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Summary. A sensible use of an estimation method requires that assessment criteria for the
quality of the estimate be available.We present a coverage theory for the least squares estimate.
By suitably modifying the empirical costs, one constructs statistics that are guaranteed to cover
with known probability the cost associated with a next, still unseen, member of the population.
All results of this paper are distribution free and can be applied to least squares problems in
use across a variety of fields.
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1. Introduction

Given a sample of experimental observations .Xi, Yi/, i=1, : : : , N, where Xi ∈Rn×d and Yi ∈Rn

(see the example below to clarify the reasons why we consider a multi-dimensional Yi and, corres-
pondingly, a matrix structure for Xi), the least squares method consists in minimizing

N∑
i=1

‖Yi −Xiβ‖2, .1/

with respect to the decision variable β ∈ Rd , where ‖ · ‖ is Euclidean norm. The minimizer is
denoted by β̂N and is called the least squares estimate or the least squares solution. (If the mini-
mizer is not unique, the solution is determined by a tie-break rule.) Depending on the context,
the least squares method has various interpretations that range from β being a parameter that is
used to tune a descriptive model to β being a decision variable in a design process. An example
of this second set-up (example 1: service location) is in order as follows.

Each member of a population is described by a two-dimensional vector p, which gives the
position where the person lives, and a number ρ∈ [0, 1], which assigns the person’s rate of use
of a given service (e.g. a public laundry or a post office). We are interested in determining a
suitable location β to position the service. For this, a sample of N members of the population is
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interviewed and their values .pi, ρi/, i=1, : : : , N, are recorded. The service location is then de-
termined by minimizing ΣN

i=1‖ρi.pi −β/‖2, which is the sum of squared home–service distances
weighted by the rate of use of the service. This problem can be rewritten in the form (1) with
Xi = ρiI ∈ R2×2, and Yi = ρipi ∈ R2. Note that a multi-dimensional Yi and, correspondingly, a
matrix structure for Xi turn up naturally in the formulation of this problem. This concludes the
example.

The least squares method has become a standard in many applied fields that range from data-
based and stochastic optimization, to robust filter design, system identification and adaptive
control. Irrespectively of the application at hand, assessing the performance of β̂N before its
use is an important step to validate the solution, and the performance assessment of β̂N is the
subject of this paper.

Throughout, we assume that .Xi, Yi/, i = 1, : : : , N, is an independent and identically dis-
tributed sample from a distribution F . For short, we shall denote the data set by DN , namely
DN = {.X1, Y1/, : : : , .XN , YN/}. For a new pair .X, Y/, define the least squares cost (or more
briefly the cost) of .X, Y/ as

q :=‖Y −Xβ̂N‖2:

As .X, Y/ varies according to F independently of DN , the conditional distribution of q given β̂N

describes the cost that is paid by the population of .X, Y/ corresponding to β̂N , and its knowledge
may be used to support decisions of various types. For instance, in the service location problem of
example 1 knowing the distribution of q may support decisions on the service facility equipment
that must be acquired to dispatch goods, or even on whether one single service facility is not
enough to serve the territory and two facilities should be built instead. However, computing
the conditional distribution of q given β̂N demands that we know F , which is unrealistic in
practice. Hence, for a practical performance assessment one aims at constructing descriptors of
the conditional distribution of q that are based on the experimental data set DN .

One simple descriptor is the empirical mean .1=N/ΣN
i=1‖Yi − Xiβ̂N‖2. This is an estimator

of E[q|β̂N ], which is the conditional mean of q given β̂N , and it has received much attention in
the literature. Classic results characterize the deviation of .1=N/ΣN

i=1‖Yi −Xiβ̂N‖2 from E[q|β̂N ]
when N → ∞ (asymptotic results) (Lehmann and Casella, 1998), whereas more recent work
based on statistical learning theory has extended these results to when N is finite (Vapnik and
Chervonenkis, 1971; Vapnik, 1996).

1.1. Goal of this paper: least squares cost coverages
In this paper, we consider a more structured characterization of the least squares cost than its
mean. The goal is to determine statistics c of the data set DN that are threshold values for q
with given probabilistic guarantees. In other words, referring to Fig. 1, attention is shifted from
quantifying the deviation of .1=N/ΣN

i=1‖Yi −Xiβ̂N‖2 from E[q|β̂N ], as in Fig. 1(a), to quantifying
the probability that ‖Y −Xβ̂N‖2 falls in the bold segment below c, as in Fig. 1(b). In this context,
we want to establish rigorous results that hold for any finite N.

We start with the following definition of coverage and mean coverage.
Definition 1 (coverage and mean coverage). Given a statistic c of the data set DN and a pair

.X, Y/ distributed according to F and independent of DN , the coverage of q =‖Y −Xβ̂N‖2 by

.−∞, c] is defined as

P.q � c|DN/; .2/

the mean coverage of q by .−∞, c] is
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(a) (b)

Fig. 1. (a) Empirical versus conditional mean and (b) c-statistic: the curved lines in both parts represent
the squared residual functions kYi �Xi β̂Nk2

E[P.q � c|DN/]=P.q � c/:

The term ‘coverage’ comes from the literature on tolerance or prediction regions (Wilks, 1941;
Scheffé and Tukey, 1947; Fraser and Guttman, 1956; Vardeman, 1992; Di Bucchianico et al.,
2001; Li and Liu, 2008; Lei et al., 2013; Frey, 2013), which can be explained as follows. For a
given DN , T.DN/ :={.X, Y/ : q � c} is a region in the space Rn×d ×Rn and the coverage of q by
.−∞, c] is the coverage of .X, Y/ by the region T.DN/ in the sense of the above literature since
P.q � c|DN/=∫{.X,Y/}1{T.DN/}dF (here, 1.·/ denotes indicator function).

For a given DN , c is the quantile of the distribution of q corresponding to the probability
value that is given by the coverage, i.e., if for example the coverage is 90%, for the β̂N and c given
by the observed DN , the probability mass of the .X, Y/ pairs such that ‖Y −Xβ̂N‖2 � c is 90%.

The coverage of q by .−∞, c] depends on DN and is a random variable. The mean coverage is
its expected value. The mean coverage is also equal to P.q � c/, i.e. it is the total probability of
seeing a random sample DN , constructing c, and then extracting one more instance of .X, Y/ that
incurs a cost that is smaller than or equal to c. In an application with sequential observations,
the mean coverage is the limit of the frequency with which the .N + 1/th observation incurs a
cost that is less than or equal to the statistic c computed from the previous N observations when
the observation window shifts along the time axis. See Section 3.1 for an example.

In this paper, our goal is to find statistics c that have a guaranteed mean coverage irrespectively
of the (unknown) distribution F . The statistics that we shall introduce have the additional
property of being asymptotically tight in a precise sense which is specified later. Instead, we do
not enter the theoretical study of the coverage, which exhibits difficulties that go beyond the
analysis that is presented in this paper. The following definition is in order.

Definition 2 (distribution-free mean coverage). Interval .−∞, c] has a distribution-free mean
coverage τ if
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P.q � c/� τ

holds for all distributions F .

One natural approach to follow when we seek distribution-free statistics is to look at the
squared residuals corresponding to β̂N :

qi :=‖Yi −Xiβ̂N‖2, i=1, : : : , N:

These qis are called empirical costs. Intuitively, the empirical costs carry information on how
q distributes for the observed data set DN . Note that the real line is split by the N empirical
costs qi in N + 1 intervals, and we might expect that each of these intervals carries on average
a probability of 1=.N +1/ of containing q. This is indeed what happens in a simplified context
where N points are independently drawn on the real line and then ordered (order statistics). We
briefly digress to describe this situation because it is useful for future comparison.

Consider a univariate independent random sample ri ∈R, i=1, : : : , N, from a distribution Fr,
and let r.1/, r.2/, : : : , r.N/ be the order statistics of the ris, i.e. r.1/ � r.2/ � : : :� r.N/. (Throughout
this paper, for any collection of N real numbers a1, a2, : : : , aN , the notation a.1/, a.2/, : : : , a.N/

denotes the ais in ascending order.) Then, the following well-known result holds; see for example
David and Nagaraja (2003).

Proposition 1 (order statistics). Let r be a new value sampled from Fr independently of
r1, r2 : : : , rN . Then,

P.r � r.i//� i

N +1
, i=1, : : : , N,

i.e. .−∞, r.i/] has a distribution-free mean coverage i=.N +1/.

This result holds with equality, i.e. P.r � r.i//= i=.N +1/, for continuous distributions Fr.
In the context of least squares optimization of this paper, however, there is an extra element,

which makes order statistics not applicable. This is that the empirical costs qi are computed on
a real line that originates from β̂N . Since β̂N minimizes the squared residuals, this line is data
dependent and a bias arises so the mean coverage of .−∞, q.i/] is in general less than i=.N +1/.
A simple example in Appendix A illustrates this fact. This situation is similar to what happens in
post-selection inference. It was noted as early as in the 1960s by Buehler and Fedderson (1963)
and Brown (1967) that performing data-based model selection and deriving statistical inference
from the selected model as though the model were deterministically assigned leads to invalid
results; see also Pötscher (1991) and Benjamini and Yekutieli (2005) for more recent discussions.
This problem has attracted much interest in recent years; in particular Berk et al. (2013) proposed
to perform simultaneous inference to restore validity and Belloni et al. (2014, 2015), Tibshirani
et al. (2016) and Lee et al. (2016) derived valid statistical inference in various contexts that
include quantile regression, least absolute deviation regression, forward stepwise regression,
least angle regression and the lasso. In the present paper, the focus is different from that of
the aforementioned contributions since we do not make variable selection and are interested in
studying the mean coverage of the cost for a fixed structure. In this context, order statistics that
are valid for a deterministic real line lose their validity and our goal is that of providing valid
inference as explained in what follows.

1.2. Main results of this paper
We construct statistics q̄1, q̄2, : : : , q̄N such that each interval .−∞, q̄.i/] has a distribution-free
mean coverage i=.N +1/ (theorem 1). The statistics q̄1, q̄2, : : : , q̄N are obtained by adding a data-
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dependent margin to the empirical costs q1, q2, : : : , qN . Under mild assumptions, the margin is
shown to tend to 0 as N →∞ (theorem 2), which shows that the statistics are asymptotically
tight. Moreover, even with moderate data sets the margin turns out to be sufficiently small to
be practically useful. In the context of proposition 1, the margin is 0 and the result for order
statistics is recovered as a particular case (example 3). Moreover, the fact that the findings of
this paper are distribution free is key to their applicability since assuming that the distribution
F is available is unrealistic in most applications. These results are theoretically proved and
demonstrated through simulation experiments in this paper.

The intuitive idea behind the derivation of the statistics q̄i is as follows. A prediction set S.DN/

in the .X, Y/ domain with distribution-free mean coverage P{.X, Y/∈S.DN/}= i=.N +1/ is first
constructed. Then, q̄.i/ is obtained by upper bounding the supremum of the costs that are
associated with the pairs .X, Y/ that belong to S.DN/, so that .−∞, q̄.i/] carries a guaranteed
mean coverage.

The prediction set S.DN/ is constructed by resorting to so-called ‘conformal prediction’
(Vovk, 2004; Vovk et al., 2005; Gammerman and Vovk, 2007; Shafer and Vovk, 2008; Lei
et al., 2013; Lei and Wasserman, 2014). The creators of this approach had the brilliant intu-
ition that, in an exchangeable framework, discarding the pairs .X, Y/ that turn out to be the
less conformal in the set of N observations DN augmented by .X, Y/ generates regions with
an a priori known probability of containing a future observation. This approach was mainly
motivated by prediction purposes, namely the problem of finding a region in the .X, Y/ domain
for .XN+1, YN+1/. We construct a prediction set in exactly the same sense as that considered
in those references. In our paper, however, we make this construction as an intermediate step
towards our final goal, which is different from that of predicting .XN+1, YN+1/. Our final goal
is to derive rigorous and useful statistics to evaluate the performance of the least squares de-
sign for when the design is applied to a new member of the population. In this regard, it is
important to note that the choice of the conformity measure has a large influence on the shape
of the prediction set, which, in turn, affects the quality of the statistics on the cost. The first
contribution of this paper is that of introducing a suitable conformity measure that is geared
towards the achievement of tight statistics q̄.i/. This is obtained by making the prediction set
adhere to the part of the .X, Y/ domain that has low cost corresponding to β̂N . This property
is not met by other conformity measures that are available in the literature, and the interested
reader is referred to the on-line supplementary material, section 1, for a comparative exam-
ple.

The second contribution of the paper is that of providing an explicit and easy-to-compute
formula to evaluate the statistics q̄.i/. This is important because an explicit computation of
the supremum of the cost over a highly complex prediction set is in general difficult to per-
form, and simply defining the statistics as the supremum would leave the computational bur-
den to the end user, resulting in an impractical approach. The easy-to-compute formula is
carefully derived to reduce conservatism, as shown by asymptotic theorems and simulation
examples.

1.3. Other related literature
An early study that is related to the subject matter of this paper is Saw et al. (1984, 1988),
who derived data-dependent Chebyshev inequalities that can be used in a scalar set-up cor-
responding in our notation to X = 1 and Y ∈ R to build statistics with distribution-free mean
coverage. Applications of this result are found in various contexts among which are upper
confidence bounds methods (Xu and Nelson, 2013), neural curve tuning (Etzold and Eurich,
2005), distance concentration (Kabán, 2012), model reliability for train station parking errors
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(Chen and Gao, 2012) and testing procedures (Beasley et al., 2004). However, Saw et al. (1984,
1988) dealt only with a scalar set-up and, most notably, owing to their nature and scope, the
statistics that they obtained depend on the data sample only through the sample mean and
variance. Hence, information that is valuable for our purpose of characterizing q remains un-
exploited.

Tight results on distribution-free mean coverages have been previously obtained by us in a
different set-up: that of worst-case convex optimization (Calafiore and Campi, 2005). Moreover,
in Campi and Garatti (2008, 2011, 2016) and Carè et al. (2015) the results of Calafiore and Campi
(2005) were strengthened by also computing the distribution of the coverage, which is important
for determining confidence regions for the coverage values. All these studies hinge crucially on
the concept of support constraint (Calafiore and Campi, 2005), which is a concept which does
not carry over to the set-up of the present paper of least squares optimization. In fact, this is
the very reason why the fundamental least squares method has so far not been the object of
consideration in our studies.

1.4. Structure of the paper
All main results of the paper are provided and discussed in Section 2. Section 3 contains nu-
merical examples, whereas all the technical proofs are in the appendices.

The data and software code that are used in the numerical examples can be downloaded from
http://home.deib.polimi.it/sgaratti/coverageLS.htm.

1.5. Notation
For a matrix M:

(a) MT denotes the transpose of M;
(b) M† denotes the Moore–Penrose generalized inverse of M;
(c) ‖M‖ is the spectral norm, i.e. ‖M‖= sup‖x‖=1‖Mx‖, where the norm on the right-hand

side is Euclidean norm;
(d) λmax.M/ denotes maximum eigenvalue of M;
(e) for a symmetric M, M � 0 and M � 0 mean that M is respectively positive definite and

semidefinite. For a pair of symmetric matrices M and N, M � N and M � N mean that
M −N is respectively positive definite and semidefinite.

2. Statistics with distribution-free mean coverage

For convenience, the squared residuals are henceforth written as ‖Yi −Xiβ‖2 = .β −vi/
TKi.β −

vi/ + hi, where Ki = XT
i Xi, vi = X

†
i Yi and hi = ‖Yi − Xivi‖2. Note that Ki � 0, but Ki can be

singular as well, as for example in regression problems with scalar Y where Ki = XT
i Xi has

rank 1.
When ΣN

l=1,l �=iKl �0, let K̄i :=Ki +6Ki.ΣN
l=1,l �=iKl/

−1Ki. The modified empirical costs q̄i are
then defined as

q̄i :=

⎧⎪⎨
⎪⎩

.β̂N −vi/
TK̄i.β̂N −vi/+hi, if Ki ≺ 1

6

N∑
l=1
l �=i

Kl,

∞, otherwise:

.3/

The following theorem 1, which asserts that .−∞, q̄.i/] has a distribution-free mean coverage
i=.N +1/, is the main result of our study.
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Theorem 1 (distribution-free mean coverage). The relationship

P.q � q̄.i//� i

N +1
, i=1, : : : , N, .4/

holds for any probability distribution F .

The technical proof of this theorem is deferred to Appendix B. We now concentrate on
discussing the meaning and importance of theorem 1.

2.1. Geometric interpretation and intuitive explanation
q̄i has a nice geometric interpretation. The empirical cost qi is the value of the paraboloid
.β − vi/

TKi.β − vi/ + hi at β = β̂N . Instead, the modified empirical cost q̄i is obtained as the
value at β = β̂N of a paraboloid with increased curvature obtained by replacing Ki with K̄i; see
Fig. 2.

The margin q̄i −qi is given by

.β̂N −vi/
T

(
6Ki

(
N∑

l=1
l �=i

Kl

)−1

Ki

)
.β̂N −vi/, .5/

and it depends on the ratio of Ki to ΣN
l=1,l �=iKl. If Ki is small compared with ΣN

l=1,l �=iKl, then
q̄i ≈qi, which is normally the case except for moderate data sets (small N). In contrast, when Ki

is not small compared with ΣN
l=1,l �=iKl, the margin can be larger. The intuitive reason for this is as

follows. Corresponding to β̂N , the empirical costs are on average biased towards smaller values
than the distribution of costs for the whole population. This is because the least squares estimate
β̂N is chosen at the point where the sum of the squared empirical costs is minimized. This
biasing effect is larger for some empirical costs than for others. Suppose that one Ki is quite
large compared with the others, to the point that Ki is even bigger than ΣN

l=1,l �=iKl. Then,
the ith data point plays an important role in determining the solution since the paraboloid
.β − vi/

TKi.β − vi/ + hi has a strong ‘attraction effect’ compared with the attraction effect of

Fig. 2. The paraboloid .β � vi /
TKi .β � vi / C hi ( ) versus the paraboloid .β � vi /

T NK i .β � vi / C hi with
increased curvature ( ): their values at β D β̂N are the empirical cost qi and the modified empirical costNqi respectively
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other data points. As a consequence, the bias towards smaller values is more significant for the
ith paraboloid than for other paraboloids, which requires a bigger margin to compensate for
this effect. In normal circumstances, we cannot expect that the situation is as sharp as in the
hypothetical case that is used in the explanation above, and the margin given in expression (5)
plays a subtle role in making the statistics valid in all conditions.

2.2. Role of dimension d
We have already observed that, in regression problems with scalar Y , the matrix Ki =XT

i Xi has
rank 1. This means that the paraboloid .β − vi/

TKi.β − vi/ + hi that is associated with a pair
.Xi, Yi/ is flat in d − 1 orthogonal directions, and .Xi, Yi/ does not influence the solution β̂N

except in one direction only. As a consequence, at least d observations are required for q̄i to be
finite and, moreover, the margin decreases roughly as d=N. This behaviour has connections with
the notion of overfitting in statistical learning. In other problems, however, the importance of d

is toned down. This happens for example when all the Kis are identity matrices, in which case a
single pair .Xi, Yi/ impacts on all the d directions simultaneously; see example 2 in Section 2.6
for one example of this situation.

2.3. Convergence of margin to 0
In applications, it is almost the rule that ΣN

l=1,l �=iKl grows faster than the largest of the Kis. Then,
the term 6Ki.ΣN

l=1,l �=iKl/
−1Ki in the definition of K̄i vanishes as N grows, yielding K̄i → Ki,

and, hence, the margin tends to 0. This idea is formalized in the following theorem 2, where it
is shown that each margin q̄i −qi goes to 0 as N →∞ provided that the distributions F is thin
tailed.

Theorem 2 (convergence). Assume that

E[Ki]�0, .6/

∃ α, χ̄> 0 such that ∀ χ> χ̄ P.‖Ki‖>χ/� exp.−αχ/, .7/

∃ γ, ν̄ > 0 such that ∀ ν > ν̄ P.‖vi‖>ν/� exp.−γν/: .8/

Then,

max
i=1,:::,N

.q̄i −qi/ →
N→∞

0 almost surely:

The proof is in Appendix C.

2.4. Distribution-free nature of the result
Theorem 1 is universal, i.e. no assumptions on F are made. Assumptions limit the applicability
of a method in two distinct respects. First, the method is not applicable if the assumptions are
not satisfied. Second, even if the assumptions are satisfied, the user may not know whether
they are or are not. Thus, its distribution-free nature is a fundamental point of strength of
the analytical instruments that are introduced in this paper. However, distribution-free results
may be conservative. Theorem 3 below shows that, if q̄.i/ is replaced by q.i/ in the statement of
theorem 1, then the result in equation (4) holds with a reversed inequality for all Fs satisfying
a mild non-concentration condition. Thus, any possible conservatism is in the margin q̄i −
qi, and, since this margin converges to 0 under natural conditions (see theorem 2), and it is
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reasonably small in applications even for moderate data sets (see for example the examples
in Sections 2.6 and 2.7 and those in Section 3), the conclusion follows that the conservatism
due to the distribution-free nature of the results is mild in the context of the study of this
paper.

Theorem 3 (upper bound on the mean coverage of .−∞, q.i/]). Suppose that

P.‖Y −Xβ‖2 =λ/=0

holds for any .β, λ/∈Rd ×R. Then,

P.q �q.i//� i

N +1
, i=1, : : : , N:

The proof of theorem 3 is in Appendix D.

2.5. Order selection in regression problems
The findings of this paper are potentially useful for the problem of order selection in regression
problems. A full development of a selection methodology, however, calls for extra knowledge
that is not available at present, and we here briefly discuss this topic, which may serve as a
stimulus for further research. Our theorem 1 establishes a tight distribution-free mean coverage
result. When various model structures are considered, we can compare the modified empirical
costs q̄.i/ that, in different structures, attain the same mean coverage, and choose the structure
with lowest q̄.i/. This allows us to obtain a suitable trade-off between selecting a low order
model (which gives a large q.i/) and a high order model where the decrease of q.i/ is balanced
by an increase in the margin q̄.i/ − q.i/ (see Section 2.2). It is of interest to note that, for this
procedure to stand on solid theoretical grounds, the coverage must also have a low variance for,
otherwise, we run into the risk of selecting a structure with guaranteed mean coverage but with
significantly lower coverage for the sample at hand. Although our empirical experience shows
that the variance is indeed small in various contexts (see Section 3 for an example), at present
no theoretical result on the variance is available. We believe that establishing a result in this
direction would open important new avenues for model order selection.

We end Section 2 with two simple examples that further illustrate facts and results that we
have discussed so far. More complex numerical and empirical examples are given in Sec-
tion 3.

2.6. Example 2 (paraboloids with coplanar vertices)
Suppose that n=d =2, X= I and Y is a random variable uniformly distributed in [0, 1]2. Then,
Ki = I, vi =Yi and hi =0. Some of the cost functions ‖Yi −β‖2 are shown in Fig. 3(a).

In this case, Ki ≺ 1
6ΣN

l=1,l �=iKl ⇔N �8, and

K̄i = I + 6
N −1

I,

q̄i =qi + 6
N −1

qi,

for N � 8. Here qi is upper bounded by 2 (in fact qi � maxβ, Yi∈[0, 1]2‖Yi −β‖2 = 2), so in this
case the margin q̄i −qi ={6=.N −1/}qi �12=.N −1/, which tends to 0 as 1=N. Fig. 4 is a graph
depicting maxi=1,:::,N.q̄i −qi/ as a function of N in a simulated experiment.
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(a)
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Fig. 3. Cost functions kYi �Xiβk2 of (a) example 2 and of (b) example 3

2.7. Example 3 (stack of paraboloids)
Suppose that X and Y have the structure

X=
(

I2×2
01×2

)
,

Y =
(

02×1
α

)
,
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Fig. 4. Largest margin maxiD1,:::,N. Nqi �qi / of example 2 as a function of N

where subscripts denote the matrix dimension (for example 01×2 is a row vector with two 0s)
and α is a random variable uniformly distributed in [0, 1]. In this case, we have that Ki = I2×2,
vi =02×1 and hi =α2

i . Some of the cost functions ‖β‖2 +α2
i are depicted in Fig. 3(b).

Since all paraboloids have their vertex in zero, it turns out that β̂N = 0 and q̄i = qi =α2
i , i=

1, : : : , N, i.e. the margin is 0 in this case. As before, Ki ≺ 1
6Σl �=iKl ⇔N �8 and, for N �8, theorem

1 gives

P.q � q̄.i/ =q.i//� i

N +1
:

Interestingly, this is the same result as is obtained by applying proposition 1 to qi =α2
i , i.e. the

order statistics result is recovered from the distribution-free theorem 1.

3. Numerical examples

Two examples are provided. The first example refers to stock prices. The second example aims
at providing more intuition on certain concentration properties of the coverages.

3.1. An example in stock prices
We consider a data set of stock prices taken from the Bilkent University Function Approxima-
tion Repository (http://funapp.cs.bilkent.edu.tr/DataSets/). This is a public
repository for ‘training and demonstration by machine learning and statistics community’. The
stock prices refer to 10 aerospace companies and were daily collected from January 1988 to
October 1991. The whole data set can be represented by a 10 × 950 matrix P = .Pk,i/, whose
column Pi contains the stock prices (in US dollars) for the 10 companies at day i. Fig. 5 profiles
the trend of Pk,i as a function of the day i, for k =1, 2, : : : , 10.
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Fig. 5. Stock prices from January 1988 to October 1991

Stock prices can be modelled as a geometric Brownian motion, which, in discrete time, is
written as

Pk,i+1 =Pk,i +μkPk,i +σk,iPk,i,

where μk is the percentage drift for the kth stock price, and σk,i is a zero-mean independent
stochastic process that represents the percentage price volatility; see for example Hull (2009),
section 13.3. Letting

Lk,i = Pk,i+1 −Pk,i

Pk,i
=μk +σk,i

be the rate of return of company k at day i, it is of interest to estimate μ= .μ1 μ2 : : : μ10/T, which
is the vector of percentage drift, but also to collect knowledge on the dispersion of the random
variable Li = .L1,i L2,i : : : L10,i/

T.
In practice, μ and the probability distribution of σi = .σ1,i σ2,i : : : σ10,i/

T are time varying.
However, they can be considered constant over short time windows. In what follows, estimation
is performed over a moving window of 19 days, which is sufficiently short for the approximation
that μ and the probability distribution of σi are constant to hold approximately. The value μτ

of μ at the τ th time window is estimated by solving the least squares problem

β̂19 =arg min
β

19∑
i=1

‖β −Lτ−1+i‖2:

In this context, q = ‖β̂19 − Lτ+19‖2 is a synthetic scalar index—i.e. the norm reduces the 10-
dimensional vector of dispersions to a single real value—of how Lτ+19 distributes around the
estimate β̂19. It carries important information on the volatility of prices and can be used by
investors and governing bodies for decision making.

In the present set-up, we have that the empirical costs

qi =‖β̂19 −Lτ−1+i‖2, i=1, : : : , 19,
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Fig. 6. q.i/ (ı) versus Nq.i/ (�) in (a) the first and in (b) the last time window

correspond to the volatility that is observed over the time window, and the modified empirical
costs are

q̄i =
(

1+ 1
3

)
qi, i=1, : : : , 19:

Examples of the ordered q.i/ and q̄.i/ are given in Fig. 6.
According to theorem 1, the statistic q̄.i/ has a mean coverage that is no smaller than i=20.

Thus, as the time window slides along the time axis, the relationship q � q̄.i/ holds with a
frequency at least of i=20. This property has been experimentally verified and the results for
i=4, 8, 12, 16 are reported in Table 1. Interestingly, q.i/ gave instead empirical frequencies that
were systematically below i=20. With longer time windows the empirical results grow closer to
the theoretical evaluations: a fact that is in line with theorem 2. As an example, Table 2 gives
the results for a window of length 39.
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Table 1. Empirical frequencies
with which q� Nq.i/; N D19

i Estimate of i=20
P(q � q̄.i/)

4 0.28 0.2
8 0.51 0.4

12 0.69 0.6
16 0.85 0.8

Table 2. Empirical frequencies
with which q� Nq.i/; N D39

i Estimate of i=40
P(q � q̄.i/)

8 0.24 0.2
16 0.44 0.4
24 0.64 0.6
32 0.82 0.8

3.2. A simulation example that describes the distribution of the coverages
In this second example, we investigate through simulation how the coverage of .−∞, q̄.i/] dis-
tributes around its mean. When the distribution is peaked, the mean coverage approximates the
coverage for the given data set.

Take n= 1 and d = 20, and suppose that X is a random direction in R20 and Y is the scalar
product between X and a random Gaussian vector as follows:

X=uT=‖u‖ Y =Xv,

where u, v ∈ R20 are independent vectors both drawn according to a 20-variate normal den-
sity with identity covariance matrix and zero mean. (Note that K = XTX has rank 1; see the
discussion following theorem 1 for comments on how d affects q̄.i/.) For a given data set
DN = {.X1, Y1/, : : : , .XN , YN/}, the coverage P.q � q̄.i/|DN/ is a number indicating the prob-
ability level of the quantile q̄.i/. However, as the data set DN varies, the coverage of .−∞, q̄.i/]
changes, and we are interested in recording its variability. For concreteness, we let N =199 and
computed via Monte Carlo methods the coverage of the statistic q̄.0:8.N+1// with distribution-free
mean coverage 0:8 in 10000 repeated experiments.

In dark in Fig. 7(a) is the histogram of the coverage of .−∞, q̄.0:8.N+1//]. This histogram is
quite concentrated around its mean, and the coverage of .−∞, q̄.0:8.N+1//] is above 0:8 in most
cases. For completeness, the histogram of the coverage of .−∞, q.0:8.N+1//] is also depicted in
Fig. 7(a). This histogram shows values that are almost systematically smaller than 0:8. The fact
that the mean of the coverage of .−∞, q.0:8.N+1//] is smaller than 0:8 follows from theorem 3.

Further, Figs 7(b) and 7(c) depict the histograms of the coverages of .−∞, q̄.0:8.N+1//] and
.−∞, q.0:8.N+1//] for N =399 and N =3999 respectively. As N increases, the histograms become
increasingly more concentrated. Moreover, in agreement with theorem 2 where it is proved that
q̄.0:8.N+1// →q.0:8.N+1// almost surely, the two histograms approach each other.
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Appendix A: A simple example showing the bias of q(i)

Suppose that n = d = 1, X = 1 and Y is random with continuous distribution. N = 2 observations are
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(a)

(c)

(b)

Fig. 8. The three parabolas ( , .Y � β/2; , parabolas corresponding to the data set D2): (a)
q>q.2/; (b) q>q.2/; (c) q�q.2/

available. Based on D2 ={.1, Y1/, .1, Y2/}, the least squares estimate β̂2 and the empirical costs q1 and q2
are computed. We shall evaluate the probability that a new instance .1, Y/ is such that q � q.2/ and show
that this probability is strictly less than 2

3 . First, note that, conditionally on any set of three instances,
say S ={.1, Y ′/, .1, Y ′′/, .1, Y ′′′/}, the probability that each permutation of the elements in S is the same,
i.e. each element of S plays the role of new instance .1, Y/ with probability 1

3 . As a consequence, for
any set of three instances, the three situations that are represented in Fig. 8 are equally likely and, since
q � q.2/ holds in one out of the three situations, integrating over all possible sets of three instances yields
P.q �q.2//= 1

3 < 2
3 .

Appendix B: Proof of theorem 1

We prove a slightly stronger result than theorem 1. This stronger result is stated below as theorem 4. In
turn, we show that theorem 1 follows from theorem 4.

Matrices Ki, i=1, : : : , N, are defined in Section 2 as Ki =XT
i Xi. Thus, the Kis are symmetric and positive

semidefinite. Throughout, the following simplified notation is in use: ΣKl stands for ΣN
l=1Kl and Σl �=i Kl

stands for ΣN
l=1, l �=i Kl:

The following lemma is frequently used in this section.

Lemma 1. Assume that Σl �=iKl �0. For any γ �0, the following two equivalences hold:

Ki
1=2

(∑
l �=i

Kl

)−1

Ki
1=2 ≺γI ⇔Ki ≺γ

∑
l �=i

Kl, .9/

Ki
1=2

(∑
l �=i

Kl

)−1

Ki
1=2 �γI ⇔Ki �γ

∑
l �=i

Kl: .10/

Proof. The case γ =0 is easily verified by inspection. Suppose that γ >0. For given matrices A∈Rp×p, B∈
Rp×q and C∈Rq×q with A�0 and C�0, the following relationship between Schur complements holds: C−
BTA−1B�0 [�0]⇔A−BC−1BT �0 [�0]. Lemma 1 follows by taking A=γI, B=Ki

1=2 and C =Σl �=iKl. ��
We next introduce some definitions that are used later in the statement of theorem 4.
If Σl �=iKl �0, let
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γi :=λmax

{
K

1=2
i

(∑
l �=i

Kl

)−1

Ki
1=2

}
,

Wi :=Ki + .4+2γi/Ki

(∑
l �=i

Kl

)−1

Ki: .11/

Suppose further that γi <1=
√

2; then matrix 2ΣKl −Wi is invertible. To show this, note that, with γi being
the maximum eigenvalue of K

1=2
i .Σl �=iKl/

−1K
1=2
i , we have that

Ki
1=2

(∑
l �=i

Kl

)−1

Ki
1=2 �γiI, .12/

and, hence,

Wi =Ki + .4+2γi/Ki
1=2

(
Ki

1=2

(∑
l �=i

Kl

)−1

Ki
1=2

)
Ki

1=2

�Ki + .4+2γi/γiKi

= .1+4γi +2γ2
i /Ki: .13/

Applying lemma 1 to expression (12) gives Ki �γiΣl �=iKl, from which Ki �{γi=.1+γi/}ΣKl. Substituting
this result into equation (13), under the condition γi < 1=

√
2, yields

Wi � .1+4γi +2γ2
i /

γi

1+γi

∑
Kl ≺2

∑
Kl, .14/

which proves the invertibility of 2ΣKl −Wi.
If Σl �=iKl �0 and γi < 1=

√
2, define K̃i :=Wi +Wi.2ΣKl −Wi/

−1Wi. Let

q̃i :=
{

.β̂N −vi/
TK̃i.β̂N −vi/+hi, if

∑
l �=iKl �0 and γi < 1=

√
2,

∞, otherwise:
.15/

Theorem 4. The relationship

P.q � q̃.i//� i

N +1

holds for any probability distribution F .

Before proving theorem 4, we show that theorem 1 follows from theorem 4. For this, it is enough to show
that q̃i � q̄i, i=1, : : : , N. When q̄i =∞, this is trivially true, so we consider the case when q̄i is finite, which
holds if Ki ≺ 1

6 Σl �=iKl. In view of lemma 1, condition Ki ≺ 1
6 Σl �=iKl implies that γi < 1

6 , which strengthens
the condition γi < 1=

√
2 that is used in theorem 4. We now show that, if γi < 1

6 , then K̃i � K̄i, from which
q̃i � q̄i.

Because γi < 1
6 , expression (13) gives Wi �2Ki, so

2
∑

Kl −Wi �2
∑

Kl −2Ki =2
∑
l �=i

Kl:

Thus,

K̃i =Wi +Wi

(
2
∑

Kl −Wi

)−1
Wi

�Wi +Wi

(
2
∑
l �=i

Kl

)−1

Wi

=Ki +K
1=2
i

{
9+4γi

2
Φ+ .4+2γi/Φ2 +2.2+γi/

2Φ3

}
Ki

1=2,
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where we substituted expression (11) for Wi and let Φ=K
1=2
i .Σl �=iKl/

−1Ki
1=2. Since Φ�γiI, we obtain

K̃i �Ki +Ki
1=2

{
9+4γi

2
Φ+ .4+2γi/γiΦ+2.2+γi/

2γ2
i Φ
}

Ki
1=2

=Ki + .4:5+6γi +10γ2
i +8γ3

i +2γ4
i /Ki

(∑
l �=i

Kl

)−1

Ki

� K̄i,

where the last inequality follows from the fact that 4:5 + 6γi + 10γ2
i + 8γ3

i + 2γ4
i < 6 for γi < 1

6 . Wrapping
up, if Ki ≺ 1

6 Σl �=iKl, then K̃i � K̄i ⇒ q̃i � q̄i ⇒ theorem 1 follows from theorem 4.

B.1. Proof of theorem 4
To simplify the notation, let

Qi.β/ := .β −vi/
TKi.β −vi/+hi =‖Yi −Xiβ‖2, .16/

Q.β/ := .β −v/TK.β −v/+h=‖Y −Xβ‖2: .17/

With these definitions, we can write

β̂N =arg min
β

N∑
i=1

Qi.β/,

qi =Qi.β̂N/,
q =Q.β̂N/:

It is also convenient to introduce the minimizer of the least squares cost augmented with Q.β/, namely

β̂ :=arg min
β

{
N∑

i=1
Qi.β/+Q.β/

}
,

and the minimizer of the augmented least squares cost without the ith term, i.e.

β̂
[i]

:=arg min
β

{
N∑

l=1
l �=i

Ql.β/+Q.β/

}
, i=1, : : : , N: .18/

(If the solution is not unique, β̂ and β̂
[i]

are determined by the same tie-break rule as is used to determine
β̂N when the minimizer of the least squares cost is not unique.)

The following random variables m and mi, i=1, : : : , N, exhibit a precise ranking property indicated in
lemma 2. Define

m :=
{

Q.β̂N/+{Q.β̂N/−Q.β̂/}, if
∑

Kl �0,
∞, otherwise, .19/

mi :=
{

Qi.β̂
[i]

/+{Qi.β̂
[i]

/−Qi.β̂/}, if
∑

l �=iKl +K �0,
∞, otherwise.

.20/

Lemma 2.

P.m �m.i//� i

N +1
, i=1, : : : , N:

Proof. Random variables m and mi are all obtained by applying the same function to permutations of an
independent and identically distributed sample of N +1 elements, namely {.X1, Y1/, : : : , .XN , YN/, .X, Y/}.
Hence, m and mi are exchangeable random variables. Conditionally on a set of N + 1 fixed values taken
by m and mi in any order (i.e. the first value is taken by any one of the variables m or mi, the second
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value by any one of the remaining variables, and so on), the relationship m � m.i/ (which means that m
has the lowest value, or the second lowest, : : : , or the ith lowest) holds with probability i=.N +1/ or more
(more can occur because of ties). Integrating over all the possible values taken by m and mi, the result is
obtained. �

According to the terminology of Vovk et al. (2005), equations (19) and (20) introduce a conformity
measure, and m and mi are the corresponding conformity scores of .X, Y/ and .Xi, Yi/.

Now, for a given DN , Q.β̂N/ is a function of .X, Y/ or, equivalently, of .K, v, h/. For i=1, : : : , N, consider
the maximization problem

μi := sup
K,v,h

Q.β̂N/ subject to m �mi: .21/

In the on-line supplementary material, section 2, the validity of the following key relationship is proved
(the proof of equation (22) is rather technical, and it has been moved to the on-line supplementary material
for brevity):

μi � q̃i, i=1, : : : , N: .22/

Theorem 4 easily follows from expression (22). Indeed, note that expression (22) implies that

μ.i/ � q̃.i/, i=1, : : : , N: .23/

However, with the definition

νi := sup
K,v,h

Q.β̂N/ subject to m �m.i/, .24/

we also have that

νi �μ.i/, i=1, : : : , N, .25/

as can be argued by the following simple reasoning. Fix a value of i, say i= ī. Assume for simplicity that the
supremum in expression (24) is actually a maximum (if not, the proof follows by a limiting argument), and
let .KÅ, vÅ, hÅ/ be the maximizer. Corresponding to .KÅ, vÅ, hÅ/, m�m.ī/, which entails that .KÅ, vÅ, hÅ/
is feasible for at least N − ī+1 values of i in problem (21). Hence, since μi in problem (21) is obtained by
a supremum operation, νī =QÅ.β̂N/�μi for at least N − ī+1 values of i, which implies that νī �μ.ī/, i.e.
result (25).

Since νi �μ.i/ (relationship (25)) and μ.i/ � q̃.i/ (relationship (23)), we obtain νi � q̃.i/, and theorem 4
remains proven as follows:

P.q � q̃.i//=P{Q.β̂N/� q̃.i/}
�P{Q.β̂N/�νi}
�P.m �m.i//

� i

N +1
,

where the second-last inequality follows because νi is the supremum of Q.β̂N/ when m �m.i/, whereas the
last inequality is lemma 2.

Appendix C: Proof of theorem 2

Consider a function f.N/> 0 such that ln.N/=f.N/→0. Thus,

ln.N3/

αf.N/
= 3

α

ln.N/

f.N/
→0

and we have that

P

{
1

f.N/
max

i=1,:::,N
‖Ki‖>

ln.N3/

αf.N/

}
=P

{
max

i=1,:::,N
‖Ki‖>

ln.N3/

α

}
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�NP

{
‖Ki‖>

ln.N3/

α

}

�N exp
{

−α
ln.N3/

α

}
= 1

N2
,

where the last inequality follows from condition (7). Since Σ∞
N=11=N2 <∞, from the Borel–Cantelli lemma

(see for example Shiryaev (1995)) we conclude that

lim
N→∞

1
f.N/

max
i=1,:::,N

‖Ki‖=0 almost surely: .26/

Similarly, using expression (8) in place of expression (7), it can be proved that

lim
N→∞

1
f.N/

max
i=1,:::,N

‖vi‖=0 almost surely: .27/

However, condition (7) also guarantees that the strong law of large numbers applies, so

lim
N→∞

1
N

N∑
l=1

Kl =E[Ki] almost surely: .28/

Since E[Ki]�0 (condition (6)), results (26) and (28) with f.N/=N yield

lim
N→∞

min
i=1,:::,N

∥∥∥∥∥ 1
N

N∑
l=1
l �=i

Kl

∥∥∥∥∥� lim
N→∞

(∥∥∥∥ 1
N

N∑
l=1

Kl

∥∥∥∥− 1
N

max
i=1,:::,N

‖Ki‖
)

=‖E[Ki]‖
> 0 almost surely: .29/

Moreover, again using results (26) and (28) with f.N/=N, we also see that the relationship

1
N

Ki ≺ 1
7

1
N

N∑
l=1

Kl, i=1, : : : , N,

or, equivalently,

Ki ≺ 1
6

N∑
l=1
l �=i

Kl, i=1, : : : , N,

holds for N sufficiently large almost surely. Thus, almost surely, the q̄i defined in expression (3) are finite
and equal to .β̂N −vi/

TK̄i.β̂N −vi/+hi for N sufficiently large. Hence, using

K̄i =Ki +6Ki

(
N∑

l=1
l �=i

Kl

)−1

Ki,

it holds that

max
i=1,:::,N

.q̄i −qi/= max
i=1,:::,N

{.β̂N −vi/
TK̄i.β̂N −vi/+hi − .β̂N −vi/

TKi.β̂N −vi/−hi}

= max
i=1,:::,N

.β̂N −vi/
T.K̄i −Ki/.β̂N −vi/

� max
i=1,:::,N

6

∥∥∥∥∥
(

N∑
l=1
l �=i

Kl

)−1∥∥∥∥∥‖Ki‖2‖β̂N −vi‖2

� max
i=1,:::,N

6

∥∥∥∥∥
(

1
N

N∑
l=1
l �=i

Kl

)−1∥∥∥∥∥‖Ki‖2

N1=2

‖β̂N‖2 +‖vi‖2

N1=2
,
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for N sufficiently large. The last expression tends to 0 almost surely in view of results (29), (26) and (27)
with f.N/=N1=4, and the fact that

β̂N =
(

1
N

N∑
l=1

Kl

)−1 1
N

N∑
l=1

Klvl

converges almost surely. This concludes the proof.

Appendix D: Proof of theorem 3

To ease the presentation, the following notation is in order:

q[k]
i =Qi.β̂

[k]
/, i=0, : : : , N, k =0, : : : , N,

where Qi, i = 1, : : : , N, is defined in expression (16) and Q0 := Q, where Q is defined in expression (17),
β̂

[k]
, k =1, : : : , N, is defined in expression (18), and β̂

[0]
:= β̂N . In this new notation q is written as q[0]

0 , and
qi as q[0]

i , i= 1, : : : , N. Also, for k = 0, : : : , N, define q[k]
.i/ = ord.i/.q

[k]
0 , : : : , q[k]

k−1, q[k]
k+1, : : : , q[k]

N /, where ord.i/ is
the ith order statistic of the elements listed.

Fix a value of i∈{1, : : : , N}. By the independent and identically distributed nature of Q0, Q1: : : , QN ,
we have that

P.q[0]
0 �q[0]

.i//=P.q[k]
k �q[k]

.i//, k =1, : : : , N:

Hence, denoting by 1.·/ the indicator function, we obtain

P.q �q.i//=P.q[0]
0 �q[0]

.i//

= 1
N +1

N∑
k=0

P.q[k]
k �q[k]

.i//

= 1
N +1

N∑
k=0

E[1.q[k]
k �q[k]

.i//]

= 1
N +1

E

[
N∑

k=0
1.q[k]

k �q[k]
.i//

]
: .30/

The proof will be now completed by showing that

N∑
k=0

1.q[k]
k �q[k]

.i//� i .31/

holds almost surely, so that the right-hand side of equation (30) is bounded by i=.N +1/, which is the
conclusion of theorem 3. To show inequality (31), define Sk =ΣN

l=0, l �=kq[k]
l , k =0, : : : , N, and consider an Sk̄

such that

Sk̄ �Sk holds for at least i indices k different from k̄: .32/

The number of these indices k̄ is at least N + 1 − i. We show that q[k̄]
k̄

� q[k̄]
.i/. By contradiction, suppose

instead that q[k̄]
k̄

< q[k̄]
.i/. Then, for any index k such that q[k̄]

.i/ �q[k̄]
k , we have

Sk̄ =
N∑

l=0
l �=k̄

q[k̄]
l >

N∑
l=0
l �=k

q[k̄]
l :

Since q[k̄]
l =Ql.β̂

[k̄]
/ and β̂

[k]
is the minimizer of ΣN

l=0, l �=kQl.β/, we conclude that

Sk̄ >
N∑

l=0
l �=k

Ql.β̂
[k̄]

/�
N∑

l=0
l �=k

Ql.β̂
[k]

/=
N∑

l=0
l �=k

q[k]
l =Sk: .33/
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There are at least N + 1 − i values of k such that q[k̄]
.i/ � q[k̄]

k , so, by expression (33), there are at least
N + 1 − i values of k such that Sk̄ > Sk. This contradicts assumption (32). Thus, the conclusion is drawn
that q[k̄]

k̄
�q[k̄]

.i/ is verified for all the indices k̄, which, as seen, are at least N +1− i. Since equality q[k̄]
k̄

=q[k̄]
.i/

holds only with probability 0 by the theorem assumption, it follows that q[k̄]
k̄

> q[k̄]
.i/ holds almost surely for

the indices k̄, and inequality (31) holds almost surely. This concludes the proof.
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