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a b s t r a c t

In this paper we develop methods for evaluating uncertainties in the frequency response of a dynami-
cal system based on finitely many input–output data points. We extend the ‘‘Leave-out Sign-dominant
Correlation Regions’’ (LSCR) algorithm to deliver confidence regions with a guaranteed probability for the
frequency response atmultiple frequencies, andwe introduce a computationally efficient scheme that en-
ables the confidence regions to be constructed frequency by frequency. Simulation examples illustrating
the usefulness of the developed algorithm are provided.
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1. Introduction

In system identification, providing a description of the un-
certainties associated with the nominal system model is as im-
portant as obtaining the nominal model itself, especially for the
synthesis of robust controllers. A popular technique for evaluat-
ing the model quality is based on constructing confidence regions
using asymptotic system identification theory. This is a mature ap-
proach and the confidence regions can be computed relatively eas-
ily (see Ljung, 1999). However, in some cases using asymptotic
theorymay lead to unreliable results (seeGaratti, Campi, & Bittanti,
2004) when applied to a finite number of data points.

In this paper, we consider amethod for constructing confidence
regions based on finitely many data points as, e.g., considered in
Bayard (1993), Campi andWeyer (2005), denDekker, Bombois, and
Van den Hof (2008), Goodwin, Gevers, and Ninnes (1992) and Hjal-
marsson and Ninness (2006). Unlike methods based on asymp-
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totic theory, the developed method generates guaranteed confi-
dence regions for a finite number of data points. The developed
approach is based on the LSCR method introduced in Campi and
Weyer (2005) (see also Campi, Ko, & Weyer, 2009 and Campi &
Weyer, 2010), and it is extended to produce guaranteed confidence
regions for the frequency response of a dynamical system. As a fi-
nite number of data points does not provide any information about
the tail of the impulse response, prior information, such as expo-
nentially decaying bounds, is introduced and incorporated in the
algorithm in order to deal with tail effects. Moreover, an experi-
mental scheme is derived that allows the confidence regions to be
constructed separately frequency by frequency. This reduces the
computational burden significantly.

In the next subsection we give simple preview examples that
illustrate the main ideas of the proposed approach. Then, in Sec-
tion 2, the procedure used in the preview examples is generalized
to construct simultaneous confidence regions when the system is
excited by a multi-sine input signal. In Section 3 an experimental
scheme and an algorithm that allow the confidence regions to be
constructed at low computational costs are introduced. Two simu-
lation examples demonstrating the usefulness of the proposed ap-
proach are given in Section 4.

1.1. Preview examples

In this section we first introduce a simple example illustrating
the main ideas of LSCR by generating a confidence interval for the
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Fig. 1. Observed signal.

amplitude of a sinusoid, before moving on to the construction of a
confidence set for the frequency response of a dynamical system at
a given frequency. For further descriptions of the main ideas in the
LSCR algorithm, the reader is referred to Campi and Weyer (2006)
and Section 1.2 of Campi et al. (2009).

1.1.1. Confidence interval for the amplitude of a sinusoid
The signal of interest is a sinusoid observed in noise

yt = A0 cosωt + nt .

We have observations yt , t = 1, . . . ,N = 60. nt is a sequence
of zero mean independent random variables, symmetrically
distributed about zero. The frequency ω = 0.2 is known, but the
amplitude A0 is unknown. The observed signal is shown in Fig. 1.
We wish to construct a confidence interval for A0. Given the signal
model

ŷt(A) = A cosωt,

we compute the observation error

εt(A) = yt − ŷt(A) = (A0
− A) cosωt + nt ,

and correlate it with cosωt , which gives

ft(A) = εt(A) cosωt = (A0
− A) cos2 ωt + nt cosωt.

We note that E{
N

t=1 ft(A)} = 0 for A = A0, and is different from
zero for A ≠ A0. The idea is now to use random subsamples of
ft(A) to form empirical estimates of the correlation between the
observation error and cosωt . To this end we compute M = 20
empirical subsample estimates

gi(A) =

N
t=1

hi,t ft(A) =

N
t=1

hi,tεt(A) cosωt, i = 0, 1, . . . ,M − 1,

where hi,t are independent and identically distributed (i.i.d.)
random variables taking on the values 0 and 1 with probability 1/2
each. The exception is h0,t which is equal to zero for all t , and hence
g0(A) ≡ 0. This means that hi,t determines whether sample t is
used when gi(A) is computed.

The M − 1 non-zero gi(A) functions are shown in Fig. 2.
Corresponding to the true amplitude A0, gi(A0) is a sum of zero
mean random variables. It is therefore unlikely that nearly all of
the gi(A) functions are positive or negative for A = A0, and hence
we exclude those values of A where all the gi(A) functions take on
positive or negative values. Thus, the confidence interval marked
with a thick line in Fig. 2 is obtained by keeping those values of
A
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Fig. 2. gi(A) functions together with the confidence interval (thick line) and the
true amplitude (⋆).

A for at which at least q = 1 of the gi(A) functions are positive
and at least q = 1 are negative. It is shown in Theorem 1 that
the constructed confidence interval contains the true amplitude
(A0

= 1) with probability 1 − 2q/M = 0.9.
Next we move onto a more realistic situation where also the

phase is unknown and transient effects need to be taken into
account.

1.1.2. Confidence set for frequency response
Suppose that the true continuous-time system is given by

y(t) =


∞

0
g0(τ )u(t − τ)dτ + v(t), (1)

where g0(τ ) is the impulse response function, and v(t) is additive
noise. The transfer function G0(s) of the system (1) is the Laplace
transform of g0(τ ) given by

G0(s) =


∞

0
g0(t)e−stdt (2)

and in this example it is given by

G0(s) =
2.5

s + 2.5
. (3)

This information about the true system is given for completeness
of description but is unknown to the user.

The input to the system is a sinusoid

u(t) =


cos(t), t ≥ 0
0, t < 0. (4)

The output is given by

y(t) =

 t

0
g0(τ ) cos(t − τ)dτ + v(t)

= Re


∞

0
g0(τ )e−jτdτ ejt −


∞

t
g0(τ )e−jτdτ ejt


+ v(t)

= Re

G0(j) · ejt −


∞

t
g0(τ )e−jτdτ · ejt


+ v(t)

= a0 cos t − b0 sin t + ȳ(t)+ v(t),

where a0 , Re{G0(j · 1)}, b0 , Im{G0(j · 1)} and ȳ(t) ,
−Re{


∞

t g0(τ )e−jτdτ · ejt} represents the transient effects due to
initial conditions.
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Fig. 3. Input and output data.

Our task is to construct a confidence region for a0 and b0, the
frequency response parameters at 1 rad/s based on a finite number
of data points obtained by sampling the input and output at time
instants t = kT for k = 1, 2, . . . , 365 with T = 0.02 s. We assume
that the sampled noise v(kT ), k = 1, 2, . . . , 365, is a sequence of
independent (but not necessarily identically distributed) random
variables with symmetric distributions around zero and all v(kT )
admit densities.

One way to estimate the frequency response parameters and to
construct a confidence region is to measure the output once the
transients have died out. In order to avoid the transient phase of
the response we wait ℓ = 50 samples before starting the mea-
surements of the output y(kT ) (see Fig. 3). We take 315 samples of
the input and output. This corresponds to approximately one cycle
of the input signal.

From finite-length input and output data we cannot obtain full
information about the frequency response of the system since the
data do not carry any information about the tail of the impulse
response. The only way we can bound the uncertainty due to the
tail is via a priori knowledge and assumptions. Herewe assume that
a bound on the impulse response is available, i.e., parameters Mg
and ρ are known such that

|g0(τ )| ≤ Mge−ρτ , for some 0 < Mg < ∞ and ρ > 0.

For this example, we use the following prior information

Mg = 3, ρ = 1.7, (5)

which is shown in Fig. 4. Using this information, we can bound the
unknown value ȳ(t) as follows

|ȳ(t)| ≤


∞

t

g0(τ )
 dτ ≤


∞

t
Mge−ρτdτ =

Mge−ρt

ρ
, γ (t). (6)

We can compute the predictions of the output and the prediction
error for k = 51, . . . , 365 as follows

ŷk(θ) = a · cos(kT )− b · sin(kT ),
εk(θ) = y(kT )− ŷk(θ)

= ã · cos(kT )− b̃ · sin(kT )+ ȳ(kT )+ v(kT ),

where ã , a0−a, b̃ , b0−b and θ = [a, b]T denotes the parameter
vector. Using random subsamples of the data set we calculate the
following M = 400 scaled empirical correlation functions Ca

i (θ)
τ (sec)
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Fig. 4. Impulse response and its envelope.

and Cb
i (θ) between the prediction error and sines and cosines of

the same frequency as the input signal

Ca
i (θ) =

365
k=51

hi,kεk(θ) cos(kT )

=

365
k=51

hi,k

ã · cos2(kT )− b̃ · sin(kT ) cos(kT )

+ ȳ(kT ) cos(kT )+ v(kT ) cos(kT )

,

Cb
i (θ) =

365
k=51

hi,kεk(θ) sin(kT )

=

365
k=51

hi,k

ã · cos(kT ) sin(kT )− b̃ · sin2(kT )

+ ȳ(kT ) sin(kT )+ v(kT ) sin(kT )

,

where hi,k for i = 1, . . . , 399 and k = 51, . . . , 365 are i.i.d. with
distribution

hi,k =


0, with probability 0.5
1, with probability 0.5,

and are independent of the noise sequence v(kT ). The first string
is given by h0,k = 0 for k = 51, . . . , 365. Note that, using (6), we
have 365
k=51

hi,kȳ(kT ) cos(kT )

 ≤

365
k=51

hi,kγ (kT )| cos(kT )| , Γ a
i , 365

k=51

hi,kȳ(kT ) sin(kT )

 ≤

365
k=51

hi,kγ (kT )| sin(kT )| , Γ b
i ,

and, hence, at the true parameter, θ = θ0, for all i we obtain

Ca
i (θ

0)− Γ a
i ≤

365
k=51

hi,kv(kT ) cos(kT ) ≤ Ca
i (θ

0)+ Γ a
i , (7)

Cb
i (θ

0)− Γ b
i ≤

365
k=51

hi,kv(kT ) sin(kT ) ≤ Cb
i (θ

0)+ Γ b
i . (8)

Since v(kT ) is zero-mean, it is unlikely that nearly all of the sums365
k=51 hi,kv(kT ) cos(kT ), i = 1, . . . , 399 = M −1, take on positive

values or that nearly all of them take on negative values, hence, it is
unlikely that nearly all Ca

i (θ
0)+Γ a

i take on negative values or that
nearly all Ca

i (θ
0)− Γ a

i take on positive values, and the same holds
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Fig. 5. Confidence region for G0(j ·1) is the blank area, and ⋆ is the true parameter.

for Cb
i (θ

0)+Γ b
i and Cb

i (θ
0)−Γ b

i . Based on this observation, in order
to construct a confidence region we discard those regions in the
parameter space where Ca

i (θ)+Γ
a
i or Cb

i (θ)+Γ
b
i take on negative

value too many times and also the regions where Ca
i (θ) − Γ a

i or
Cb
i (θ) − Γ b

i take on positive value too many times, and hence
the name of the algorithm ‘‘Leave-out Sign-dominant Correlation
Regions’’.

Therefore, in order to find a confidence set, we excluded the
regions in the parameter space where less than q = 10 empirical
correlation function satisfies either Ca

i (θ)−Γ a
i < 0, Cb

i (θ)−Γ
b
i <

0, Ca
i (θ)+Γ a

i > 0 or Cb
i (θ)+Γ b

i > 0. The obtained confidence set
is shown as the blank area in Fig. 5, and according to Theorem 2 it
contains the true parameters with probability at least 1 −

2·2q
M =

0.9. In the figure, the region where at most 9 of the Ca
i (θ) − Γ a

i
functions were negative is marked with �, and the region where
at most 9 of the Ca

i (θ) + Γ a
i were positive is marked with ⃝.

Likewise,× and+ represents the regionswhere atmost 9 values of
Cb
i (θ)−Γ

b
i and Cb

i (θ)+Γ
b
i were negative andpositive, respectively.

As we can see, each correlation excludes a particular region of the
parameter space. Note that in order to construct the confidence
region we have not made any assumptions on the noise other than
it should be symmetrically distributed around 0. Still the algorithm
constructs a confidence region with guaranteed probability with a
finite number of data points.

2. Main algorithm

Herewe extend the approach in the preview example to amulti
sine input signal.

2.1. Problem definition

Data generating system and input–output data:
Consider the following linear continuous-time system with

additive noise

y(t) =


∞

0
g0(τ )u(t − τ)dτ + v(t), (9)

where g0(τ ) is the impulse response function of the true system.
The following multi-sine input is applied to the system

u(t) =


L

m=1

Am cosϕm(t), t ≥ 0

0, t < 0,
(10)

where

ϕm(t) , Ωmt + ψm. (11)

Let the input and output be sampled with sampling period T , and
we collect input–output data {u(kT ), y(kT )} for k = 1, 2, . . . ,N1.

We can express the output y(t) in (9) when the input is the
multi-sine input in (10) as

y(t) =

L
m=1

Am

 t

0
g0(τ ) cosϕm(t − τ) dτ + v(t)

=

L
m=1

Am


a0m cosϕm(t)− b0m sinϕm(t)+ ȳm(t)


+ v(t), (12)

where

a0m , Re

G0(jΩm)


, b0m , Im


G0(jΩm)


,

ȳm(t) , −Re


∞

t
g0(τ )e−jΩmτdτ · ejϕm(t)


.

(13)

Here ȳm(t) are the transients due to that u(t) = 0 for t < 0. ȳm(t)
is unknown, but can be bounded by

|ȳm(t)| ≤ Mge−ρt/ρ = γ (t) (14)

using the finite-length data argument in the preview example and
the assumption (A1) below. An iterativemethod for estimating the
bounds is proposed in de Vries and Van den Hof (1995).
Assumptions:
(A1) |g0(τ )| ≤ Mge−ρτ , for some 0 < Mg < ∞ and ρ > 0, where

Mg and ρ are known a priori.
(A2) The sampled noise v(kT ) is an independent random variable

with symmetric distribution around zero, and all v(kT ) admit
densities.

To keep the presentation simple we have imposed assumption
(A2) on the sampled noise. The assumption that the noise admits
densities can be dispensed with (see Campi et al., 2009), but here
it has been kept as it simplifies the presentation.
Objective:

The goal is to provide guaranteed confidence regions for θ0 ,
a01, b

0
1, . . . , a

0
L , b

0
L

T
using the data set {u(kT ), y(kT )}k=ℓ+1,...,N1

consisting ofN = N1−ℓ input–output datameasured afterwaiting
ℓ · T seconds to reduce the effect of the transients. Confidence
regions for themagnitude and phase can subsequently be obtained
using (13).

2.2. Construction of confidence regions

This section describes the procedure for constructing confi-
dence regions for the parameter θ0.
Procedure for the construction of confidence regions:
(P1) Compute the prediction and the corresponding prediction

error for k = ℓ+ 1, . . . ,N1

ŷk(θ) =

L
m=1

Am

am cosϕm(kT )− bm sinϕm(kT )


, (15)

εk(θ) = y(kT )− ŷk(θ), θ ,

a1, b1, . . . , aL, bL

T
. (16)
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(P2) Compute the correlation functions for r = 1, . . . , L and k =

ℓ+ 1, . . . ,N1

f ar,k(θ) , εk(θ) cosϕr(kT ),
f br,k(θ) , εk(θ) sinϕr(kT ).

(17)

(P3) Select a positive integer M and construct M binary (0,1)
stochastic strings of length N , N1 − ℓ as follows: Let h0 =

h0,ℓ+1, . . . , h0,N1 be the string of all zeros. Every element of
the remainingM −1 strings takes the value 0 or 1 with prob-
ability 0.5 each, and the elements are independent of each
other. However, if a string turns out to be equal to an already
constructed string, this string is removed and another string is
constructed according to the same rule to be used in its place.
Name the constructed non-zero strings h1,ℓ+1, . . . , h1,N1 ;
h2,ℓ+1, . . . , h2,N1; . . .; hM−1,ℓ+1, . . . , hM−1,N1 . Each of the con-
structed stochastic strings determines a set of time indices to
be used for calculating the empirical correlation functions in
Step (P4).

(P4) Compute the scaled empirical correlation functions for i =

0, . . . ,M − 1

Ca
r,i(θ) ,

N1
k=ℓ+1

hi,kf ar,k(θ), Cb
r,i(θ) ,

N1
k=ℓ+1

hi,kf br,k(θ). (18)

(P5) For a fixed r ∈ {1, . . . , L} select an integer q in the interval
[1, (M+1)/2) and find the regionΘa

r (Θ
b
r ) such that for all θ ∈

Θa
r (θ ∈ Θb

r ) at least q of the empirical correlation functions
Ca
r,i(θ) (C

b
r,i(θ)) satisfy Ca

r,i(θ)−Γ a
r,i < 0 and Ca

r,i(θ)+Γ a
r,i > 0

(Cb
r,i(θ)− Γ b

r,i < 0 and Cb
r,i(θ)+ Γ b

r,i > 0) where

Γ a
r,i , A

N1
k=ℓ+1

hi,kγ (kT ) |cosϕr(kT )| ,

Γ b
r,i , A

N1
k=ℓ+1

hi,kγ (kT ) |sinϕr(kT )| ,

(19)

and A ,
L

m=1 Am. γ (kT ) is obtained using (14). �

Note that (18) can be expressed as (20) given in Box I.
The intuitive idea behind Step (P5) is that, for the true parameter
θ = θ0, the terms in the parenthesis {·} in (20) disappear, and the
next term after each parenthesis can be bounded using (14) and
(19) N1
k=ℓ+1

hi,k

L
m=1

Amȳm(kT ) cosϕr(kT )

 ≤ Γ a
r,i N1

k=ℓ+1

hi,k

L
m=1

Amȳm(kT ) sinϕr(kT )

 ≤ Γ b
r,i.

Therefore, the empirical correlation functions evaluated at the true
parameter satisfy, for i = 0, . . . ,M − 1, the relations

Ca
r,i(θ

0)− Γ a
r,i ≤

N1
k=ℓ+1

hi,kv(kT ) cosϕr(kT ) ≤ Ca
r,i(θ

0)+ Γ a
r,i,

Cb
r,i(θ

0)− Γ b
r,i ≤

N1
k=ℓ+1

hi,kv(kT ) sinϕr(kT ) ≤ Cb
r,i(θ

0)+ Γ b
r,i.

(21)

Since v(kT ) is symmetrically distributed around zero, it is unlikely
that nearly all of Ca

r,i(θ
0)+ Γ a

r,i (or C
b
r,i(θ

0)+ Γ b
r,i) take on negative

values or nearly all of Ca
r,i(θ

0) − Γ a
r,i (or Cb

r,i(θ
0) − Γ b

r,i) take on
positive values. In Step (P5) we exclude the regions in parameter
space where all Ca

r,i(θ)+Γ
a
r,i’s (or C

b
r,i(θ)+Γ

b
r,i’s) are negative or all

Ca
r,i(θ) − Γ a

r,i’s (or Cb
r,i(θ) − Γ b

r,i’s) are positive except for a small
number q. We therefore expect that θ0
∈ Θa

r (θ0
∈ Θb

r ) with
high probabilitywhich is indeed the case as shown in the following
theorem.

Theorem 1. Under assumptions (A1) and (A2), the sets Θa
r and Θb

r
constructed above have the properties that

Pr{θ0
∈ Θa

r } ≥ 1 −
2q
M
, Pr{θ0

∈ Θb
r } ≥ 1 −

2q
M
.

Proof. See Appendix A. �

Each one of the sets Θa
r and Θb

r can be unbounded in some
directions of the parameter space, and they are therefore not
particularly useful. A useful confidence set can be constructed by
intersecting all of the confidence regions

Θ̂N =

L
r=1


Θa

r


Θb

r


.

The following theorem is immediate from Theorem 1 using the
Bonferroni inequality.

Theorem 2. Under assumptions (A1) and (A2),

Pr{θ0
∈ Θ̂N} ≥ 1 − 2L

2q
M
.

Theorem 2 shows that the constructed confidence sets contain the
true frequency responsewith a guaranteed user chosen probability
for a finite number of data points. Moreover, the confidence set
shrinks around the true parameters in the sense that any θ ≠ θ0

will eventually be excluded from the confidence set, provided that
an additional mild assumption on v(kT ) is satisfied.
Assumption (A3):
∞
k=1

E

v2(kT )


k2

< ∞.

Theorem 3 (Convergence). Under assumptions (A1), (A2) and (A3),
for every fixed θ ≠ θ0

Pr

∃N̄ | θ ∉ Θ̂N ,∀N > N̄


= 1.

Proof. See Appendix B. �

Hence, for any fixed θ ≠ θ0 there exists a realization dependent N̄
such that θ is excluded from the confidence set Θ̂N for all N > N̄ .

Remark 1 (Classical Correlation Method). The proposed method
for constructing confidence regions is closely connected to the
classical frequency analysis by the correlationmethod Ljung (1999,
p.171), where estimates of the frequency response are obtained by
considering the correlations between the output signal and cosines
and sines of the same frequency as the input signal. Here, in order
to evaluate the uncertainties in the frequency response, we use the
correlations between the output prediction error and cosines and
sines of the frequencies in the input signal. �

3. Computational aspects

Using the procedure in the previous section, we can construct
non-asymptotic confidence regions for the frequency response
at multiple frequencies. However, each of the empirical corre-
lation functions (20) depends on the whole set of parameters
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0)
Ca
r,i(θ) =

L
m=1

Am


(a0m − am)

 N1
k=ℓ+1

hi,k cosϕm(kT ) cosϕr(kT )


− (b0m − bm)
 N1

k=ℓ+1

hi,k sinϕm(kT ) cosϕr(kT )


+

N1
k=ℓ+1

hi,k

L
m=1

Amȳm(kT ) cosϕr(kT )+

N1
k=ℓ+1

hi,k v(kT ) cosϕr(kT ), i = 0, . . . ,M − 1,

Cb
r,i(θ) =

L
m=1

Am


(a0m − am)

 N1
k=ℓ+1

hi,k cosϕm(kT ) sinϕr(kT )


− (b0m − bm)
 N1

k=ℓ+1

hi,k sinϕm(kT ) sinϕr(kT )


+

N1
k=ℓ+1

hi,k

L
m=1

Amȳm(kT ) sinϕr(kT )+

N1
k=ℓ+1

hi,k v(kT ) sinϕr(kT ), i = 0, . . . ,M − 1.

(2

Box I.
a1, b1, . . . , aL, bL, and thus the resulting confidence regionsΘa
r and

Θb
r are not only dependent on ar and br , but also on all other pa-

rameters.
In this section we develop an experiment procedure and a

method for the generation of decoupling binary strings such that
Ca
r,i(θ) = Ca

r,i(ar) and Cb
r,i(θ) = Cb

r,i(br), thus we can construct the
confidence regions for a0r and b0r at frequencyωr independent of the
other parameters {am, bm}m=1,...,L (m≠r). Initially we assume that
Experimental assumption:

(E1) We can select the sampling period T and the total experiment
time Texp.

In Remark 6 we show how the experiment design can be carried
out when the experiment time and the sampling period are fixed a
priori.
(P0) Experiment design:

(a) Choose the set of frequencies in the multi-sine input (10) as
integer multiples of a baseline frequencyΩ0

Ωm = im ·Ω0 for im ∈ N, m = 1, 2, . . . , L. (22)

where i1 = 1 < i2 < · · · < iL = imax.
(b) Let Smin be the minimum number of desired samples per

period for the highest frequency Ωimax = imax · Ω0. Let S =

⌊Smin/2⌋ where ⌊(·)⌋ indicates that (·) is rounded down to the
nearest integer. Choose the sampling period T according to
the following procedure which guarantees that there will be
between Smin and 2Smin samples per period ofΩimax .

Let T0 = 2π/Ω0 be the period of the baseline frequency and
P = ⌊log2(2 · imax)⌋ + 1. Let the sampling period be

T =
T0

S · 2P
. (23)

(c) Choose the total number of samples such that the correlation
sums are computed over n periods of the baseline frequency,
i.e. let the total number of samples be N1 = N + ℓ = n ·N0 + ℓ
whereN0 = S ·2P is the number of samples in one period of the
baseline frequency. ℓ is the number of samples to be discarded
in order to reduce the effects of the initial conditions. �

In order to compute the confidence regions for each parameter
separately, it can be seen from (20) that we need for m, r =

1, . . . , Lwith r ≠ m

N1
k=ℓ+1

hi,k cosϕm(kT ) cosϕr(kT ) = 0,

N1
k=ℓ+1

hi,k sinϕm(kT ) sinϕr(kT ) = 0,
and form, r = 1, . . . , L
N1

k=ℓ+1

hi,k sinϕm(kT ) cosϕr(kT ) = 0,

where ϕm(kT ) = imΩ0kT + ψm.
Expressing each product of two trigonometric functions

as a sum of two trigonometric functions, we find that the
highest frequency generated from these products of trigonometric
functions is Ωmax = 2 · imax · Ω0. For the decoupling-string
generation, it suffices to find a set of time indices {kj} ⊂ {ℓ+1, ℓ+
2, . . . ,N1} such that for all im ∈ {1, . . . , 2 · imax}
{kj}

sin(imΩ0Tkj) = 0 and


{kj}

cos(imΩ0Tkj) = 0.
(24)

For this to happen, instead of Step (P3) in Section 2.2 we use
the new step (P3′) below for generating a set of binary strings.
The idea behind (P3′) is as follows: We divide each period of the
baseline frequency into 2P segments consisting of S time indices
each. Since we have n periods of the baseline frequency, we get
n · 2P segments. For the first segment in each period, we randomly
select a set of time indices (out of the S time indices), and we
denote these sets asK1,p for p = 1, . . . , n.Wedetermine the binary
string corresponding to K1,p and then use this string for all the
2P

− 1 remaining segments in the pth period. This way we obtain
one binary string for the whole sample length. This procedure is
repeatedM − 2 times and a binary string of all zeros is added. The
procedure is summarized below.
(P3′) Algorithm for decoupling string generation:

(1) Determine n index sets K1,p for p = 1, . . . , n such that each
index set K1,p consists of the elements from

{(p − 1)N0 + 1, . . . , (p − 1)N0 + S}

by randomly choosing the elements such that for all k ∈ {(p −

1)N0 + 1, . . . , (p − 1)N0 + S},
k ∈ K1,p, with probability 0.5
k ∉ K1,p, with probability 0.5. (25)

Let K1,p = {k1,p, . . . , kqp,p} with qp ≤ S and

Kj,p =

k1,p + (j − 1)S, k2,p + (j − 1)S, . . . , kqp,p

+ (j − 1)S


(26)

for j = 2, 3, . . . , 2P and p = 1, . . . , n. Then, construct

Jp =

K1,p,K2,p,K3,p, . . . ,K2P ,p


(27)
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for p = 1, . . . , n. By concatenating the sets Jp, we generate

J1 =


J1, J2, . . . , Jn


. (28)

This is a set of time indices which satisfies the decoupling
requirement (24) (for the proof see Appendix D.).

(2) By repeating Step (1)M−2 times and adding a null setJ0 = ∅,
we construct the set

J =


J0
J1
...

JM−1

 . (29)

However, if an index set turns out to be equal to an already
constructed set, remove this set and construct another set ac-
cording to Step (1) to be used in its place. FromJ, construct the
corresponding binary (0, 1) strings hi = hi,ℓ+1, hi,ℓ+2, . . . , hi,N1
of length N such that
hi,ℓ+k = 1, if k ∈ Ji
hi,ℓ+k = 0, if k ∉ Ji

(30)

holds for k = 1, . . . ,N and i = 0, 1, . . . ,M − 1.

Remark 2 (Theorems 1 and 2).Note that using the procedure (P3′)
Ca
r,i(θ) can be written as

Ca
r,i(θ) = Ar(a0r − ar)

N1
k=ℓ+1

hi,k cos2 ϕr(kT )

+

N1
k=ℓ+1

hi,k

L
m=1

Amȳm(kT ) cosϕr(kT )

+

N1
k=ℓ+1

hi,k v(kT ) cosϕr(kT ),

which can be rewritten as

Ca
r,i(θ) = Ar(a0r − ar)

n
p=1

l+S
k=ℓ+1

hi,(p−1)2P+k

×

2P
j=1

cos2 ϕr

(k + (p − 1)2PS + (j − 1)S)T


+

n
p=1

ℓ+S
k=ℓ+1

hi,(p−1)2P+k

×

2P
j=1

Amȳm

(k + (p − 1)2PS + (j − 1)S)T


× cosϕr


(k + (p − 1)2PS + (j − 1)S)T


+

n
p=1

ℓ+S
k=ℓ+1

hi,(p−1)2P+k

×

2P
j=1

v

(k + (p − 1)2PS + (j − 1)S)T


× cosϕr


(k + (p − 1)2PS + (j − 1)S)T


= Ar(a0r − ar)

n
p=1

ℓ+S
k=ℓ+1

hi,(p−1)2P+kĀr(p, k)

+

n
p=1

ℓ+S
k=ℓ+1

hi,(p−1)2P+k

B̄r(p, k)+ C̄r(p, k)


,

where

Ār(p, k) =

2P
j=1

cos2 ϕr

(k + (p − 1)2PS + (j − 1)S)T


,

B̄r(p, k) =

2P
j=1

Amȳm

(k + (p − 1)2PS + (j − 1)S)T


× cosϕr


(k + (p − 1)2PS + (j − 1)S)T


,

C̄r(p, k) =

2P
j=1

v

(k + (p − 1)2PS + (j − 1)S)T


× cosϕr


(k + (p − 1)2PS + (j − 1)S)T


.

From the construction of the decoupling strings hi,(p−1)2P+k, p =

1, . . . , n, k = ℓ+ 1, . . . , ℓ+ S are i.i.d. with replacement in case
of identical strings and C̄r(p, k) are independent and symmetrically
distributed around zero. A similar expression can be obtained for
Cb
r,i(θ). Using the above expression it follows from an inspection of

the proofs that Theorems 1 and 2 still hold. �

Remark 3 (Shape of The Confidence Regions and Computational
Load). As shown in the previous remark each correlation function
depends only on one parameter, i.e., Ca

r,i(θ) = Ca
r,i(ar), C

b
r,i(θ) =

Cb
r,i(br). This means that each correlation function determines the

maximum and minimum values of the corresponding parameter
in the confidence regions. Hence, the shape of confidence regions
is rectangular, as illustrated in the simulation example in Sec-
tion 4.1. This fact significantly reduces the computational load. The
regions can be determined by evaluating candidate parameter val-
ues on a grid, and the number of grid points now increases linearly
rather than exponentially in the number of parameters which cor-
responds to a linear increase in the number of frequencies. Another
aspect that comes into play when assessing the computational
complexity is the required resolution in the LSCR region evalua-
tions which essentially determines the size of the grid in the θ-
space. Hence for a given domain of exploration, the computational
load turns out to be proportional toM · N· (number of parameters
in θ)· (inverse of grid size). �

Remark 4 (Magnitude and Phase Formulation). The procedures for
construction of confidence regions in terms of the real and imagi-
nary parts of the frequency response can be easily modified to pro-
duce confidence regions for the magnitude and phase by express-
ing the predictor in terms of the magnitude and phase instead of
(15), as remarked in Ko, Weyer, and Campi (2007) and Ko, Weyer,
and Campi (2008). However, the magnitude and phase at each fre-
quency cannot be decoupled as above in the calculations of the em-
pirical correlation functions. Therefore, computationally it is better
to construct confidence regions for the magnitude and phase by
converting the confidence regions for the real and imaginary parts
using (13). �

Remark 5 (Algorithm Implementation).
(1) Initial parameter estimation: In Step (P1), one needs candidate

values of the parameter θ to compute the prediction error. In
someapplications, prior knowledge can beused to select a suit-
able range for θ. In other cases, a parametric or non-parametric
identification technique (see e.g. Ljung (1999) and Pintelon and
Schoukens (2001)), can be applied to find an initial estimate,
and a search for the LSCR region can be conducted by explor-
ing the θ-domain using this estimate as a starting point.

(2) Binary string generation: As we do not allow for string repeti-
tion, themaximum number of strings is 2N . While this number
increases rapidly with N , for small data sets it can pose some
practical limits on the number of empirical correlation func-
tions that can be constructed in Step (P3) of the procedure. �
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Remark 6 (Approximate Method for Fixed Sampling Period and
Experiment Time). For a fixed a priori sampling period T and a total
experiment time Texp, we can find a set of approximate frequency
points

Ω̂ =

Ω̂m = îm · Ω̂0 for îm ∈ N,

m = 1, 2, . . . , L (with î1 = 1)

, (31)

by minimizing errors between the frequencies in (31) and the
desired frequencies. The resulting approximate baseline frequency
Ω̂0 must satisfy the constraint corresponding to (23). That is, we
obtain an approximate set of frequencies by solving the following
minimization problem:

min
x

L
m=1

αm


Ωm − Ω̂m(x)

2

s.t. Ω̂0 =
2 · π

Ŝ · 2P̂ · T
,

Ω̂m = îmΩ̂0, m = 1, . . . , L, with î1 = 1
P̂ = ⌊log2(2 · îL)⌋ + 1,
Sℓ ≤ Ŝ ≤ Su,
2π/Ω̂0 < Texp,
1 < î2 < î3 < · · · < îL < iu,

x =


Ŝ, î2, î3, . . . , îL

T
∈ NL,

(32)

whereαm is theweighting factor for themth frequency, Sℓ, Su and iu
are given by the user. Once the approximate frequencies have been
obtained, the procedure (P3′) can be used to generate decoupling
strings. This kind of problem is called Integer Program where
the vector x consists of integers. There are several commercial
packages for solving integer nonlinear program such asMathworks
(2013) or Holmström, Göran, and Edvall (2010). �

4. Simulation example

In this section,we present two simulation examples to illustrate
the procedures for constructing confidence regions developed in
the previous sections. We consider the same first-order system as
described by (1) and (3) in the preview example in Section 1.1 and
construct simultaneous confidence regions for a two-frequency
and a ten-frequency case.

4.1. Two-frequency case

In order to construct confidence regions atΩ1 = 1 andΩ2 = 2
rad/s (in this case the baseline frequency corresponds to Ω0 =

Ω1 = 1 rad/s), we first determine the sampling time period
T = 0.0262 s using (23) with imax = 2, P = 3, and S = 30. The
number of the samples within one period of the baseline sinusoid
is N0 = 240. By choosing n = 4, the total number of samples to
be used for the construction of the confidence regions is n · N0 =

4 × 240 = 960.
By applying the following input signal to the system

u(t) =


cos(Ω1t)+ cos(Ω2t), t ≥ 0
0, t < 0

and gathering the output measurements {y(kT )}, we construct
confidence regions for the frequency responses at the two frequen-
cies. In order to avoid the transient phase, we discard the first
ℓ = 150 data points, and then collect 960 samples of input–output
data. The total number of data points is henceN1 = 1110. The sam-
pled noise v(kT ) is a zero-mean Gaussian white noise sequence
with variance of 0.162. This information about the noise is given for
completeness of description but it is unknown to the user except
for the fact that v(kT ) is an independent sequence with symmetric
distribution around zero.

The parameter vector is θ0
= [a01, b

0
1, a

0
2, b

0
2]

T with a0i =

Re{G0(jΩi)} and b0i = Im{G0(jΩi)}. The parameters bounding the
tail are Mg = 3 and ρ = 1.7. The prediction and prediction error
are given by

ŷk(θ) =

2
m=1


am cos(ΩmkT )− bm cos(ΩmkT )


,

εk(θ) = y(kT )− ŷk(θ), for k = 151, . . . , 1110,

and we calculate

f ar,k(θ) = εk(θ) · cos(ΩrkT ), f br,k(θ) = εk(θ) · sin(ΩrkT )

for r = 1, 2 and k = 151, . . . , 1110.
In order to construct separate confidence regions for the

parameters, we generate decoupling binary strings by following
the steps in (P3′) of Section 3. We generate n = 4 index sets K1,p
for p = 1, . . . , 4 according to (25) with S = 30. Then, we generate
Kj,p for j = 1, . . . , 8 and p = 1, . . . , 4 as in (26). Jp is constructed
as

Jp =

K1,p, K2,p, . . . , K8,p


, for p = 1, . . . , 4

and finally we construct

J1 =


J1, J2, J3, J4


.

By repeating this procedure 798 times and adding the null set
J0, we obtain the final set J in (29) with M = 800 and the
corresponding binary strings {h0; h1; . . . ; hM−1} using (30).

Fig. 6 illustrates the generation of decoupling time indices: if
a time index k0 is randomly chosen in the first segment, then 7
additional time indices are chosen in the remaining 7 segments
separated by S = 30 samples from each other. It can be observed
that these eight time indices satisfy the requirement (24) for the
four frequenciesΩ0, 2Ω0, 3Ω0, 4Ω0.

Using the generated binary strings we calculate the scaled
empirical correlation functions for r = 1, 2 and i = 0, . . . , 799

Ca
r,i(θ) =

1110
k=151

hi,kf ar,k(θ), Cb
r,i(θ) =

1110
k=151

hi,kf br,k(θ).

The confidence regionΘa
r is constructed by discarding those values

of ar for which at most four empirical correlation functions satisfy
Ca
r,i(θ) − Γ a

r,i < 0 or Ca
r,i(θ) + Γ a

r,i > 0. The construction for Θb
r

is similar. Then, following Theorem 2 with L = 2 and q = 5, θ0

belongs to the simultaneous region Θ̂ = ∩
2
r=1(Θ

a
r ∩ Θb

r ) with
probability at least 1 − 2 · 2 · 2 · 5/800 = 0.95.

These results are shown in Figs. 7 and 8 where the blank areas
are the confidence regions at each frequency and the true values
are marked with ⋆. The regions where at most four Ca

r,i(θ) −

Γ a
r,i functions were negative are marked with �, and the regions

where at most four Ca
r,i(θ) + Γ a

r,i were positive are marked with
⃝. Likewise × and + represents the regions where at most
four values of Cb

r,i(θ) − Γ b
r,i and Cb

r,i(θ) + Γ b
r,i were negative

and positive, respectively. As each function only depends on one
parameter, the confidence regions are rectangular, and each step
in the construction excludes a particular region of the parameter
space.
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Fig. 6. Generation of a set of decoupling time indices: (Left) Solid: sin(Ω0T ),
Dashed: sin(2Ω0T ), Dotted: sin(3Ω0T ), Dash–Dot: sin(4Ω0T ), (Right) Solid:
cos(Ω0T ), Dashed: cos(2Ω0T ), Dotted: cos(3Ω0T ), Dash–Dot: cos(4Ω0T ).
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Fig. 7. Confidence region for G0(jΩ1).
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Fig. 8. Confidence region for G0(jΩ2).

4.2. Ten-frequency case

Consider the same system as in the previous subsection. Our
task is now to construct a simultaneous confidence regionwith 95%
probability for the frequency response at the ten frequencies

Ω = {0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8} rad/s (33)

(the baseline frequency is Ω0 = 0.1 rad/s). The available experi-
ment time Texp = 300 seconds. Here we apply a Schroeder-phased
multi-sine input (Bayard, 1993) with the ten frequencies. The am-
plitude and phases are given by

Am =

2/L, ψm = 2π

m
r=1

rA2
r /2 =

2π
L

m(m + 1) (34)

with L = 10 form = 1, 2, . . . , 10.

4.2.1. CASE 1: freely selectable sampling period
Here P = 8, and choosing S = 4 gives the sampling period

T = 0.0614 s from (23) and the number of the samples within one
period of the baseline sinusoid is N0 = 4 · 28

= 1024 samples.
Out of approximately Nexp = Texp/T = 4889 samples available,

after waiting ℓ = 793 samples, we gather 4096 samples which
corresponds to n = 4 periods of the baseline sinusoid, and cal-
culate 4000 scaled empirical correlation functions after generating
decoupling binary strings.

Figs. 9 and 10 show the constructed simultaneous confidence
region (converted using (13)) with probability at least 1 − 2 · 10 ·

2 · 5/4000 = 0.95 with L = 10, M = 4000, and q = 5. In
this example the sampled noise sequence v(kT ) is a white noise
sequence uniformly distributed on [−0.25, 0.25].

4.2.2. CASE 2: a priori fixed sampling period
For the same system and the task considered in CASE 1, suppose

that the sampling period is now fixed as Tfix = 1/16 s = 0.0625 s
for the same experiment time Texp = 300 s so that the total number
of samples available is now Nexp = Texp/Tfix = 4800 samples.

Wewould like to find a set of frequency points, Ω̂, which allows
decoupling strings with the fixed sampling period Tfix. To do this,
we solve the integer program (32). To see the effect of the weight-
ing factor αm, m = 1, . . . , 10, we consider two different sets of
weighting factors: one is the unity-weighting set consisting of all
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Fig. 9. True frequency response and simultaneous 95% confidence region:
magnitude plot.
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Fig. 10. True frequency response and simultaneous 95% confidence region: phase
plot.

ones α(1)m = 1, m = 1, . . . , 10, and the other is the exponen-
tial weighting set whose weights decrease with frequency given
by α(2)m = (Ω1/Ωm)

2. For both cases, we used the fixed parameters
Sℓ = 4 and Su = 10.

The results are shown in Table 1. Compared to the unity-
weighting case, the exponential weighting set resulted in more
balanced frequencies for the ten frequencies. Furthermore, the
exponential weighting set yielded Ŝ = 4 and P̂ = 8 and thus the
number of samples in one approximate baseline sinusoid is Ŝ ·2P̂

=

1024 samples. Hence we may use up to 4 cycles (=4096 sam-
ples) of the approximate baseline sinusoid. However for the unity-
weighting case we can use only 3072 samples corresponding to 2
cycles of the approximate baseline sinusoid. By applying the proce-
dure (P3′) in Section 3 we can construct simultaneous confidence
regions for the approximate frequency points given in Table 1.

5. Conclusion

In this paper, we have extended the LSCR algorithm introduced
in Campi and Weyer (2005) to the problem of constructing confi-
dence regions for the frequency response at multiple frequencies
using a finite number of input–output data points. No information
about the tail of the impulse response can be obtained from a fi-
nite number of data points, and hence a priori information has been
used to bound the effects of the tail. Three theorems have been es-
tablished describing the probabilistic properties of the constructed
confidence regions: Theorem 1 shows that the constructed con-
fidence sets contain the true real and imaginary parts of the fre-
quency response at a single frequency, while Theorem 2 extends
Theorem 1 to cover the frequency response at multiple frequen-
cies. Theorem3proved that the constructed confidence set eventu-
ally converges to the true frequency response as the number of data
points increases. In order to reduce the computations required for
implementing the general algorithm for multiple frequencies, we
developed a fast numericalmethodwith decoupling binary strings.
The developed algorithm was demonstrated with good results in
two simulation examples with multi-sine inputs.
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Appendix A. Proof for Theorem 1

For the proof of the main theorem, we first state the following
propositions from Campi et al. (2009) and Campi and Weyer
(2010).

Proposition 1. Let H be a stochastic M×N matrixwith elements hi,k,
i = 0, . . . ,M−1, k = 1, . . . ,N, constructed according to point (P3)
of the algorithm in Section 2.2, and further let ξ , [ξ1, . . . , ξN ]

T be
a vector independent of H of mutually independent random variables
symmetrically distributed around 0. Given an ī ∈ [0,M − 1], let Hī
be the M × N matrix whose rows are all equal to the īth row of H.
Then, Hξ and (H − Hī)ξ have the same M-dimensional distribution
provided that the īth element of (H−Hī)ξ (which is 0) is repositioned
as the first entry of the vector.

The next proposition proves that the elements of the vector Hξ
exhibit a precise ordering property. Through a simplemodification
of the proof for Proposition 4 in Campi et al. (2009) this can be
easily proved.

Proposition 2. Let H and ξ be as in Proposition 1, and in addition
assume that ξ admits a density. Then, the random vector Hξ has
the following property: each element of the vector Hξ has the same
probability 1/M to be in the jth position (i.e. there are exactly j − 1
other elements in Hξ smaller than the variable under consideration)
and this holds for any choice of j between 1 to M.

Now consider the following events (with the notation ξk ,
v(kT ) cosϕr(kT ))

A =

 N1
k=ℓ+1

hi,kξk < 0 for at most q − 1 selections of i


  N1
k=ℓ+1

hi,kξk > 0 for at most q − 1 selections of i

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Table 1
Approximate frequency points for different weighting factors using the Integer Programming.

m Ωm α
(1)
m Ω̂

(1)
m x(1)opt α

(2)
m Ω̂

(2)
m x(2)opt

1 0.1 1 0.0654 Ŝ = 6, P̂ = 8 1.00000 0.0982 Ŝ = 4, P̂ = 8
2 0.2 1 0.1963 î2 = 3 0.25000 0.1963 î2 = 2
3 0.4 1 0.3927 î3 = 6 0.06250 0.3927 î3 = 4
4 0.6 1 0.5890 î4 = 9 0.02778 0.5890 î4 = 6
5 0.8 1 0.7854 î5 = 12 0.01563 0.7854 î5 = 8
6 1.0 1 0.9817 î6 = 15 0.01000 0.9817 î6 = 10
7 2.0 1 2.0289 î7 = 31 0.00250 1.9635 î7 = 20
8 4.0 1 3.9924 î8 = 61 0.00063 4.0252 î8 = 41
9 6.0 1 6.0214 î9 = 92 0.00028 5.9887 î9 = 61

10 8.0 1 7.9849 î10 = 122 0.00016 7.9522 î10 = 81
and

B =


Ca
r,i(θ

0)Γ a
r,i < 0 for at most q − 1 selections of i


 

Ca
r,i(θ

0)+ Γ a
r,i > 0 for at most q − 1 selections of i


. (A.1)

Then, in view of Proposition 2 we have

Pr(A) =
2q
M

(A.2)

since an element, say the jth, of the vector Hξ is
N1

k=ℓ+1 hj,k · ξk,
From (21), we have

Ca
r,i(θ

0)− Γ a
r,i ≤

N1
k=ℓ+1

hi,kξk ≤ Ca
r,i(θ

0)+ Γ a
r,i. (A.3)

If there are at most q − 1 functions such that Ca
r,i(θ

0) − Γ a
r,i < 0,

then from (A.3), there are also at most q − 1 functions such thatN1
k=ℓ+1 hi,kξk < 0. Similarly, if there are at most q − 1 functions

such that Ca
r,i(θ

0) + Γ a
r,i > 0, then there are also at most q − 1

functions such that
N1

k=ℓ+1 hi,kξk > 0. Hence, we have B ⊂ A and

Pr(B) ≤ Pr(A). (A.4)

Suppose that we have extracted a probabilistic outcome β from
B. Then, from (A.1), either Ca

r,i(θ
0) − Γ a

r,i < 0 for at most q − 1
selections of i or Ca

r,i(θ
0) + Γ a

r,i > 0 for at most q − 1 selections
of i, so that θ0

∉ Θa
r (recall the construction of Θa

r ). Vice versa, if
β ∉ B, then Ca

r,i(θ
0) − Γ a

r,i < 0 for at least q selections of i and
Ca
r,i(θ

0) + Γ a
r,i > 0 for at least q selections of i, yielding θ0

∈ Θa
r .

Using (A.2) and (A.4), the conclusion is drawn that Pr(θ0
∈ Θa

r ) ≥

1 − 2q/M . Pr(θ0
∈ Θr

b) ≥ 1 − 2q/M can be proved similarly. �

Appendix B. Proof for Theorem 3

Before proving the convergence,weneed the following lemmas.

Lemma 1. For ΩT ≠ 0, as N −→ ∞, we have

(1) 1
N

N
k=1 cos(ΩTk) −→ 0 and 1

N

N
k=1 sin(ΩTk) −→ 0,

(2) 1
N

N
k=1


hi,k − 0.5


cos(ΩTk) −→ 0 and

1
N

N
k=1


hi,k − 0.5


sin(ΩTk) −→ 0 with probability 1,

(3) 1
N

N
k=1 hi,k cos(ΩTk) −→ 0 and

1
N

N
k=1 hi,k sin(ΩTk) −→ 0 with probability 1,

(4) 1
N

N
k=1 hi,kγ (kT ) |cosϕr(kT )| −→ 0 and

1
N

N
k=1 hi,kγ (kT ) |sinϕr(kT )| −→ 0 with probability 1.
Proof. (1) As 1N
N

k=1

ejΩTk

 =

 1N ejΩT
− ejΩT (N+1)

1 − ejΩT


≤

1
N

|ejΩT
| + |ejΩT (N+1)

|

|1 − ejΩT |

≤
1
N

2
|1 − ejΩT |

−→ 0 as N −→ ∞,

limN→∞

N
k=1

ejΩTk

N = limN→∞

N
k=1

(cosΩTk+j sinΩTk)
N = 0.

Hence (1) is proved.
(2) Since E{(hi,k − 0.5) cos(ΩTk)} = 0 and E{(hi,k − 0.5)2

cos2(ΩTk)} ≤ 0.25, (2) follows from Kolmogorov’s strong law
of large numbers, see Appendix C.

(3) This result can be obtained directly using (1) and (2).
(4) This follows from (14) and

1
N

N
k=1

hi,ke−ρkT
| cosϕr(kt)| ≤

1
N

N
k=1

e−ρkT

=
1
N

e−ρT
− e−ρ(N+1)T

1 − e−ρT
−→ 0 as N −→ ∞. �

Lemma 2. Let ãr = a0r − ar , b̃r = b0r − br , and N = N1 − ℓ. Then as
N −→ ∞

1
N


Ca
r,i(θ)± Γ a

r,i


−→

Ar ãr
4
,

1
N


Cb
r,i(θ)± Γ b

r,i


−→ −

Ar b̃r
4
, with probability 1

(B.1)

for all i = 0, 1, . . . ,M − 1 and r = 1, 2, . . . , L.

Proof. From (20) and (19), we have

1
N


Ca
r,i(θ)± Γ a

r,i


= Ar ãr

1
N

N1
k=ℓ+1

hi,k cos2 ϕr(kT )

− Ar b̃r
1
N

N1
k=ℓ+1

hi,k cosϕr(kT ) sinϕr(kT )

+

L
m=1(m≠r)

Am


ãm


1
N

N1
k=ℓ+1

hi,k cosϕm(kT ) cosϕr(kT )


− b̃m


1
N

N1
k=ℓ+1

hi,k sinϕm(kT ) cosϕr(kT )


+
1
N

N1
k=ℓ+1

hi,k

L
m=1

Amȳm(kT ) cosϕr(kT )
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+
1
N

N1
k=ℓ+1

hi,k v(kT ) cosϕr(kT )

± A
1
N

N1
k=ℓ+1

hi,kγ (kT ) |cosϕr(kT )| . (B.2)

We show convergence of each term of (B.2):

� 1st term: Using trigonometric formulae, the first term becomes

0.5Ar ãr
1
N

N1
k=ℓ+1

hi,k + 0.5Ar ãr
1
N

N1
k=ℓ+1

hi,k cos(2ΩrkT + 2ψr)

and as N −→ ∞ the first term converges to Ar ãr/4 and the
second term goes to 0 w.p. 1, using (3) of Lemma 1.

� 2nd and 3rd terms: Using trigonometric formulae and (3) of
Lemma 1, all terms go to zero w.p. 1 as N −→ ∞.

� 4th and 6th terms: The magnitude of the 4th term is bounded
by the 6th term by (14) and (19). Since the 6th term converges
to zero w.p. 1 from (4) of Lemma 1, the 4th term also goes to
zero w.p. 1 as N −→ ∞.

� 5th term: Follows from Kolmogorov’s strong law of large
numbers (See Appendix C).

The convergence of 1
N


Cb
r,i(θ)± Γ b

r,i


to −Ar b̃r/4 can be proved

similarly. �

Now we return to the proof of Theorem 3. It follows from
Lemma 2 that when ar ≠ a0r and br ≠ b0r , for all
i = 0, 1, . . . ,M − 1, the empirical correlation functions
1
N


Ca
r,i(θ)± Γ a

r,i


and 1

N


Cb
r,i(θ)± Γ b

r,i


will with probability 1

have the same signs as Ar ãr/4 and −Ar b̃r/4, respectively, for all
N > N̄ for a sufficiently large (realization dependent) value of
N̄ , and hence θ will be excluded from the confidence set Θ̂N . This
completes the proof. �

Appendix C. Strong law of large numbers (Kolmogorov)

Suppose Y1, Y2, . . . , are independent random variables with
E[Yi] = 0, and that


∞

k=1 E{Y 2
k }/k2 < ∞, then 1

N

N
k=1 Yk → 0

with probability 1 as N → ∞. See e.g. Shiryaev (1995) Chapter
IV.3 for a proof.

Appendix D. Proof for the generation of decoupling strings

It is sufficient to prove that (24) is 0 when summed over an
arbitrary index set Jp (27), so we consider only J1. Here we prove
the results for the sine function in (24). The same approach can be
used for the cosine function.

A chosen time index k in the first segment generates another
2P

− 1 indices in the remaining segments, according to (26). Let
say they are
n1 = k, n2 = k + S, n3 = k + 2S, . . . ,

n2P = k + (2P
− 1)S


. (D.1)

(D.1) can be written as a union of 2P−1 pairs {kj, k′

j} such that
the sum of the sine functions evaluated over each pair is zero, and
thus we have

2P
j=1

sin(ΩmTnj) = 0 for all m ∈ {1, . . . , 2imax}. (D.2)

Before providing the proof, we present a simple example
describing the idea.
Example 1. Consider the case with Ω0 = 1 rad/s and imax = 6.
Here P = 4 and T = 0.0131 s for S = 30. One period of the
baseline sinusoid is divided into 2P

= 16 segments. Suppose that
a time index k = 10 is chosen in the first segment. We evaluate
sin(ΩmTnj) at the time indices in (D.1) with k = 10 for the three
frequencies Ω1 = 3Ω0, Ω2 = 4Ω0, and Ω3 = 6Ω0. They are
shown in Table D.1.

We can observe that the sumof each column in the table is zero:
The index set of (D.1) is divided into two subsets A and B, and the
sum over the indices in A has the negative value of the sum over
the indices in B
j∈A

sin(ΩmTnj) = −


j∈B

sin(ΩmTnj). (D.3)

(D.3) holds forΩm = 3Ω0 with

A = {1, 2, 3, 4, 5, 6, 7, 8},
B = {9, 10, 11, 12, 13, 14, 15, 16},

forΩm = 4Ω0 with

A = {1, 2, 5, 6, 9, 10, 13, 14},
B = {3, 4, 7, 8, 11, 12, 15, 16},

and forΩm = 6Ω0 with

A = {1, 2, 3, 4, 9, 10, 11, 12},
B = {5, 6, 7, 8, 13, 14, 15, 16}. �

In the above example the frequencies are (i) an odd multiple ofΩ0
(3Ω0), (ii) a power of 2 timesΩ0 (4Ω0), and (iii) an even (but not a
power of 2) multiple of Ω0 (6Ω0). We now prove (D.2) in general
for these three subsets of the frequencies.We only show the results
for the sines, the cosines follow by the same argument. We use the
notation ω0 , Ω0T .

(1) For odd-multiple frequencies imΩ0 with im = 2l + 1, l =

0, 1, . . .: We divide 2P sample indices into two subsets

A =


1, 2, 3, . . . , 2P−1


,

B =


j + d : ∀j ∈ A


with d , 2P−1.

Nowwe show that each index inA has a canceling counterpart
in B.

Select j ∈ A and then j + d ∈ B. Note that nj = k + (j − 1)S
and nj+d = k + (j + d − 1)S for some k. Observe that

zj = sin

(2l + 1)ω0nj


= sin


(2l + 1)ω0(k + (j − 1)S)


= sin


(2l + 1)ω0k + 2π

(j − 1)(2l + 1)
2P


,

and

zj+d = sin

(2l + 1)ω0


k + (j − 1 + 2P−1)S


= sin


(2l + 1)ω0k + 2π

(j − 1)(2l + 1)
2P

+ (2l + 1)π



= − sin


(2l + 1)ω0k + 2π

(j − 1)(2l + 1)
2P


= −zj.

Here S = 2π/(2Pω0) was used. Therefore (D.2) is satisfied for
these frequencies.
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Table D.1
Evaluation of the sine and cosine functions at different time indices nj .

j sin(3Ω0Tnj) sin(4Ω0Tnj) sin(6Ω0Tnj) cos(3Ω0Tnj) cos(4Ω0Tnj) cos(6Ω0Tnj)

1 +0.3827 +0.5000 +0.7071 +0.9239 +0.8660 +0.7071
2 +1.0000 +0.8660 0 0 −0.5000 −1.0000
3 +0.3827 −0.5000 −0.7071 −0.9239 −0.8660 +0.7071
4 −0.7071 −0.8660 +1.0000 −0.7071 +0.5000 0
5 −0.9239 +0.5000 −0.7071 +0.3827 +0.8660 −0.7071
6 0 +0.8660 0 +1.0000 −0.5000 +1.0000
7 +0.9239 −0.5000 +0.7071 +0.3827 −0.8660 −0.7071
8 +0.7071 −0.8660 −1.0000 −0.7071 +0.5000 0
9 −0.3827 +0.5000 +0.7071 −0.9239 +0.8660 +0.7071

10 −1.0000 +0.8660 0 0 −0.5000 −1.0000
11 −0.3827 −0.5000 −0.7071 +0.9239 −0.8660 +0.7071
12 +0.7071 −0.8660 +1.0000 +0.7071 +0.5000 0
13 +0.9239 +0.5000 −0.7071 −0.3827 +0.8660 −0.7071
14 0 +0.8660 0 −1.0000 −0.5000 +1.0000
15 −0.9239 −0.5000 +0.7071 −0.3827 −0.8660 −0.7071
16 −0.7071 −0.8660 −1.0000 +0.7071 +0.5000 0
(2) For the frequencies imΩ0 with im = 2l, l = 1, . . . , P − 1: We
divide 2P sample indices into two subsets

A =


(2r − 2)d + 1, (2r − 2)d + 2, . . . , (2r − 2)d + d


,

r = 1, . . . , 2l

,

B =


j + d : ∀j ∈ A


with d , 2P−(l+1).

Select j ∈ A and then j + d ∈ B. Observe that

zj = sin

2lω0nj


= sin


2lω0


k + (j − 1)S


= sin


2lω0k + 2π

(j − 1)2l

2P



and

zj+d = sin

2lω0


k + (j − 1)S + 2P−(l+1)S


= sin


2lω0k + 2π

(j − 1)2l

2P
+ 2π

2P−(l+1)2l

2P



= sin


2lω0k + 2π

(j − 1)2l

2P
+ π


= −zj.

This shows that (D.2) is satisfied for these frequencies.

(3) For the other even-multiple frequencies imΩ0 with im = 2l:
the allowable form of 2l is 2l = (2r1 − 1)2q1 for some positive
integers r1 and q1. Otherwise 2l becomes a power of two. Note
that 2l = (2r1 − 1)2q1 ≤ imax, 2 · imax < 2P , 2 < 2r1 − 1, and
so 2q1 < 2P−1. For this case, we set

d ,
2P−1

gcd(2P−1, 2l)
=

2P−1

2q1
= 2P−1−q1 ,

where gcd(A, B) denotes the greatest common divisor of A and
B, and divide 2P sample indices into two subsets

A =


(2r − 2)d + 1, (2r − 2)d + 2, . . . , (2r − 2)d + d


,

r = 1, . . . , gcd(2P−1, 2l)

,

B =


j + d : ∀j ∈ A


.

Select j ∈ A and then j + d ∈ B. Observe that

zj = sin

2lω0nj


= sin


2lω0(k + (j − 1)S)


= sin


2lω0k + 2π

2l(j − 1)
2P



and zj+d = sin

2lω0k + 2π

2l(j − 1)
2P

+ d
2l

2P−1
π


.

Since

d
2l

2P−1
=

2l

gcd(2P−1, 2l)

=
(2r1 − 1)2q1

gcd{2P−1, (2r1 − 1)2q1}
= 2r1 − 1

which is an odd number, we have zj+d = −zj.
Therefore (D.2) is satisfied for these frequencies.

This completes the proof. �
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