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Abstract: In any real-life identification problems, only a finite number of data points
are available. On the other hand, almost all results in stochastic identification pertain to
asymptotic properties, that is they tell us what happens when the number of data points tend
to infinity. In this paper, we consider the problem of assessing the quality of non-asymptotic
estimates obtained using least squares identification methods. The type of results needed in
order to be useful for computing the quality of non-asymptotic estimates are first discussed. It
turns out that the nature of non-asymptotic results has to be different from that of asymptotic
results, since in finite time certain issues show up that disappear in the limit because of
stochastic convergence. Then, we develop a method for the assessment of the estimate quality
based on differences between partial estimates. If the partial estimate differences are within
a small region around zero then, as it is intuitive, the estimate quality is good. On the other
hand, we will have low confidence in the estimate if the differences between partial estimates
are spread all over the place. The method is illustrated through a very simple example able to
point out its main aspects in a clear-cut way.

Keywords: System identification, model validation, least squares, finite samples properties,
confidence sets.

1. INTRODUCTION

The purpose of system identification is to obtain a
mathematical model for a dynamic system. In order
to give the user confidence in the obtained model, a
quality assurance should be delivered together with
the model. If there is no quality tag attached, the user
will not know how to properly use the model. Hence,
quality assessment is important for correct usage of
the model.

In this paper we consider the problem of assessing the
quality of the estimate obtained using least squares
(LS) system identification with � data points. The
quality of the estimate is judged by the distance be-
tween the estimate obtained, ���� and a so-called ’best’
estimate,

�
	
. It is known that the mismatch between

the true plant and the model consists of two compo-
nents, bias error and variance error. The cause of the
bias error is that the model class considered is not
rich enough to contain the ’true’ plant. In this work
we only consider the variance error, which is due to
that the best model within the model class considered
has not been found. In other words, the variance error
is due to the difference between the estimated model,
represented by ���� and the ’best’ model available in
the model class, represented by

��	
.

1.1 Requirements to a non-asymptotic model quality
measure

In order for a result to be useful for computing the
quality of the estimate, it must be uniform with re-
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spect to the data generating mechanism. That is, if we
assume that the true system is in a given class, then the
quality measure must be valid for all systems in that
class. Furthermore, it must be possible to compute the
quality measure based on a priori information about
the true system and a finite number of observed data
points, and finally it must provide a rigorous result
valid for a finite number of data points.

The asymptotic convergence properties of the esti-
mate are well understood, (see e.g. (Ljung, 1999) or
(Söderström and Stoica, 1988)). Under natural condi-
tions ���� converges to

��	
w.p. 1, and � ��� ������ �
	��

is asymptotically normally distributed with zero mean
and variance, �	��
 as �
��� . This result gives a
quality tag to the estimates, and it is useful for gaining
insight in the properties of system identification meth-
ods. However, not much can be said about the quality
of the estimate with a finite number of data points.
Moreover, the expression for �	��
 involves expected
values, and hence it is dependent on the true system,
which is unknown. Hence, asymptotic results do not
provide a rigorous quality measure valid for a finite
number of data points.

However, there is a way around the problem caused
by the system dependent quantities in the asymptotic
results. These quantities can be estimated from ob-
served data, but using these estimated quantities in
the asymptotic variance results (as is commonly done)
introduces two types of errors. The first type of error is
that, as mentioned, � ��� ������ �
	�� normally distributed
with zero mean and variance �	��
 is an asymptotic
results, and it is not valid for a finite number of data
points in general. In addition, replacing ����
 with its
estimate, �����
 causes an extra error. These two errors
may cancel each other. However, uncritically substi-
tuting system dependent quantities with their data de-
pendent estimates leads to conceptual errors. This can
be clearly seen in the following simple example.

Suppose the true system is ����� ��� ��	�� ��� ��� � ��� � ,
where

� ��� �!�#" for all � , and
� ��� � is i.i.d. Gaussian

with zero mean and variance $ � . No upper bound on$ � is available. The model used is ��%���'& �(�)� �*� ��� � .
The LS estimate is ��+�,"�- ��.

�/�0 � ����� � which is a
Gaussian random variable with mean

� 	
and variance$ � - � . If $ � is known, we obtain a confidence interval

(quality measure) of the type �21 �43 ����5� �
	 376 8 � �9 �:$%& �;& 8 � .
However, $ is unknown, but it can estimated. If we
substitute an estimate �$ , we find a bound for the
quality of ���� of the kind, �21 �43 ����<� �
	 3!6=8 �5>9 � �$	& �;& 8 � . However, this kind of bound is wrong on
the conceptual level since the right hand side is data
dependent and hence stochastic. At the same time it
should be noted that a data independent claim such as�21 �43 ����5� �
	 3?6 8 ��> 9 is not uniform with respect
to the true system since @BADCFEG�21 �43 ����H� �
	 3I6�8 � �5"
for all � and

8
. Due to the simplicity of this particular

example, the Student-t distribution can be used to ob-
tain a bound on ����J� �
	

, but the confidence interval,

8
is then data dependent. However, the Student-t dis-

tribution can not be used if we want to say something
about the quality of the estimate with fixed

8
.

Since the claim �21 �43 ���� � �
	 376K8 �;> 9 � �$	& �;& 8 � is
stochastic it must be qualified with a second level of
probability telling us the probability that the claim is
true. Hence, in order to be rigorous we need a result of
the type @BADC E �21 �43 ����L� �
	 346�8 �M> 9 � �$	& �;& 8 � holds
true with probability at least

"N�PO
. Such a result is

uniform with respect to both $ and
��	

.

1.2 Quality assessment by computing partial estimates

In order to obtain a result of the type sought after in
the previous section, we propose to assess the quality
of the LS estimate by bounding the difference between
the estimate, ���� and the ‘best’ parameter

��	
, using

partial estimates. The estimate is given by:

����J� �RQFS�Q �UT � �RQFS7V � (1)

where V is the outputs, W � � &�X X X &B� �ZY S and Q is the
regressors, W [ � &�X X X &\[ �ZY S . The two partial estimates,�^]�� �RQ S � Q � � T � �RQ S � V � � and

�^] ]_� �RQ S� Q � � T � �RQ S� V � �
are computed using the first and second half of
the data set, where V � � W � � &�X X X &B� �	` � Y S , Q � �W [ � &�&�X X X &\[ �	` � Y S , V � � W �4a �	` �\b�c � &�X X X &B� �ZY S , and Q � �W [da �	` �\b�c � &�X X X &\[ �ZY S . Furthermore, swapping of data
points ���^eB&\[�e � between W V � &UQ � Y and W V � &UQ � Y in all pos-
sible combinations will provide f

��	` �\g sets of swapped

data, and hence f
��	` �\g pairs of partial estimates.

The idea is to judge the quality of the estimate by the
difference between partial estimates. If all values of� ] � � ] ]

are within a small region around zero, we
have, as is intuitive, a good estimate, ���� , since there
is little variation in the partial estimates. On the other
hand, we have a low confidence in ���� if the values
of

�^]7� �^] ]
are spread all over the place, since there

is large variability in the partial estimates. Intuitively
we will take this as an indication that the variability
due to noise, unmodelled dynamics, etc. have not been
sufficiently averaged out, hence we do not place much
confidence in the estimate.

Swapping of data in order to obtain information about
the system based on a finite number of data points
has been used in other areas, for example permuta-
tion and randomization tests used for statistical testing
or data analysis (see e.g. (Edgington, 1995); (Good,
1999); (Good, 2000)). Swapping of data points is also
at the core of the proof of many uniform conver-
gence results in learning theory, see e.g. (Vidyasagar,
1997) or (Vapnik, 1998). It is also closely related
to Rademacher processes, which has been used for
bounding the risk in function learning, (Koltchinskii
and Panchenko, 2000).

Loosely speaking, the idea is to obtain a result that re-
lates �21 �43 ����h� �
	 3I6�8 � to �21 �43 �^]i� �^] ] 3I6�8 � and es-
timate the latter from the observed data. In the general
case, this is a difficult problem. As a starting point, we



consider the simple first order FIR system described
above. The main result (see equation (5)) states that�21 �43 ���� � �
	 3 6 8 � ��� � �21 �43 � ] � � ] ] 3I6 � 8 � .
However, we can only compute an empirical value
of �21 �43 �^]G� �^] ] 3 6 � 8 � using observed data. This
empirical value is itself a random variable since it is
data dependent. We quantify the discrepancy between�21 �43 �^]U� �^] ] 3I6 � 8 � and its estimate using Hoeffding’s
inequality, which leads to a second level of probability.

The developed method assesses the quality using a
fixed

8
rather than a fixed probability

9
. One may also

like to asses the quality of the estimate using a fixed
probability

9
. One possible approach is; given a fixed

probability level, construct the empirical cumulative
distribution function of the partial estimates, and es-
timate

8
from the empirical distribution. In order to

obtain a rigorous result, the discrepancy between the
true
8

value and its estimate has to be quantified. In
the simple example considered in Section 2 and 3, the
student t-distribution will provide us with a result with
a fixed probability level.

Recently, finite sample properties of system identifica-
tion methods have been studied in e.g. (Weyer, 2000);
(Weyer and Campi, 1999); (Weyer and Campi, 2000);
(Campi and Weyer, 2002). The results obtained are
apriori results, since the bounds can be computed be-
fore any data are collected. This is good in the sense
that we can say something about the bound on the es-
timates before any experiment is performed. However,
due to the lack of prior knowledge this leads to results
which are worst case with respect to the prior informa-
tion, and the results obtained in those papers are con-
servative. In this paper, the properties of the estimate
are studied after the data are collected, i.e. we obtain
aposteriori results. In general, the aposteriori result is
expected to be better because the conservativeness due
to lack of prior knowledge can be reduced.

The paper is organised as follows. In Section 2, the
model structures and assumptions are outlined. Then
in Section 3, the main result is presented, followed by
some simulation results in Section 4. Conclusions are
given in Section 5.

2. MODEL STRUCTURES AND ASSUMPTIONS

As a starting point, a simple first order FIR system is
considered. Even though it is a trivial example, it is
computationally involved. The system is given by:

����� ��� �
	i� ��� � ��� ��� � (2)

where ����� � is the output,
��	

is the ’true’ parameter,� ��� � � " for all � and
� ��� � is i.i.d. Gaussian random

noise with zero mean and unknown variance $ � . No
upper bound exists for $ � . If $ � were known, the vari-
ance of the estimate could be computed using the nor-
mal distribution formula. The Student t-distribution
could have been applied to solve the problem without
any knowledge of $ � , but with a stochastic confi-
dence interval. Here we want to say something about

�21 �43 ���� � �
	 3�6 8 � for fixed
8
. The fixed

8
and the

lack of an upper bound on $ � are what make quality
assessment non-trivial even for this simple example.

The model used for identification is:

��%���'& �(�d� �*� ��� � (3)

and the LS estimate is ����J� �� .
�/�0 � ����� � .

3. MAIN RESULT: BOUND ON ����

Let � (even) be the number of data points, � some
small number, and

�(]
and

�^] ]
given by

� ] � "
� - �

�	` ��
/�0 � �����

� & � ] ] � "
� - �

�
�
/�0�� 	 c � �����

�
(4)

Lemma 1: Given the model structure and assumptions
in Section 2, we have that:

�21 �43 ����L� �
	 3I6�8 � � � � �21 �43 � ] � � ] ] 3I6 � 8 � (5)

PROOF:

�21 �43 � ] � � ] ] 3I6 � � �� �21 �43 � � ] � �
	��?� � �
	Z� � ] ] � 3I6 � � �6 "� W �21 �43 � ] � �
	 3I6 � � Y �
6 "� W �21 �43 ����L� �
	 3I6 � � Y �

The first inequality holds because
� ]

and
� ] ]

are i.i.d..
The last inequality holds because � �(]?� �
	��

is Gaus-
sian with zero mean and � ������ �
	��

is also Gaussian
with zero mean and variance smaller than the variance
of � �^]7� �
	��

. Note that by utilising the Gaussian as-
sumption, we can obtain the tighter bound �21 �43 ����+��
	 346H8 � � �21 �43 �^] � �^] ] 346 � 8 � , but the bound in the
Lemma may hold in more general cases.

3.1 Evaluation of �21 �43 �(]D� �^] ] 3I6 � 8 �
From (5), the quality of the estimate can be assessed
by bounding �21 �43 �(] � �^] ] 3I6 � 8 � . The partial estimates
depend on the output ����� � which is stochastic with
unknown variance $ � , hence �21 �43 �^]G� �^] ] 3�6 � 8 �
can not be bounded. It can only be estimated using
observed data. In order to do that, data points are
swapped between the first and the second half of the
data set. We treat the swapped data set as a new data
set and use it to identify

�(]
and

�^] ]
. Swapping is re-

peated a number of times, and we obtain a number of
realisations of

�(]�� �^] ]
from which we can estimate�21 �43 �^] � �^] ] 3d6 � 8 � by computing the frequency of3 �^] � �^] ] 3F6 � 8

. There are all together f
��	` � g swapped

data sets. However, considering so many data sets are
usually too computationally demanding. Therefore,
we need to consider swapping schemes which require
fewer computations. For example, performing swap-
ping in a random fashion or only use swapped data
sets that give mutually independent

�(]D� �^] ]
.



Let ���� � W " X X X "7�)" X X X �)" Y S (
�
� of +1 and

�
� of -1) and� � � W � � X X X � �ZY S , then

� ] � � ] ] � �
�
� 	�
/�0 � � /

� �
�

�
�
/�0�� 	 c � � /

� �
� �� S � � ������

Let �	 � � �21 �43 �^]	� �^] ] 3 6 � 8 � � �21 �43 ���� 3 6 8 �
Let

� eB&�
 � " &�X�X�X &
� , be vectors of length � whose
elements are either +1 or -1, and with equal number of
each. If the � /�� element of

� e is �M" , then the � /�� data
point in the swapped data set belongs to the first subset
of data, if it is negative it belongs to the second subset.
Also, let

� ��� � � �� � Se � . Note that
��� ��� is

�^]�� �^] ]
obtained with a swapped data set.

Since � / is i.i.d., �	 � �21 �43 ���� 376K8 � � �21 �43 � ��� 3768 � , for 
 � " &�X X X &
� . Therefore:

�	 � "�
��
e 0 � �21

�43 � ��� 3I6�8 �
����� "�

��
e 0 �
" � 3 � ��� 3I6�8 ���)��� W � Y

where � � �D��� �_� �� . �e 0 � " � 3 � ��� 3 6J8 � and
" ��� � is

the indicator function. � is the estimate of �21 �43 �I]?��^] ] 3�6 � 8 � . We need to quantify the discrepancy
between the true probability and its estimate, and this
can be done using Hoeffding’s inequality.

3.2 Bound on �21 �43 �(]D� �^] ] 3I6 � 8 �
When we only use those

� e sequences that are mutu-
ally orthogonal, the number of swapped data sets is
reduced from f

��	` � g to only � ��" (see Lemma 2),
and, by Lemma 3,

" � 3 � ��� 3I6�8 � , for 
 �5" & � X X X & � �;" ,
are independent of each other.

Lemma 2: In the set of vectors of length � � ���
, � " & � &"!D&�X X X X , whose elements are

�M"
or
� "

, with
an equal number of

�M"
’s and

� "
’s, there are � �L"

mutually orthogonal vectors.

PROOF: See Appendix A.

Lemma 3: Given mutually orthogonal
� e , 
 � " & � X X X &

� � " . Then
" � 3 � � e 3I6�8 � , 
 � " & � X X X & � � " are

independent of each other.

With orthogonal
� e ’s, we can use Hoeffding’s in-

equality to find a bound for �21 �43 �D��� � � �	 3 6$# � .
By Lemma 3 and Hoeffding’s inequality (see e.g.
(Vidyasagar, 1997)), we have:

�21 �43 �D��� ��� �	 3I6%# � � ��& a T � a � T ��b(' 	 b (6)

where

�D��� �d� "
� �H"

� T ��
e 0 �
" � 3 � ��� 3I6�8 � (7)

is computable, and the above result does not depend
on the value of

��	
or $ � . Hence, it is uniform with

respect to $ and
��	

.

Putting Lemma 1 and equation (6) together we obtain

Theorem 1: Given the system, model structure and as-
sumptions as in section 2, and � given by equation (7)
then the statement

�21 �43 ���� � �
	 3I6�8 � � � � �(� � # � (8)

holds true with probability at least
" � ��& a T � a � T ��b(' 	 b X

In words, we claim that the probability of the estimate
to be more than

8
apart from the ’best’ estimate is less

than
� � �(� � # � . This claim is itself probabilistic since� � �(� � # � is a random variable. The second proba-

bility tells us that the claim is true with probability not
less than

" � ��& a T � a � T ��b(' 	 b .
4. SIMULATIONS

Simulations are performed to check the result obtained
(see equation (8)). For easier readability and result
keeping let 	 � �21 �43 ������ � 3G6 8 � and

O � � " �
��& a T � a � T ��b(' 	 b . � (

� " ��)
) data points are generated

using the FIR system in equation (2) with a true
parameter

�
	��+* X , (since we consider a first order
FIR model, the best parameter is the true parameter),� ��� �)� ".- � and

� ��� � is white noise ( / ��� * &\$ � � )
with $ � �0* X * , . The parameter ���� is estimated using
the LS method. � ���� � �
	�� is Normally distributed with
0 mean and variance

E 	� , and �21 �43 ����L� �
	 3D6H8 � can
be computed for fixed

8
and $ .8

is fixed to be
* X *21 and an estimate of �21 �43 � ] � � ] ] 3I6� 8 � , � � �� . �e 0 � " � 3 � ��� 3?658 � is obtained from the

simulated data. As, we only consider those sequences
that are mutually orthogonal, we have � � " swapped
data sets. The first test is to check the tightness of the
bound �21 �43 ����J� �
	 3�6+8 � � � � �(� � # � . (Note that	 �3� W � Y , hence the bound,

� � �(� � # � for 	 will be
conservative.) In order to obtain several realisations,
the simulation process is repeated 199 times. A value
for

#
is chosen, and the tightness of the probability" � ��& a T � a � T ��b(' 	 b is checked by the number of times�21 �43 ����L� � 3I6�8 � � � � �(� � # � holds.

4.1 Results

The � � � �54
values obtained from the simulations

are plotted in the histogram together with the value
of 	 (

�6* X *21 ,�! 1 ) denoted by a cross in Figure 1. We
have also plotted the value of

�(]'� �^] ]
for one particular

realisation together with the value of ���� � �
	 in Figure
2.

From Figure 1, we can see that with � � " ��)
,�21 �43 ������ �
	 3G6 8 � � � � � �74 is a loose bound,

since all
4

values are much larger than 	 . The simula-
tion is repeated with � �814" � .
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Comparing the result obtained with � � " ��)

and
� ��14" � , we observe that as � increases, � decreases.
This is as expected, since, as we get more and more
data points, the quality of the estimate will get better,
and so does the quality of the partial estimates.

For � � 14" �
, 185 realisations out of the 200 gave

� � � � *
, and the rest gave values around 0.063;

which corresponds to the smallest non-zero � value (
�"�-�14"^"

) and 0.088; which corresponds to the second
smallest non-zero � value (

� � -�14"^"
). Hence, 	 � � � �

in most of the realisations since 	 � " X ��� " * T�� .
According to 	 the event will happen in about one

out of 6000 outcomes, and since we only have 512
data points, it is not likely that we will observe it.
Hence, the bound is too tight. However, we bound	 using

� � �(� � # � . Since
#

is a design variable, we
can choose

#
to be small, but this causes

O � to be
small too, and hence we have low confidence in this
particular claim about the quality of the estimate.

From the scatter plots of
�(] � �^] ]

, based on one sim-
ulation it is observed that the partial estimates form a
region around zero, and ���� � �
	

is within this region.
This shows that the quality of the estimate ���� can be
measured by the variability in the partial estimates in
this simple example.

In order to check the tightness of the second probabil-
ity,
O � is computed for different values of � and

#
,

and the results are shown in Table 1 together with the
frequency

O��
in the 200 experiments that �21 �43 ���� �� 3I6�8 � � � � �(� � # � .

Table 1.
O � with different � and

#
� # O � O	�

128 0.06 0.20 1
0.08 0.61 1

512 0.06 0.950 1
0.08 0.997 1

From Table 1, with � � " ��) , we do not place much
confidence in the obtained statement about the quality
of the estimate (

O � low) even though it holds true for
all the simulations (

O�� � "
). However, this bound is

much tighter for the simulation with � �814" � .
Naturally, we want to have

O � close to 1 since we want
high confidence in the claim about the quality of the
estimate. As

O � �#" � ��& a T � a � T ��b(' 	 b , its value can
be increased by increasing � with fixed

#
as shown

in Table 1. However usually the number of data points
are fixed and we can not increase � . The other way
to increase

O � is to increase
#
. However, this leads to

a more conservative bound on �21 �43 ����+� �
	 3F6L8 � .
#

can not be larger than 0.5, otherwise
� � �(� � # � will

be larger than 1, and the claim about the quality of
the estimate in equation (8) contains no information.
Therefore, there is a natural trade-off between the
conservativeness in the bound on the probability of3 ����5� �
	 3?658

and the confidence in the claim about
the quality.

As mentioned, the final result contains two probabil-
ities. The first probability 	 , or rather its empirical
upper bound

� � �(� � # � is used as a measure of the
quality of ���� , the smaller the probability the better
the estimate. The second probability which is due
to bounding �21 �43 �(]G� �^] ] 3�6 � 8 � by its empirical
counterpart, gives the confidence level in the quality
claim about ���� . The higher the probability, the higher
confidence we have in the claim. Therefore, in general
we aim for a result with a low value of 	 and a value
of
O � close to 1, meaning that we obtain a statement

saying that the estimate is good and that we have a
high level of confidence in the statement.



For an arbitrary large value of
8

and an arbitrary small
positive value of

#
, there are values of � and $ � such

that both 	 and
O � are arbitrary close to 1. Seemingly

this would lead to a result saying that we have high
confidence in that the estimate is bad. However, 	 is
unknown and is bounded from above by

� � �(� � # � .
If
� � �(� � # � is large, we can not say that the estimate

is bad (even if it is) since
� � �(� � # � is only an upper

bound on 	 .

5. CONCLUSIONS

In this paper we have discussed requirements to a non-
asymptotic measure for model quality, and proposed a
technique for assessing the quality of the LS estimate
by computing a bound on ���� using partial estimates.
The main principle is to measure the quality of the LS
estimate in terms of the variation in partial estimates.
If

�^]?� �^] ]
is small, the estimate, as it is intuitive, is

good. On the other hand if
�(]�� �^] ]

is spread all over
the place, then we do not place much confidence in
the estimate. As a starting point, we have investigated
this approach using a first order FIR model with a
constant input signal, and a Gaussian noise signal with
zero mean and variance $ � . The probability �21 �43 �������
	 3 6P8 � is bounded in terms of �21 �43 �(] � �^] ] 3 6 � 8 � ,
and the latter is estimated from the observed data.
However, just replacing �21 �43 �(]�� �^] ] 3_6 � 8 � by its
estimate leads to a conceptual error since the estimate
is stochastic. A second probability is therefore needed
in order to assert the probability with which the claim
holds. This second probability is estimated using Ho-
effding’s inequality. The results obtained are uniform
with respect to the data generating mechanism, hence
they are valid for all true systems in the model class
and all values of $ � .
Admittedly the example studied is very simple and
more work is needed in order to extend the method and
the results to more general settings. This is a topic for
current research, and a particularly challenging prob-
lem in this respect is to generalise the computation
of the outer probability to non-Gaussian and non iid
noise sequences.

A PROOF OF LEMMA 2

The proof is by induction. Let � � ��� ;  �5" & � &�X X X X
(1) For

 � "
, the vector � ��� � T � � � ��� � � W T � � Y

satisfies the claim.
(2) Now assume that the claim in the Lemma is true

for � � ���
for some � 6 " and label the

sequences as � � � � &�� � � � &�X X X X &�� � � ��� T � � � � � � T � .
(3) Then for � � ��� c � the following � � " vectors

are mutually orthogonal

� � c ��� � �	� " X�X�X ";� " X�X�X �H"�

� � c ��� � � W � � � � � � � � Y
� � c ��� � � W � � � � � � � � Y




� � c ��� � T ��� � W � � � ��� T � � � � ��� T � Y

� � c ��� � T ����c � � W � � � � � � � � � Y




� � c ��� � T � � c a � c ��b � W � � � � ��� T � � � � ��� T � Y� � � c ��� � T �
(4) By induction, for all vectors with � � ��� (

 �" & � &�X X X ) elements there are at least � � " vectors
that are mutually orthogonal.

Let � be a vector which is a linear combinations
of vectors which have an equal number of

"
’s and� "

’s. Then the sum of the elements of � is zero, and
hence there can not be � mutual orthogonal vectors
consisting of an equal number of

"
’s and

� "
’s, as they

would have formed a basis for �
�

. �
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