦]E⊥ .

Theorem 2.

lim sup
t→∞

Ĵt ≤ J◦ a.s.

Proof. Define

Vt(A,B) :=
t∑

s=1

‖xs −Axs−1 −Bus−1‖2,

Dt(A,B) := Vt(A,B) + µtJ(A,B).

Note for future use that

Vt(A,B)− Vt(ÂLSt , B̂LSt ) =
t∑

s=1

∥∥∥{[A,B]− [ÂLSt , B̂LSt ]
}
vs−1

∥∥∥2

.

Indeed, recalling that the minimizer of Vt(A,B) is given by [ÂLSt , B̂LSt ] =
(
∑t
s=1 xsv

T
s−1)(

∑t
s=1 vs−1v

T
s−1)−1, one has

Vt(A,B) − Vt(Â
LS
t , B̂LSt )−

t∑
s=1

∥∥∥{[A,B]− [ÂLSt , B̂LSt ]
}
vs−1

∥∥∥2

=
t∑

s=1

‖xs‖2 +
t∑

s=1

vTs−1[A,B]T [A,B]vs−1 − 2
t∑

s=1

vTs−1[A,B]Txs

−
t∑

s=1

‖xs‖2 −
t∑

s=1

vTs−1[ÂLSt , B̂LSt ]T [ÂLSt , B̂LSt ]vs−1 + 2
t∑

s=1

vTs−1[ÂLSt , B̂LSt ]Txs

−
t∑

s=1

vTs−1[A,B]T [A,B]vs−1 −
t∑

s=1

vTs−1[ÂLSt , B̂LSt ]T [ÂLSt , B̂LSt ]vs−1

+ 2
t∑

s=1

vTs−1[A,B]T [ÂLSt , B̂LSt ]vs−1

= −2
t∑

s=1

vTs−1[A,B]Txs − 2Trace

{
[ÂLSt , B̂LSt ]

(
t∑

s=1

vTs−1vs−1

)
[ÂLSt , B̂LSt ]T

}

+ 2

t∑
s=1

vTs−1[ÂLSt , B̂LSt ]Txs + 2Trace

{
[ÂLSt , B̂LSt ]

(
t∑

s=1

vTs−1vs−1

)
[A,B]T

}
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= −2
t∑

s=1

vTs−1[A,B]Txs − 2Trace

{
t∑

s=1

xsv
T
s−1[ÂLSt , B̂LSt ]T

}

+ 2

t∑
s=1

vTs−1[ÂLSt , B̂LSt ]Txs + 2Trace

{
t∑

s=1

xsv
T
s−1[A,B]T

}
= 0.

For every [A,B] ∈ Sε := {[A,B] ∈ Θ : J(A,B) ≥ J◦ + ε} , ε > 0, the following
chain of inequalities holds true:

Dt(A,B)−Dt(A
′
t, B

′
t) ≥ Vt(ÂLSt , B̂LSt ) + µtJ(A,B)

−Vt(A′t, B′t)− µtJ(A′t, B
′
t)

≥ −
t∑

s=1

∥∥∥{[A′t, B
′
t]− [ÂLSt , B̂LSt ]

}
vs−1

∥∥∥2

+µt {J◦ + ε− J(A′t, B
′
t)} .(8)

Recalling that J(A,B) = TraceP (A,B) (see [16] or [17]), and that P (·, ·) is a con-
tinuous function of the entries of matrices A and B for any [A,B] ∈ Θ (see [22]), we
can conclude that J(·, ·) is continuous in [A◦, B◦]. Since [A′t, B

′
t] → [A◦, B◦] (which

follows from (ii) of Theorem 1), we therefore have

J◦ + ε− J(A′t, B
′
t)→ ε a.s.

Thus, the second term on the right-hand side of (8) tends to infinity as t → ∞. On
the other hand, by the very definition of unexcited subspace and [A′t, B

′
t], the first

term stays bounded. Therefore, the right-hand side of (8) is diverging, uniformly in
[A,B] ∈ Sε. That is, Dt(A,B) is strictly larger than Dt(A

′
t, B

′
t) for any [A,B] ∈ Sε

when t is large enough. Finally, by noting that [A′t, B
′
t] ∈ Θ for t large enough,

the conclusion is drawn that [Ât, B̂t] leaves set Sε in finite time. In view of the
arbitrariness of ε > 0, the proof is complete.

We now introduce Cδ as the set of parameters [A,B] such that the gain of the
corresponding optimal closed-loop system differs from the gain of the true system
with the loop closed by K(A,B) by at least δ in norm, i.e.,

Cδ := {[A,B] ∈ Θ : ‖[A◦ +B◦K(A,B)]− [A+BK(A,B)]‖ ≥ δ} .

We now prove that the estimate [Ât, B̂t] can visit Cδ only rarely, and so our cost-biased
estimator (7) still possesses good closed-loop identification properties.

Theorem 3.

t∑
s=1

1([Âs, B̂s] ∈ Cδ) = O(µt) a.s., ∀δ > 0.

Proof. We first prove that

t∑
s=1

∥∥∥{[A′t, B
′
t]− [Ât, B̂t]

}
vs−1

∥∥∥2

= O(µt), t even a.s.(9)
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Indeed,

t∑
s=1

∥∥∥{[A′t, B
′
t]− [Ât, B̂t]

}
vs−1

∥∥∥2

≤ 2
t∑

s=1

∥∥∥{[A◦, B◦]E⊥ − [ÂLSt , B̂LSt ]E⊥
}
vs−1

∥∥∥2

+ 2
t∑

s=1

∥∥∥{[ÂLSt , B̂LSt ]− [Ât, B̂t]
}
vs−1

∥∥∥2

.

The first term is bounded because of the definition of unexcited subspace. As for the
second term, it can be handled as follows:

t∑
s=1

∥∥∥{[ÂLSt , B̂LSt ]− [Ât, B̂t]
}
vs−1

∥∥∥2

= Vt(Ât, B̂t)− Vt(ÂLSt , B̂LSt )

= Dt(Ât, B̂t)−Dt(A
′
t, B

′
t) + µt

{
J(A′t, B

′
t)− Ĵt

}
+
{
Vt(A

′
t, B

′
t)− Vt(ÂLSt , B̂LSt )

}
.

The last term equals
∑t
s=1 ||{[A′t, B′t]− [ÂLSt , B̂LSt ]}vs−1||2 and is bounded, whereas,

by noting that [A′t, B
′
t] ∈ Θ for t large enough, the first term is less than or equal to

zero in the limit. Result (9) then follows from the fact that J(A′t, B
′
t)− Ĵt is bounded

(remember that J(·, ·) is a continuous function on Θ and Θ is a compact set).
Note now that the matrix

[A◦ +B◦K(A,B)]− [Ā+ B̄K(A,B)]

is continuous as a function of [A,B] ∈ Θ and [A,B] ∈ Θ (this follows from the
expression (5) of the gain K(A,B) and the continuity of P (A,B) in Θ (see [22])).

Therefore, ∀[Ã, B̃] ∈ Cδ, there exists a neighborhood N(Ã, B̃) of [Ã, B̃] and a nonzero
matrix H such that(

[A◦ +B◦K(A,B)]− [A+BK(A,B)]
)T (

[A◦ +B◦K(A,B)]− [A+BK(A,B)]
)

≥ HTH, ∀[A,B], [A,B] ∈ N(Ã, B̃).(10)

The set of all these neighborhoods constitutes a cover of Cδ, from which a finite
subcover {Nj}qj=1 can be extracted. The thesis of the theorem can then be recast as

t∑
s=1

1([Âs, B̂s] ∈ Nj) = O(µt) a.s., ∀j ∈ [1, q].(11)

Equation (11) will be proven by contradiction. To this purpose, set

#j,t :=
t∑
s=1

s even

1([Âs, B̂s] ∈ Nj)
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and assume that there exist j ∈ [1, q] and a sequence of even time points {tk} such

that [Âtk , B̂tk ] ∈ Nj∀k, and

lim
k→∞

1

µtk
#j,tk

=∞.(12)

We prove that (12) implies

lim inf
k→∞

1

#j,tk

tk∑
s=1

s even

αj,s+1 > 0,(13)

where

αj,s+1 := (‖Hxs+1‖2 ∧ 1)1([Âs, B̂s] ∈ Nj)(14)

(H is the matrix introduced in (10) associated with Nj) and, in turn, this contradicts

(9).
For the proof of (13), define Fs := σ(w1, . . . , ws) and note first that

E[‖Hxs+1‖2 ∧ 1 | Fs] = E[‖H(A◦xs +B◦us) +Hws+1‖2 ∧ 1 | Fs]
≥ Prob(‖H(A◦xs +B◦us) +Hws+1‖ ≥ 1 | Fs)
≥ 1− Prob (‖H(A◦xs +B◦us)‖ − 1 < ‖Hws+1‖

< ‖H(A◦xs +B◦us‖+ 1 | Fs))
≥ 1− sup

α
Prob(α− 1 < ‖Hws+1‖ < α+ 1)

≥ c,
for a suitable constant c > 0, the last inequality following from the fact that H 6= 0.
We therefore have

1

#j,tk

tk∑
s=1

s even

E[αj,s+1 | Fs] ≥
1

#j,tk

tk∑
s=1

s even

1([Âs, B̂s] ∈ Nj) · c = c.(15)

On the other hand,

tk∑
s=1

s even

{
αj,s+1 − E[αj,s+1 | Fs]

}

=

tk∑
s=1

s even

1([Âs, B̂s] ∈ Nj)
{

(‖Hxs+1‖2 ∧ 1)− E[‖Hxs+1‖2 ∧ 1 | Fs]
}

= o

 tk∑
s=1

s even

1([Âs, B̂s] ∈ Nj)
 ,(16)

on the set where

tk∑
s=1

s even

1([Âs, B̂s] ∈ Nj) =∞(17)
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(see [23]). Since (17) is satisfied if (12) holds, equations (15) and (16) prove that (13)
follows from (12).

We now prove that (13) contradicts (9).
The convergence result [A′t, B

′
t]→ [A◦, B◦] (see Theorem 1) implies that(

[A′t +B′tK(A,B)]− [A+BK(A,B)]
)T (

[A′t +B′tK(A,B)]− [A+BK(A,B)]
)

≥
(

1

2
H

)T (
1

2
H

)
∀[A,B], [A,B] ∈ Nj ,

for t sufficiently high (see (10)). In view of this, the following chain of inequalities
can be derived when (12), and, consequently, inequality (13) hold true:

∞ = lim
k→∞

1

µtk
#j,tk

· lim inf
k→∞

1

#j,tk

tk∑
s=1

s even

αj,s+1

≤ lim
k→∞

1

µtk

tk−2∑
s=1

s even

αj,s+1

≤ lim
k→∞

1

µtk

tk−2∑
s=1

s even

‖Hxs+1‖2 · 1([Âs, B̂s] ∈ Nj)

≤ lim
k→∞

1

µtk

tk−2∑
s=1

s even

4‖
{

[A′tk +B′tkK̂s]− [Âtk + B̂tkK̂s]
}
xs+1‖2 · 1([Âs, B̂s] ∈ Nj)

≤ lim
k→∞

1

µtk

tk−2∑
s=1

s even

4‖
(

[A′tk , B
′
tk

]− [Âtk , B̂tk ]
)
vs+1‖2.

This contradicts (9). Thus, (12) is false with probability 1, and so (11) is proven.

4. The self-tuning property. A key issue in the analysis of any adaptive
control method consists of determining whether it is able to generate, at least asymp-
totically, control laws close to the optimal control law for the true system. The
objective of the present section is to prove that this is indeed the case for our adap-
tive scheme, except for very rare time instants. This result will play a crucial role in
the next section where we address stability and optimality issues.

Theorem 4.

t∑
s=1

1(‖K̂s −K◦‖ > ρ) = O(µt) a.s., ∀ρ > 0.

Proof. Since Θ is compact,

sup
[A,B]∈Θ

λmax[A+BK(A,B)] < 1.

This implies that A◦ +B◦K(A,B) is stable for [A,B] belonging to the closed set Ccδ
(where the overbar indicates closure and the superscript “c ” indicates the complement
of the set), for δ small enough.
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Denote by J(A,B;K) the cost for the system xt+1 = Axt+Bxt+wt+1 controlled
by ut = Kxt, whenever the corresponding closed-loop system is stable. It is known
that (see [16] or [17])

J(A,B;K) = TraceP (A,B;K),(18)

where P (A,B;K) is the unique positive semidefinite solution of the Lyapunov equa-
tion

P = KTRK + [A+BK]TP [A+BK] +Q.(19)

From this, it is easy to verify that J(A◦, B◦;K(A,B)) is a continuous function of
[A,B] ∈ Ccδ . On the other hand, the optimal gain K◦ for the true system (1) is
unique within the class of stabilizing gains:

J(A◦, B◦;K) > J◦, ∀K 6= K◦, K stabilizing.

Therefore, there exists ν(ρ) > 0 such that every gain K = K(A,B), [A,B] ∈ Ccδ ,
for which

J(A◦, B◦;K) ≤ J◦ + ν(ρ)

also satisfies the bound

‖K −K◦‖ ≤ ρ.(20)

Note now that since A+BK(A,B) is close to A◦+B◦K(A,B) when [A,B] ∈ Ccδ ,
δ small, from (19), we have

sup
[A,B]∈Cc

δ

‖P (A◦, B◦;K(A,B))− P (A,B;K(A,B))‖ → 0, δ → 0,

and, in view of (18),

sup
[A,B]∈Ccs

|J(A◦, B◦;K(A,B))− J(A,B;K(A,B))| → 0, δ → 0.

Fix δ(ρ) such that

sup
[A,B]∈Cc

δ(ρ)

‖J(A◦, B◦;K(A,B))− J(A,B;K(A,B))‖ ≤ 1

2
ν(ρ).(21)

Finally,

lim sup
t→∞

1

µt

t∑
s=1

1(‖K̂s−K◦‖ > ρ)

≤ lim sup
t→∞

1

µt

t∑
s=1

1(J(A◦, B◦; K̂s)− J◦ > ν(ρ)) (using (20))

≤ lim sup
t→∞

1

µt

t∑
s=1

1

(
|J(A◦, B◦; K̂s)− Ĵs| > 1

2
ν(ρ)

)
(using Theorem 2)

≤ lim sup
t→∞

1

µt

t∑
s=1

1
(

[Âs, B̂s] ∈ Cδ(ρ)

)
(using (21))

<∞ (using Theorem 3).
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5. Stability and optimality. According to Theorem 4, the adaptive gain K̂s is
close to the optimal gain K◦ except at very rare time instants, the number of which
grows at most as µt. At these exceptional time points, the closed-loop system may
be unstable. However, due to their rare occurrence, we establish that they cannot
endanger the stability of the adaptive closed-loop control system. The corresponding
stability result is given in Theorem 5. The proof of Theorem 5 relies heavily on the
results of [24] concerning stability of rarely destabilized time-varying systems. It is
very similar to that of Theorem 12 in [2] and is provided here only for the sake of
completeness.

Theorem 5.

lim sup
t→∞

1

t

t∑
s=1

[‖xs‖p + ‖us‖p] <∞ a.s., ∀p > 0.

Proof. We start by noting that, since A◦ +B◦K◦ is a stable matrix, there exists
a suitable norm on Rn such that, under the corresponding induced matrix norm,
‖A◦ +B◦K◦‖ < 1 (see, e.g., [25]). Throughout this proof all the norm symbols refer
to this particular norm.

It is easy to verify that the following inequality holds true for any integer n and
real numbers a, b, and ε > 0,

(a+ b)2n ≤ (1 + ε2)2n−1a2n + (1 + ε−2)2n−1b2
n

.(22)

Taking into account the relation xt+1 = A◦xt + B◦K̂txt + wt+1, from (22) we
obtain

‖xt+1‖2n ≤ (1 + ε2)2n−1‖A◦ +B◦K̂t‖2n‖xt‖2n + (1 + ε−2)2n−1‖wt+1‖2n ,
for any integer n and positive real ε.

Now fix n̄ such that 2n̄ ≥ p and choose ε̄ > 0 such that (1 + ε̄2)2n̄−1‖A◦ +

B◦K◦‖2n̄ < 1. Further, select ρ in such a way that

a := sup
K : ‖K−K◦‖≤ρ

(1 + ε̄2)2n̄−1‖A◦ +B◦K‖2n̄ < 1

and also let

b := sup
[A,B]∈Θ

(1 + ε̄2)2n̄−1‖A◦ +B◦K(A,B)‖2n̄ .

Then

‖xt+1‖2n̄ ≤ γt‖xt‖2n̄ + (1 + ε̄−2)2n̄−1‖wt+1‖2n̄ ,(23)

where

γt =

{
a, if ‖K̂t −K◦‖ ≤ ρ,
b, otherwise.

We now apply Theorem 2 in [24] to (23) (see also Remark 1 in the same paper).

By noting that
∑t
s=1 1(‖K̂s−K◦‖ > ρ) = O(µt) (Theorem 4) and that µt = o(log t),

from that theorem we can conclude that

lim sup
t→∞

1

t

t∑
s=1

‖xs‖2n̄ <∞ a.s.



1902 M. C. CAMPI AND P. R. KUMAR

This implies that (recall that 2n̄ ≥ p)

lim sup
t→∞

1

t

t∑
s=1

‖xs‖p <∞ a.s.

Since ‖us‖ ≤ sup[A,B]∈Θ ‖K(A,B)‖‖xs‖, we also have

lim sup
t→∞

1

t

t∑
s=1

‖us‖p <∞ a.s.

This proves the stability result.
We are now in a position to prove the optimality of the adaptive scheme, namely,

that the incurred cost equals the optimal cost that could be obtained if the true
system parameter were known at the start.

Theorem 6.

lim sup
t→∞

1

t

t∑
s=1

[
xTs Qxs + uTs Rus

]
= J◦ a.s.

Proof. The dynamic programming equation for model xs+1 = Âsxs+B̂sus+ws+1

is (see [16])

Ĵs + xTs P̂sxs

= xTs Qxs + uTs Rus + E[(Âsxs + B̂sus + ws+1)T P̂s(Âsxs + B̂sus + ws+1) | Fs]
= xTs Qxs + uTs Rus + E[xTs+1P̂sxs+1 | Fs]
+
{

(Âsxs + B̂sus)
T P̂s(Âsxs + B̂sus)− (A◦xs +B◦us)T P̂s(A◦xs +B◦us)

}
.

From this,

1

t

t∑
s=1

Ĵs︸ ︷︷ ︸
A

+
1

t

t∑
s=1

{
xTs P̂sxs − E[xTs+1P̂s+1xs+1 | Fs]

}
︸ ︷︷ ︸

B

=
1

t

t∑
s=1

[xTs Qxs + uTs Rus] +
1

t

t∑
s=1

E[xTs+1(P̂s − P̂s+1)xs+1 | Fs]︸ ︷︷ ︸
C

+
1

t

t∑
s=1

{
(Âsxs+ B̂sus)

T P̂s(Âsxs+ B̂sus)− (A◦xs+B◦us)T P̂s(A◦xs+B◦us)
}

︸ ︷︷ ︸
D

.

(24)

Let us study separately the different terms appearing in this expression.
(A) From Theorem 2 we have

lim sup
t→∞

1

t

t∑
s=1

Ĵs ≤ J◦.
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(B)

1

t

t∑
s=1

{
xTs P̂sxs − E[xTs+1P̂s+1xs+1 | Fs]

}

=
1

t
xT1 P̂1x1−1

t
xTt+1P̂t+1xt+1

+
1

t

t∑
s=1

{
xTs+1P̂s+1xs+1 − E[xTs+1P̂s+1xs+1 | Fs]

}
.

The first term obviously tends to zero. As for the second one, note that, P̂t+1 ≤
sup[A,B]∈Θ P (A,B) being bounded, it tends to zero provided that ‖xt‖2/t → 0. The
fact that this is the case can be proven by contradiction. Suppose that there exists
a time sequence {tk} and a real number α > 0 such that ‖xtk‖2 > αtk,∀k. Then
lim supt→∞

1
t

∑t
s=1 ‖xs‖4 ≥ lim supk→∞

1
tk
‖xtk‖4 ≥ lim supk→∞

1
tk
α2t2k = ∞. This

contradicts Theorem 5. In the third term,

{αs+1} := {xTs+1P̂s+1xs+1 − E[xTs+1P̂s+1xs+1 | Fs]}

is a martingale difference. Therefore, 1
t

∑t
s=1 αs+1 → 0, provided that

∞∑
s=1

s−2E[α2
s+1 | Fs] <∞

(see [26]). Since P̂s+1 is bounded, it is easily seen that this last condition is implied by∑∞
s=1 s

−2[‖xs‖4 + ‖us‖4] <∞. Again, this conclusion can be drawn by contradiction
from Theorem 5. In fact, if this conclusion were false, sequence s−1/2[‖xs‖4 + ‖us‖4]
would be unbounded and, therefore, there would exist a sequence of times {tk} such

that [‖xtk‖4 + ‖utk‖4] ≥ t
1/2
k ∀k. From this, lim supk→∞

1
t

∑t
s=1[‖xs‖4 + ‖us‖4]4 ≥

lim supk→∞
1
tk

[‖xtk‖4 +‖utk‖4]4 ≥ lim supk→∞
1
tk
t2k =∞, and this is in contradiction

with Theorem 5. In conclusion,

lim
t→∞

1

t

t∑
s=1

{
xTs P̂sxs − E[xTs+1P̂s+1xs+1 | Fs]

}
= 0 a.s.

(C) We start by proving that

lim
t→∞

1

t

t∑
s=1

‖P̂s − P̂s+1‖2 = 0 a.s.(25)

Since P ◦ satisfies the equation

P ◦ = K◦TRK◦ + [A◦ +B◦K◦]TP ◦[A◦ +B◦K◦] +Q,

and P̂s satisfies the equation

P̂s = K̂T
s RK̂s + [Âs + B̂sK̂s]

T P̂s[Âs + B̂sK̂s] +Q,
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P ◦ is close to P̂s when K◦ is close to K̂s and A◦ + B◦K◦ is close to Âs + B̂sK̂s. In
view of Theorems 3 and 4, the total of the numbers of time points in which this does
not happen is O(µt). Therefore,

t∑
s=1

1(‖P̂s − P ◦‖ > ρ) = O(µt) a.s., ∀ρ > 0.

Equation (25) then easily follows from

1

t

t∑
s=1

‖P̂s − P̂s+1‖2 ≤ 2

t

t∑
s=1

[
‖P̂s − P ◦‖2 + ‖P̂s+1 − P ◦‖2

]
≤ 4

t

t+1∑
s=1

‖P̂s − P ◦‖21(‖P̂s − P ◦‖ > ρ) +
4(t+ 1)

t
ρ2

→ 4ρ2,

since ρ is an arbitrary positive real number.
Notice now that, by the Schwarz inequality,

1

t

t∑
s=1

|xTs+1(P̂s − P̂s+1)xs+1| ≤
(

1

t

t∑
s=1

‖P̂s − P̂s+1‖2
)1/2(

1

t

t∑
s=1

‖xs+1‖4
)1/2

.

Therefore, t−1
∑t
s=1 ‖xs+1‖4 being bounded (Theorem 5), (25) implies

lim
t→∞

1

t

t∑
s=1

xTs+1(P̂s − P̂s+1)xs+1 = 0 a.s.(26)

Finally, the conclusion

lim
t→∞

1

t

t∑
s=1

E[xTs+1(P̂s − P̂s+1)xs+1 | Fs] = 0 a.s.

is drawn from (26) by observing that

{βs+1} := {xTs+1(P̂s − P̂s+1)xs+1 − E[xTs+1(P̂s − P̂s+1)xs+1 | Fs]}

is a martingale difference for which, by calculations resembling those developed in
point (B),

∑∞
s=1 s

−2E[β2
s+1 | Fs] <∞.

(D) Since

‖PTP −RTR‖ ≤ ‖P −R‖(‖P‖+ ‖R‖), ∀P,R ∈ Rn×n,

we have

|(Âsxs + B̂sus)
T P̂s(Âsxs + B̂sus)− (A◦xs +B◦us)T P̂s(A◦xs +B◦us)|

= |xTs (Âs + B̂sK̂s)
T P̂s(Âs + B̂sK̂s)xs − xTs (A◦ +B◦K̂s)

T P̂s(A
◦ +B◦K̂s)xs|

≤ ‖xs‖2‖P̂s‖ ‖(Âs + B̂sK̂s)− (A◦ +B◦K̂s)‖(‖Âs + B̂sK̂s‖+ ‖A◦ +B◦K̂s‖).
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Also, ‖P̂s‖ is uniformly bounded over time. The same holds for (‖Âs+B̂sK̂s‖+‖A◦+

B◦K̂s‖). Furthermore, using the Schwarz inequality,

1

t

t∑
s=1

‖xs‖2‖(Âs + B̂sK̂s)− (A◦ +B◦K̂s)‖

≤
(

1

t

t∑
s=1

‖xs‖4
)1/2(

1

t

t∑
s=1

‖(Âs + B̂sK̂s)− (A◦ +B◦K̂s)‖2
)1/2

.

By Theorem 5 the first term is bounded. In light of Theorem 3, the second term can
be handled analogously to the calculations for t−1

∑t
s=1 ‖P̂s − P̂s+1‖2 in point (C),

thus yielding

lim
t→∞

1

t

t∑
s=1

‖(Âs + B̂sK̂s)− (A◦ +B◦K̂s)‖2 = 0 a.s.

This suffices to prove that D → 0, a.s.
By inserting all the partial results in (24) we finally obtain

lim sup
t→∞

1

t

t∑
s=1

[
xTs Qxs + uTs Tus

] ≤ J◦ a.s.

Since J◦ is the optimal cost for the true system, this proves the theorem.

6. Concluding remarks. In an adaptive control context, the minimization of
a given cost function is made difficult by the general identifiability problem stemming
from the natural tendency of classical identification methods to return estimates with
the corresponding optimal cost larger than the optimal cost for the true system. A
way out of this problem is to employ a more fine-grained estimation scheme which
exploits the properties of the set to which the estimates converge. Such a scheme has
been presented and analyzed in this paper for the linear quadratic Gaussian control
problem.

The results of this paper need to be extended in several directions to provide a
fuller theory of optimal adaptation:
• The presented scheme is nonrecursive. However, one can conceive of some-

how recursively minimizing our identification performance index so as to retain its
asymptotic identification properties. This must be further investigated.
• We assume full state observations. This limitation needs to be removed.
• Our adaptive scheme is, to some extent, tailored to linear quadratic Gaussian

control. In particular, a central role in the analysis is played by the uniqueness of the
optimal gain in linear quadratic Gaussian control problems. It would be of interest
to investigate how the biasing idea applies to other control strategies. An additional
point is concerning the Gaussianity of the noise. This assumption is exploited in
proving that the least squares estimate converges and that it tends to the true value
in the excited subspace. In an attempt to remove the Gaussianity assumption one can
use a weighted least squares algorithm, as suggested in [12], guaranteeing estimate
convergence. In doing so, however, consistency in the excited subspace is lost and this
may pose a difficulty in the derivation of many results.
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• Assumption µt = o(log t) may be very conservative. It is mainly motivated by
the stability analysis and it is possible that our results still hold with µt growing at
a faster rate. This and other choices made in the definition of our algorithm may be
further investigated.

All the above problems suggest interesting research opportunities and a promise
of self-optimizing adaptive control for nonlinear stochastic systems.
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