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Algo Carè∗ Gianluigi Pillonetto† Marco C. Campi∗

University of Brescia University of Padova University of Brescia
Italy Italy Italy

ABSTRACT

This paper shows that kernel-based estimates of unknown
input-output maps can be complemented with uncertainty
bounds more robust than those commonly derived in the Gaus-
sian regression framework. This is obtained by using the kernel
not to define Gaussian priors but a much vaster class of sym-
metric distributions. Such class is then handled by extending
to the Bayesian setting the recently developed sign-perturbed
sums (SPS) framework.

1. INTRODUCTION

The problem of reconstructing an unknown map from a finite
set of input-output examples is central in machine learning [1].
Kernel-based methods have been widely studied and used to
solve this task [2]. Such approaches allow to cast in a unified
framework many different techniques, like regularization net-
works [3], and support vector machines [4].
In the analysis of such estimators, a crucial point is to assess
their ability of predicting future data. In recent years, many
new results have been obtained in regression problems and
regularization networks (which involve quadratic losses and
penalties). Non-asymptotic error bounds and learning rates
can be found e.g. in [5]. Even if of great theoretical interest,
in real applications such bounds can be however of limited
usefulness since they depend on (the norm of) the unknown
function and can also turn out to be somewhat conservative.
An alternative route is to exploit the Bayesian interpretation
of regularization networks by considering the Gaussian regres-
sion framework [6]. In fact, the connection with regularized
least squares (ReLS) estimators is obtained by modeling the
function and the measurement noise as (independent) Gaus-
sian processes. The posterior becomes so available in closed
form and Bayes intervals on the function estimate can be easily
extracted [7].

∗A.C. and M.C.C. were partly supported by the H&W program of the
University of Brescia under the project CLAFITE.

†G.P. has been partially supported by the MIUR FIRB project
RBFR12M3AC-Learning meets time: a new computational approach to learn-
ing in dynamic systems and by the Progetto di Ateneo CPDA147754/14-New
statistical learning approach for multi-agents adaptive estimation and coverage
control.

The Gaussian regression approach can however fail in return-
ing reliable bounds in important situations. Gaussian distri-
butions cannot well describe outliers possibly coming from
the random sources associated to the function and/or the mea-
surement noise [8]. Difficulties can arise also when the kernel
scale factor (regularization parameter) introduced in the model
is not well tuned. In this paper, we face these problems in
a finite-dimensional linear regression context and show that
the ReLS estimate can be complemented with confidence in-
tervals more robust than those commonly adopted. Our work
can be cast within the framework of robust Bayesian analysis,
see e.g. [9, 10]. We propose to replace the Gaussian prior
on the unknown model parameters with a much more gen-
eral class of distributions, i.e., the class of the distributions
that can be generated by a certain linear transformation of
symmetrically distributed random variables. We describe a
procedure to construct Bayesian confidence regions having a
desired and exact probability level for the above mentioned
class of prior distributions. Traditionally, Bayesian credible
regions are obtained by conditioning on data, that is, from the
posterior probability. Instead, our construction is based on a
different line of reasoning and aims at guaranteeing that the
constructed region includes the true parameter with an exact
prior probability level. In other words, we guarantee the algo-
rithm for constructing a region, not the algorithm’s outcome
for a given output data vector, and our main result gives the
probability with which the unknown parameter vector belongs
to the region in many repetitions of the experiment. Quoting
from [11] “in certain statistical scenarios a joint frequentist-
Bayesian approach is arguably required” and this is the case
in our paper.
From the technical point of view, the main result of the paper
is obtained by extending to the Bayesian setting the recently
developed sign-perturbed sums (SPS) framework [12, 13, 14].
Numerical experiments show that in many significant circum-
stances our uncertainty bounds can be much more reliable than
those achieved by the Gaussian regression framework.
The paper is organized as follows. Section 2 formulates the
problem. After reviewing Gaussian regression in Section 3, we
present in Section 4 the new Bayesian SPS approach to recover
uncertainty bounds for regularization networks. In Section 5
the new approach is tested using the numerical experiments
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introduced in Section 3 as motivating examples. Conclusions
then end the paper.

2. PROBLEM STATEMENT

We consider a linear regression problem. Output data are
contained in the vector y ∈ Rn and the measurements model is

y = Φθ
0 + v (1)

where Φ is a known (full rank) regression matrix, θ 0 ∈ Rm is
the unknown vector while v contains the noise components.
We consider a Bayesian setting where both θ 0 and v are (in-
dependent) random vectors. Consider a function Θ(·) that
assigns a set Θ(y) ⊆ Rm to measurements y. For α ∈ [0,1],
Θ(·) is said to be of α-level if

P(θ 0 ∈Θ(y)) = α,

where P(θ 0 ∈Θ(y)) denotes the probability of the event “θ 0 ∈
Θ(y)” computed with respect to the probability distribution
over the noise realizations ν and the parameter θ 0. Our prob-
lem is then to find a function Θ(·) of α-level to construct
regions Θ(y) that are accurate set estimates of θ 0 for the mea-
surements y. Abusing terminology, if there is no ambiguity,
we will not distinguish between the region, Θ(y), and the pro-
cedure to construct the region (which, so far, has been denoted
by Θ(·)); for example, we will write “a region Θ(y) of α-level”
instead of “a procedure Θ(·) of α-level”.

3. GAUSSIAN REGRESSION

If the joint probability of y and θ 0 is specified by means of the
density p(y,θ 0), a region Θ(y) of α-level can be obtained by
exploiting the Bayes rule. For any possible realization of the
measurements y, one can compute the posterior

p(θ 0|y) = p(y|θ 0)p(θ 0)

p(y)

and then extract from it a set of probability α for the dis-
tribution given by p(θ 0|y). This procedure defines Θ(y) of
α-level. In fact, letting 1(·) be the indicator function (equal
to 1 when the formula in the argument is true, 0 otherwise),
it holds that P(θ 0 ∈ Θ(y)) =

∫
Rn×Rm 1(θ 0 ∈ Θ(y))p(y,θ 0) =∫

Rn [
∫
Rm 1(θ 0 ∈Θ(y))p(θ 0|y)]p(y) =

∫
Rm αp(y) = α .

The building of the Bayesian confidence region is especially
simple under Gaussian assumptions since the posterior be-
comes available in closed form. Let θ 0 and v be independent
normal vectors, i.e.

θ
0 ∼N (µ,λ 2

Σ), v∼N (0,σ2In). (2)

with λ 2 and σ2 positive scale factors. Hence, the mean µ and
covariance λ 2Σ model our expected properties of θ 0. The a
posteriori density of θ 0 given y is then
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Fig. 1. True function (thick dashed line) and 95% confidence
intervals returned by Gaussian regression (GR, top panels),
and Bayesian SPS (BSPS, bottom panels).

θ
0|y∼N

(
θ̂

ReLS,(
ΦT Φ

σ2 +
Σ−1

λ 2 )−1
)
, (3)

where θ̂ ReLS is the posterior mean. Note that we have used
the superscript ReLS to stress that θ̂ ReLS is the solution of
a regularized least squares problem. In fact, the minimum
variance estimator is given by

θ̂
ReLS = argmin

θ
‖y−Φθ‖2 +η

2(θ −µ)T
Σ
−1(θ −µ) (4a)

= µ +(ΦT
Φ+η

2
Σ
−1)−1

Φ
T (y−Φµ). (4b)

In (4), the scalar η2 = σ2/λ 2 is the regularization parameter
which trades off the measurements fit and the prior information
on θ 0. Finally, using the factorization Σ = Σ1/2(Σ1/2)T , we
define

Ω =

(
Φ

ηΣ−1/2

)
.

Then, from (3) the following Bayesian confidence region can
be obtained:

Θ(y) =
{

θ : (θ − θ̂
ReLS)T

Ω
T

Ω(θ − θ̂
ReLS)≤ κσ

2} , (5)

where κ determines α , e.g. see subsection 3.B in [12].

3.1. Gaussian uncertainty bounds

We test the robustness of the Bayesian confidence region (5),
via three simple case studies. In all of them, Φθ 0 in (1) rep-
resents the discrete convolution between θ 0 and realizations
of unit variance white Gaussian noise (independent of θ 0 and
v). The random vector θ 0 has dimension 50 and is the output
of a discrete integrator fed with white noise ω , i.e. its i-th
component is θ 0

i = ∑
i
k=1 ωk. The probability density function

(pdf) of ω depends on the case study and will be specified
later. The noise v is instead always zero-mean Gaussian with
a known variance equal to 10 in the first two case studies and
to 100 in the third. Data set size (dimension of y) is 100.

First case study: Gaussian pdf Let the components of
ω be independent and Gaussian of unit variance, so that θ 0



corresponds to a Gaussian random walk. This is a popular
model underlying the Bayesian interpretation of smoothing
splines [15]. A realization of θ 0 is displayed in the top left
panel of Fig. 1. The Bayesian region (5) with α = 0.95 is built
using the correct statistics of θ 0, i.e. plugging in (2) the values
µ = 0, λ = 1 and setting the (i, j) entry of Σ to min(i, j). In
this case, the (realization of the) 95% Bayesian region contains
(the realization of) θ 0. The uncertainty bound in sampled form
is also displayed in the same panel. It is obtained by drawing
2000 independent and uniform realizations of θ 0 from the
ellipsoid (5) via the algorithm described in [16].

Second case study: underestimated variance The same
data generator described before is used but some misspecifica-
tion is introduced in the construction of the Bayesian region
(5): we now use λ = 1/3 (in place of λ = 1). This simulates a
situation where the random walk increments variance is under-
estimated (too large η). Results are displayed in the second top
panel of Fig. 1 with the same rationale described above. Now,
the 95% confidence interval does not contain the realization
of θ 0 and the uncertainty bounds turn out to be too optimistic.

Third case study: mixture of Gaussians In the last case
study, ω is a mixture of Gaussians. More specifically, its
components are mutually independent with pdf

ωi ∼
{

N (0,1), with probability 0.9
N (0,100), with probability 0.1.

The 95% Bayesian region is instead built as if ωi ∼N (0,1),
i.e. by using in (2) the values µ = 0, λ = 1 and Σ(i, j) =
min(i, j). Hence, with probability 0.1 a rapid and unexpected
change between two adjacent components of θ 0 can be present.
This is illustrated in the third top panel of Fig. 1. The rapid
variation in θ , in the middle of the x-axis, is not contained in
the 95% Gaussian confidence region.

4. BAYESIAN SPS

The assumption θ 0 ∼N (µ,λ 2Σ) is equivalent to the assump-
tion that the unknown vector θ 0 is the sum of µ and the output
of a linear system fed with white, stationary and Gaussian
noise. In fact, from the factorization Σ = Σ1/2(Σ1/2)T we have

θ
0 = µ +Σ

1/2
ω, (6)

with ω ∼N (0,λ 2I). This is graphically depicted in the top
panel of Fig. 2 where µ = 0 to simplify the exposition.

The main idea is now to replace the Gaussian source un-
derlying ω with a much more general one. In particular, we
assume that the independent components of ω have distribu-
tions which can differ from each other and just need to be
symmetric around the origin, i.e., the stochastic source of ω

can be nonstationary, as described in the bottom panel of Fig.
2. We also relax the assumptions on the noise v in the same
way, by moving from Gaussian to symmetric (possibly non-
identical) pdfs. For instance, note that all the three case studies
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Fig. 2. Gaussian regression (top) and Bayesian SPS (bottom)

of the previous section, where the linear operator Σ1/2 was the
discrete integrator, fit these mild assumptions.

We now introduce Algorithms 1 and 2, which allows to
construct α-level regions under the above defined mild sym-
metry properties.

Algorithm 1 Bayesian SPS-initialization
1: Factorize the kernel matrix Σ, by computing Σ1/2 such that

Σ = Σ
1/2(Σ1/2)T .

2: Define Ω ∈ RN×m as follows

Ω =

(
Φ

Φ̃

)
. Φ̃ := ηΣ

−1/2.

Let also z ∈ RN be given by

z =
(

y
ỹ

)
, ỹ := ηΣ

−1/2
µ.

3: Define a (rational) confidence probability α ∈ (0,1) and set integers
r > q > 0 such that α = 1−q/r;

4: Calculate RN and R1/2
N where

RN =
ΩT Ω

N
, R1/2

N (R1/2
N )T = RN ;

5: Generate N(r−1) i.i.d. random signs {αi,t} with

P(αi,t = 1) = P(αi,t =−1) = 1/2,

for i = 1, . . .r−1 and t = 1, . . . ,N;
6: Generate a random perturbation π of the set {0,1, . . . ,r−1}, where each

of the r! possible perturbations has the same probability to be selected.

Algorithm 1 is an initialization procedure. The inputs are
the regression matrix Φ, the measurements y, the mean µ , the
kernel matrix Σ, the regularization parameter η and the de-
sired confidence probability α ∈ (0,1) defined by the integers
r > q > 0. Algorithm 1 then returns the matrix Ω and the
vector z, which are instrumental to the use of Algorithm 2
whose inputs also include candidate values of the unknown
vector. Algorithm 2 then accepts or refuse any proposed value
of θ , and this implicitly defines a region Θ(y): for any pos-
sible realization of y, Θ maps y in the subset of Rm formed
by all the accepted values of θ . Algorithm 2 extends to the
Bayesian setting the SPS approach discussed in [12], and can
be explained as follows. A reference function S0(θ) is defined
in step 2, and it can be easily verified that 2R1/2

N S0(θ) is the
gradient of ‖y−Φθ‖2+η2(θ−µ)T Σ−1(θ−µ), that is, of the
cost function that is minimized in (4). Thus, by construction
‖S0(θ)‖ tends to grow as θ departs from θ 0. Other functions



Algorithm 2 Bayesian SPS-indicator(θ ) given a matrix Ω ∈
RN×m and a vector z ∈ RN

1: For the given θ , compute the prediction errors

εt(θ) = zt −Ω(t, :)θ , t = 1, . . . ,N

where Ω(t, :) is the t-th row of Ω;
2: Evaluate for i = 1,2, . . . ,r−1

S0(θ) = R−1/2
N

1
N

N

∑
t=1

Ω(t, :)T
εt(θ)

and

Si(θ) = R−1/2
N

1
N

N

∑
t=1

αi,t Ω(t, :)T
εt(θ);

3: Order the scalars {‖Si(θ)‖} in increasing order. If ‖Sa(θ)‖= ‖Sb(θ)‖,
‖Sa(θ)‖ precedes ‖Sb(θ)‖ iff π(a)< π(b);

4: Compute the rank R(θ) of ‖S0(θ)‖ in the ordering, e.g. R(θ) = 1 if
‖S0(θ)‖ is the smallest one;

5: Return “accept” if R(θ)≤ r−q.

S1(θ), . . . ,Sr−1(θ) are constructed by applying random sign
perturbations to the terms that define S0(θ). On the one hand,
these sign perturbations tame the growth of ‖Si(θ)‖ as θ de-
parts from θ 0, so that, the more θ and θ 0 differ, the larger is
‖S0(θ)‖ with respect to any other ‖Si(θ)‖. On the other hand,
these sign perturbations affect the random variables ν and ω

in such a way that S0(θ) is statistically indistinguishable from
Si(θ) when θ = θ 0 (more details are provided in the proof of
Theorem 1 below). Algorithm 2, in step 5, refuses a given
value of θ when ‖S0(θ)‖ is sufficiently large as compared
with ‖Si(θ)‖ i = 1, . . . ,r−1, an event that has low probability
when θ is the correct parameter. Indeed, the following result
holds true.

Theorem 1 Consider model (1) and assume that

• the components of the noise v are independent ran-
dom variables with a symmetric probability distribution
around zero;

• θ 0 = µ +Σ1/2ω where the components of ω are inde-
pendent random variables with a symmetric probability
distribution around zero.

Then, independently of the adopted regularization parameter
η , the Bayesian region defined by Algorithm 2 satisfies

P(θ 0 ∈Θ(y)) = α with α = 1−q/r (7)

(where the probability P is over ω,ν and the randomly gen-
erated quantities {αi,t} and π in Algorithm 1). Moreover, for
any y, the region Θ(y) is star convex with the estimate θ̂ ReLS,
(4), as a star center, that is,

∀θ ∈Θ(y)∀β ∈ [0,1] : βθ +(1−β )θ̂ ReLS ∈Θ(y). (8)

Proof. Referring to Algorithm 2, point 5, equality (7) is true iff

P(R(θ 0)> r−q) = q/r. (9)

In what follows, we prove (9) by showing that the rank R(θ 0) of
‖S0(θ

0)‖ is uniformly distributed over {1, . . . ,r}. Note that R(θ 0)

can be written as R(θ 0)= fR(‖S0(θ
0)‖,‖S1(θ

0)‖, . . . ,‖Sr−1(θ
0)‖,π),

where fR(·) is the deterministic function of ‖S0(θ
0)‖, . . . ,‖Sr−1(θ

0)‖
and of the random permutation π that is defined by points 3 and 4 of
Algorithm 2.

Using the fact that yt −Φ(t, :)θ 0 = vt , see (1), and that ωk =
Σ−1/2(k, :)(θ 0−µ), see (6), we can write

S0(θ
0) = R−1/2

N
1
N

[
n

∑
t=1

Φ(t, :)T vt +
m

∑
k=1

η
2
Σ
−1/2(k, :)T

ωk

]
. (10)

Note that S0(θ
0) is a random variable through its dependence

on v and ω . Defining r := (v1, . . . ,vn,ω1, . . . ,ωm), we can then
define Z(r) := ‖S0(θ

0)‖, that is, Z(·) is the deterministic func-
tion that, given the values of r, computes ‖S0(θ

0)‖ according
to (10). For i = 1, . . . ,r− 1, we also define ai as the sequence
of random signs (αi,1, . . . ,αi,n,αi,n+1, . . . ,αi,N) that are gener-
ated in Algorithm 1. Finally, we denote by ai ◦ r the sequence
(αi,1v1, . . . ,αi,nvn,αi,n+1ω1, . . . ,αi,Nωm), that is, the element-wise
product of ai and r. With this notation, it is immediate to check that
‖Si(θ

0)‖, i = 1, . . . ,r− 1, can be written as ‖Si(θ
0)‖ = Z(ai ◦ r),

where Z(·) is the same function as before. Define now r′ := a0 ◦ r,
where a0 is a new independent sequence of random signs. Define also
R′(θ 0) := fR(Z(r′),Z(a1 ◦ r′), . . . ,Z(aN ◦ r′),π). Note that the se-

quence r′ is equal in distribution to r (short notation: r′ d
= r). Hence,

also the sequence (Z(r′),Z(a1 ◦ r′), . . . ,Z(aN ◦ r′)) is distributed as
(Z(r),Z(a1 ◦ r), . . . ,Z(aN ◦ r)), and therefore

R(θ 0)
d
= R′(θ 0). (11)

Conditioning on a given value of r, say r̄, one can write (Z(r′),Z(a1 ◦
r′), . . . ,Z(aN ◦r′)) = (Z(a0 ◦ r̄),Z((a0 ◦a1)◦ r̄), . . . ,Z((a0 ◦aN)◦ r̄)).
Since a0,a1, . . . ,aN are independent sequences of random signs,
a0,a0 ◦ a1, . . . ,a0 ◦ aN are also independent sequences of ran-
dom signs, and therefore the sequence (Z(a0 ◦ r̄),Z((a0 ◦ a1) ◦
r̄), . . . ,Z((a0 ◦aN)◦ r̄)) is exchangeable, that is, every permutation
of its components has the same probability. In the absence of ties,
R′(θ 0) computes the rank of Z(a0 ◦ r̄) in (Z(a0 ◦ r̄),Z((a0 ◦ a1) ◦
r̄), . . . ,Z((a0 ◦ aN) ◦ r̄)) and is therefore uniformly distributed over
{1, . . . ,r}. In the presence of ties, ties are broken by resorting to
π , which is uniformly distributed over all the permutations, so that,
conditional on r = r̄, R′(θ 0) is also uniformly distributed. Note
now that P(R′(θ 0) > r− q|r = r̄) = q/r for every r̄ implies that
P(R′(θ 0)> r−q) = q/r, and (9) follows from (11).
To prove star convexity, (8), observe first that the ranking function
R(θ) can be written more explicitly as R(θ)= r−∑

r−1
i=1 1(‖S0(θ)‖≤π

‖Si(θ)‖), where 1(·) is the indicator function (equal to 1 when the
formula in the argument is true, 0 otherwise), and “≤π ” stands for
“≤” if π(0)< π(i), “<” otherwise (see points 3 and 4 in Algorithm 2).
Thus, the region Θ(y) is the set where 1(‖S0(θ)‖ ≤π ‖S j(θ)‖)≥ q.
Thus, by defining for all i = 1, . . . ,r− 1 the sets E ≤i := {θ ∈ Rm :
‖S0(θ)‖2−‖Si(θ)‖2≤ 0}, E <

i := {θ ∈Rm : ‖S0(θ)‖2−‖Si(θ)‖2 <

0}, and E π
i as equal to E ≤i if π(0)< π(i) and equal to E <

i otherwise,
we can write Θ(y) as the union of all the sets of the kind

⋂
i=i1,...,iq E π

i ,
for all the possible choices of q indexes from the set {1, . . . ,r−1}.
The star convexity of the region follows from the fact, which is shown
in what follows, that each set E π

i is either convex and includes θ̂ ReLS

or it is empty. Function ‖S0(θ)‖2 is quadratic in θ and can be written
as S0(θ) = (θ − θ̂ ReLS)T RN(θ − θ̂ ReLS), which reveals that

‖S0(θ̂
ReLS)‖2 = 0, (12)



and that the Hessian is 2RN . On the other hand, it is straightfor-
ward to check that each function ‖Si(θ)‖2, i = 1, . . . ,r− 1, is a
quadratic function in θ with Hessian equal to 2PiR−1

N Pi, where Pi =
1
N ΦT Dn,iΦ+ η2

N (Σ−1/2)T Dm,iΣ
−1/2, with Dn,i = diag(αi,1, . . . ,αi,n)

and Dm,i = diag(αi,n+1, . . . ,αi,n+m). It is also easy to show (e.g. by
an argument like the one in [12], Appendix B) that

RN � PiR−1
N Pi (13)

in the Löwner partial ordering, i.e., RN −PiR−1
N Pi is positive semidef-

inite. From (13), we can conclude that ‖S0(θ)‖2−‖Si(θ)‖2 is a con-
vex function in θ , so that the set E ≤i is a convex set, and θ̂ ReLS ∈ E ≤i
because of (12). Likewise, the set E <

i is either convex or empty, and,
if it is not empty, then it must include θ̂ ReLS because of the follow-
ing: assume by contradiction that there is a θ̄ ∈ E <

i and θ̂ ReLS /∈ E <
i .

Then, ‖S0(θ̄)‖2 < ‖Si(θ̄)‖2. On the other hand, θ̂ ReLS /∈ E <
i implies

that ‖Si(θ̂
ReLS)‖2 = 0, so that θ̂ ReLS must be a minimum point also

for the quadratic function ‖Si(θ)‖2. Thus, combining the fact that
‖S0(θ)‖2 and ‖Si(θ)‖2 have both a minimum point at θ̂ ReLS with
value 0 with the fact that the Hessian of ‖Si(θ)‖2 is no larger than
the Hessian of ‖S0(θ)‖2, we must have that ‖S0(θ)‖2 ≥ ‖Si(θ)‖2

for every θ , which contradicts ‖S0(θ̄)‖2 < ‖Si(θ̄)‖2. �

4.1. Constructing Bayesian SPS regions in sampled form

In this section, we describe an efficient Markov chain Monte
Carlo (MCMC) scheme [17] to reconstruct in sampled form
the Bayesian SPS region. We start by considering two subprob-
lems which will be building blocks of the MCMC algorithm. In
what follows, just to simplify the exposition, the SPS region is
assumed to be bounded and closed. First, assume we are given
a direction θ − θ̂ ReLS in the parameter space. Since the region
is star convex with center θ̂ ReLS (as seen in Theorem 1) there
exist scalars xmin and xmax such that θ̂ ReLS + x(θ − θ̂ ReLS) ⊆
Θ(y) ⇐⇒ x ∈ [xmin,xmax]. Our aim is to compute xmin and
xmax, and, hence, also the two associated θ vectors belong-
ing to the region’s boundary. To this purpose, note that, if
θ = θ̂ ReLS + x(θ − θ̂ ReLS), the squared norms ‖Si(θ)‖2 boil
down to second-order polynomials, here denoted by Pi(x). One
then easily obtains that xmin and xmax belong to the set of the
real roots of the polynomials Pi(x)−P0(x), i 6= 0, so allowing
their efficient determination using Algorithm 2. This numer-
ical procedure is denoted by B(θ): it maps θ into the two
boundary vectors that stay on the line θ̂ ReLS + x(θ − θ̂ ReLS).
As for the second subproblem, let u(θ) denote the uniform
probability density whose support is the SPS region Θ(y), and
let θ− j be the subvector obtained by removing from θ (in the
SPS region) its j-th component θ j. The aim is to draw the j-th
component θ j according to u(θ j|θ− j), that is, uniformly from
the SPS region and conditional on θ− j. Note that the squared
norms ‖Si(θ)‖2 now boil down to second-order polynomial
functions of θ j, which we denote by Pi(θ j). It is then easy to
see that the probability density function u(θ j|θ− j) is uniform
with (possibly non-connected) support that can be represented
as
⋃

k[ak,bk], where the scalars ak and bk are contained in the
set R of the real roots of the functions Pi(θ j)−P0(θ j), i 6= 0.

The support of u(θ j|θ− j) can then be efficiently determined
e.g. by ordering the values in R (r1 ≤ r2 ≤ ·· · ) and check-
ing which θ vectors obtained by setting the j-th component
equal to rk+rk+1

2 are accepted by Algorithm 2. The two above-
described subproblems are part of the sampling strategy now
summarized in Algorithm 3.
Some comments about Algorithm 3 are now in order. With

Algorithm 3 Construction of the Bayesian SPS region in sam-
pled form
1: Set the initial vector θ (1) to θ̂ ReLS, let p ∈ [0,1] and ` ∈ [1, . . . ,m] where

m = dim(θ ReLS). Then, for i = 2, . . . ,M, with M the prescribed number
of iterations, repeat the procedure described below;

2: Draw a realization U uniformly from the unit interval;
3: If U ≤ p, select uniformly ` components of θ (i−1). Then, update them

sequentially by drawing samples from u(θ j|θ− j) where θ− j are subvec-
tors from the updated versions of θ (i−1). Denote the vector so obtained
by θ (i) and store it together with the two boundary vectors B(θ (i)).

4: If U > p, draw θ from the following Gaussian distribution

θ ∼N

(
θ
(i−1),ξ (

ΦT Φ

σ2 +
Σ−1

λ 2 )−1
)
, (14)

where ξ is a suitable scale factor (see discussion below). If θ is accepted
by Algorithm 2, set θ (i) = θ and store it together with the two boundary
vectors B(θ (i)). Otherwise, define θ (i) = θ (i−1).

probability p each iteration uses Gibbs sampling to update `
(randomly drawn) components of the Markov chain state. This
step exploits the region’s structure that allows to easily sample
the conditional densities. Only a subvector of size ` is updated
so that new boundary vectors can be frequently stored along
new directions. The Gibbs sampling is fast and guaranteed to
generate samples always inside the SPS region. However, it
can turn out even more efficient to move all the components
at once using Algorithm 2 only one time. For this reason,
with probability 1− p a random walk Metropolis is exploited.
Increments’ covariance is proportional to the posterior covari-
ance in (3) since (ΦT Φ

σ2 + Σ−1

λ 2 )−1 influences the shape of the
SPS region. In our implementation, the scale factor ξ in (14)
is updated every 100 iterations during the first 1000 MCMC
steps in order to ensure an acceptance rate of the random walk
proposals around 30−40%.

Algorithm 3 returns two kinds of samples. The first are
boundary vectors, denoted by θ

(i)
B , which reconstruct the re-

gion’s shell. The others are interior samples, denoted by θ
(i)
I ,

which (after a burn in) are drawn uniformly from the SPS
region in accordance with MCMC theory [17]. Let the disper-
sion index DΘ of the region be defined by the average distance
from its centroid as follows:

DΘ =
∫

θ∈Θ

‖θ − cθ‖du(θ), cθ =
∫

θ∈Θ

θdu(θ). (15)

Then, the θ
(i)
B allow to obtain the following Monte Carlo esti-

mate of DΘ:

DΘ ≈
1
M

M

∑
i=1
‖θ (i)

I − ĉθ‖, ĉθ =
1
M

M

∑
i=1

θ
(i)
I . (16)



Algorithm 3 has been used to solve the three case studies
described in Section 3 setting p = 0.1 and ` = 10. For this
kind of problems our procedure (implemented in MATLAB on
an iMAC 2.8 GHz IntelCore i7) is able to draw 1000 vectors
from the SPS region in around 1 second.

5. SOLUTION OF THE THREE CASE STUDIES
USING BAYESIAN SPS

The three bottom panels of Fig. 1 report the Bayesian SPS
regions of level α = 0.95 in sampled form. Each of them con-
tains around 30000 samples drawn according to the stochastic
simulation scheme detailed in Section 4.1. The estimates (16)
of the dispersion indexes (15) corresponding to the Gaussian
and Bayesian SPS regions are reported in Table 1. In all the
three cases the Bayesian SPS region now contains the realiza-
tion of θ 0. Note also that in the first case study, where the Gaus-
sian model was correct, the SPS region dispersion is somewhat
similar to that reported in the top panel. Conversely, in the
other cases, where the Gaussian region dispersion is underes-
timated, the Bayesian SPS region is significantly larger and
provides a much better picture about the uncertainty around
the estimate.
We have also performed three Monte Carlo studies using the
data generators associated to the three case studies. At any
run new realizations of θ 0 and of the measurement noise are
generated. Table 2 then reports the frequencies with which
the 95% Gaussian and SPS regions contain the realization of
θ 0 after 1000 runs. Differently from the Gaussian regions,
which e.g. never contain the realization of θ 0 in the second
case, for Bayesian SPS the value is always very close to 95%,
confirming the theory previously illustrated.

Table 1. Dispersion index of the 95% regions in Fig. 1
achieved by Gaussian regression and Bayesian SPS.

Case study #1 #2 #3
GR 4.1 2.1 9.3
BSPS 4.3 4.2 29.1

Table 2. 95% Bayesian regions accuracy for the three Monte
Carlo studies of 1000 runs

Case study #1 #2 #3
GR 94.6% 0% 2.1%
BSPS 94.7% 95.3% 94.7%

6. CONCLUSIONS

A new robust Bayesian framework based on the SPS technique
has been introduced, focusing on finite-dimensional linear
learning machines. The approach permits to equip regular-
ization networks with uncertainty bounds that can be much
more reliable than those returned by the classical Gaussian
regression. In the future, we plan to extend the work in several
directions. These include theoretical studies to better under-
stand limits and potentials of this approach, also assessing the

effect of the regularization parameters when estimated from
the same data used to build the Bayesian regions.
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