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RANDOM CONVEX PROGRAMS WITH L1-REGULARIZATION:
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Abstract. Random convex programs are convex optimization problems that are robust with
respect to a finite number of randomly sampled instances of an uncertain variable δ. This paper
studies random convex programs in which there is uncertainty in the objective function. Specifically,
let L(x, δ) be a loss function that is convex in x, the optimization variable, while it has an arbitrary
dependence on the random variable δ representing uncertainty in the optimization problem. After
sampling N instances δ(1), δ(2), . . . , δ(N) of the random variable δ, the random convex program can
be written as follows: minx maxi L(x, δ(i)). The fundamental feature of this program is that its
value L∗

N = maxi L(x∗
N , δ(i)), where x∗

N is the solution, remains guaranteed when x∗
N is applied

to the vast majority of the other unseen instances of δ; that is, L(x∗
N , δ) ≤ L∗

N holds with high
probability with respect to the uncertain variable δ. This generalization property has justified a
systematic and rigorous use of randomization in robust optimization. In this paper, we introduce
L1-regularization in random convex programs and show that L1-regularization boosts the above
generalization property so that generalization is achieved with significantly fewer samples than in
the standard convex program given above. Explicit bounds are derived that allow a rigorous and
easy implementation of the method.

Key words. random programs, L1-regularization, robustness, sparsity, convex optimization,
scenario optimization
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1. Introduction. Consider a loss function L(x, δ), where x ∈ X ⊆ R
d is the

optimization variable and δ ∈ Δ is a random variable that describes uncertainty
in the optimization problem. Often, set Δ has infinite cardinality. The following
convexity assumption is in effect throughout the paper.

Assumption 1. Function L(x, δ) is convex in x, while it has an arbitrary depen-
dence on δ, and the optimization domain X is a convex and closed set.

A random convex program [5, 28, 34, 1] is obtained by sampling a finite number
of δ’s from Δ in an i.i.d. (independent and identically distributed) fashion according
to the probability distribution P of δ (these random samples are indicated as δ(i),
i = 1, . . . , N , and called “scenarios”), and by taking worst-case minimization with
respect to the scenarios δ(i), namely,

(1.1) min
x∈X⊆Rd

max
i=1,...,N

L(x, δ(i)).1

Problem (1.1) is a convex program where the function to be minimized is obtained
as the max of N convex functions L(x, δ(i)) and can be practically solved via standard
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1Depending on the application, the scenarios δ(i) can be obtained either from a probabilistic
model or from actual observations. In the former, Δ and P are part of the model specification, and
the δ(i)’s are attained by random computer generation. In the latter, the δ(i)’s are observed, and
the δ(i)’s are assumed to have a common distribution P.
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REGULARIZED RANDOM CONVEX PROGRAMS 3533

optimization programs, such as CVX [21, 22] or YALMIP [27]. The crucial feature of
(1.1) is that its solution comes accompanied by precise theoretical guarantees that
relate the solution of (1.1) to other instances of the uncertainty parameter δ that do
not appear explicitly in problem (1.1) [5, 7]. Indeed, the optimal value of (1.1) L∗

N =
maxi=1,...,N L(x∗

N , δ(i)), where x∗
N is the optimal solution of (1.1), is a guaranteed

cost for the vast majority of the unseen instances δ, up to a probabilistic level ε that
the user can specify before running program (1.1). This generalization property can
be formally stated as follows.

Generalization Property 1. There is a set Δε with P{Δε} ≥ 1− ε such that
maxδ∈Δε L(x

∗
N , δ) ≤ L∗

N .
Thus, generalization in this context is interpreted as performance robustness, and

the theory of [5, 7] proves that random convex programs represent a viable and sys-
tematic approach to obtaining solutions carrying a prescribed performance robustness
level ε. The reader is referred to [5, 7] for a precise statement of these results. In
[6], random convex programs are applied to control problems, and [20] considers so-
lutions where max in (1.1) applies to a subset of the sampled scenarios. Moreover,
[5, 6, 7, 20] provide a broad discussion on the relation between (1.1) and deterministic
robust programs [30, 3, 4].

The use of L1-regularization. The number N of samples δ(i) that have to be
drawn to achieve a desired robustness level ε increases with the number of optimization
variables d, and in practice may result in too many samples in applications where the
number of variables is large [31, 34]. The central focus of this paper is on how this
critical obstacle can be alleviated by L1-regularization. L1-regularization is employed
to reduce the effective dimension of the optimization variable, and this reduction
allows us to find robust solutions with substantially fewer samples.

L1-regularization was discussed in [37] for regression problems, and since then L1-
regularization has been used by many in model fitting [25, 38, 26, 16, 10, 29, 42, 12, 44],
as well as in signal processing, where this approach is also known under the name
variable pursuit [13, 17, 9, 8]. Moreover, L1-optimization has given rise to the emerg-
ing field of compressed sensing; see, e.g., [15, 11]. In [42], it has been shown that
in a regression context L1-regularization is intimately tied to robust optimization,
a fact that holds more generally for other types of regularization as well [41, 43].
Building on this connection, in [44] bounds on the difference between the expected
error and the average training error have been derived. These bounds are general-
ization results in a statistical learning sense. Reference [12] gives a nice overview
of these findings. The present paper introduces L1-regularization in random con-
vex programs and provides a rigorous theory for establishing conditions under which
the previously introduced Generalization Property 1 holds. Our results are inher-
ently different from those in [44] in two respects. First, generalization is here in-
tended as the ability of L∗

N to be an upper bound to L(x∗
N , δ) with high prob-

ability, as opposed to the average statistical learning sense of [44]. Second, the
analysis of [44] hinges upon the concept of algorithmic robustness; i.e., the algo-
rithm achieves similar performance for testing samples that are close to the training
samples. Here, δ has no other structure than being a random variable, and the
concept itself that δ1 and δ2 are close to each other has no meaning. Our results
are obtained in the spirit of [5, 7], where it is shown that generalization holds pro-
vided the number of scenarios δ(i) that determine the solution x∗

N (support scenar-
ios) is small; see [5, 7] for more discussion on this approach and a comparison with
other methods.
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3534 M. C. CAMPI AND A. CARÈ

Structure of the paper. In the next section we formally introduce the setup for
random convex optimization with L1-regularization. The generalization properties of
random convex programs with L1-regularization are studied in section 3, while section
4 discusses the practical use of the method through numerical examples. Section 5
provides some complementary theoretical results.

2. Random convex optimization with L1-regularization.

2.1. Random convex programs with L1-regularization. A random convex
program with L1-regularization is written as

L1−RCP : min
x∈X⊆Rd

max
i=1,...,N

L(x, δ(i))(2.1)

subject to ‖Ax− b‖1 ≤ r,(2.2)

where, as before, δ(i), i = 1, . . . , N , are N scenarios sampled from Δ in an i.i.d. fashion
according to P, A is a p× d matrix, b is a vector of dimension p, ‖ · ‖1 is the 1-norm
(‖z‖1 =

∑
j |zj |, where zj are the components of z), and r ∈ R is the “constraining

parameter.”2 In many cases of interest, as, e.g., Examples 1 and 2 below, p = d.
As p moves away from d, the generalization results of section 3 lose strength. More
discussion on this point is provided in Remark 3.6 in section 3. Depending on the
choice of A and b, (2.2) accommodates constraints of different shape. A couple of
examples are now given for concreteness.

Example 1 (lasso constraint). Letting A = I and b = 0, (2.2) is written as

(2.3) ‖x‖1 ≤ r.

Figure 2.1 shows the diamond-shaped form of constraint (2.3) for d = 3.
The L1-regularization of x given by (2.3) has been used in regression problems

in [37] under the name of lasso regularization, and it has since stimulated a lot of
activity. Its main feature is that it has a tendency to return sparse solutions, i.e.,
solutions having a large number of zero components xj . See [23] for ample discussion
of this sparsity effect, and section 3 of this paper for a study of this effect in the
specific context of random convex optimization. Sparsity slims down the solution and
permits one to gain insight into the operativity of the design. Moreover, sparsity
results in solutions that have improved generalization properties, that is, to robust
solutions with fewer samples. Section 4 presents simulation examples where the lasso
constraint is used. �

Example 2 (basalt column constraint). Take

A =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · ·
0 1 −1 0 · · ·

...
· · · 0 0 1 −1
−1 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

2A random convex program with L1-regularization can be rewritten as a standard random convex
program by incorporating the L1-constraint (2.2) in the definition of the optimization domain X .
The reason for writing constraint (2.2) explicitly is that in section 2.2 the constraining parameter r
is varied and tuned so that a certain level of sparsity is achieved.
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REGULARIZED RANDOM CONVEX PROGRAMS 3535

Fig. 2.1. The lasso constraint.

and b = 0 in (2.2) to obtain

(2.4)

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

x1 − x2

x2 − x3

...
xd − x1

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥
1

≤ r.

For d = 3, the L1-constraint (2.4) is shaped as a hexagonal basalt column; see
Figure 2.2. In this case, the solution has a tendency to set to zero the difference
variables xj − xj+1 and xd − x1 appearing in the constraint (2.4), that is, to favor
solutions with equal adjacent components (sparsity of the difference variables). This
feature can be useful in various applications, such as the optimization of piecewise
constant functions or signals where one wishes to moderate the number of jumps
[33, 32]. �

An L1–RCP tends to set to zero some of the optimization variables, or linear
combinations of them. The selection of A and b is dictated by insight into the problem
being solved. Situations often arise where one seeks a sparse solution having many
zero components, in which case a lasso constraint is used; see, e.g., the references in
the introduction. In other situations, one can be interested in setting to zero certain
linearly transformed variables, that is, components of a vector Ax − b as discussed
at the end of Example 2. The theory developed in this paper applies to this general
case as well. We also note that constraint ‖Ax− b‖1 ≤ r is indeed more general than
‖x‖1 ≤ r, and a problem with a constraint ‖Ax−b‖1 ≤ r cannot be reduced to a lasso
constraint problem by a change of variables z = Ax − b. The reason is that A is not
an invertible matrix in general, so that z = Ax − b does not represent a one-to-one
transformation between x and z. This is already true for the basalt column constraint
where A is singular, and it is clearly true whenever A is a rectangular matrix.
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3536 M. C. CAMPI AND A. CARÈ

Fig. 2.2. The basalt column constraint.

2.2. Random convex algorithm with L1-regularization. In this section an
algorithm is introduced that is able to secure a desired level of generalization.

As the constraining parameter r in (2.2) is increased, the search domain enlarges,
the optimal value improves, and the optimal solution loses its generalization proper-
ties. In the following algorithm, r is increased until the solution of L1–RCP remains
confined in a q-dimensional subspace, where q, normally significantly smaller than
d, is a user-chosen “complexity parameter” selected before running the optimization
algorithm. The generalization properties of the solution stems from the complexity
limit set by q, and r is the instrument by means of which the solution is improved
until it is empirically observed that the q complexity barrier has been hit.

Random convex algorithm with L1-regularization (L1–RCA).

(a) Let s be the dimension of the affine subspace of Rd identified by relation
Ax− b = 0.3 Select an integer q with s < q < d.
Initialize r = 0.4

(b) Let x∗
N (r) be the optimal solution path of L1–RCP as r is increased.

For all values of r ≥ 0, evaluate which components of Ax∗
N (r) − b are zero,

and let H(r) be the index set of the zero components of Ax∗
N (r) − b; thus,

if, for example, the first two components of Ax∗
N (r) − b are zero, we have

H(r) = {1, 2}. Further, define Z(r) := {x : aThx − bh = 0, h ∈ H(r)}, where
aThx− bh is the hth component of Ax− b; that is, Z(r) is the affine subspace
of Rd preserving the null components of Ax∗

N (r) − b.

3For the lasso constraint of Example 1, s = 0, while for the basalt column constraint of Example
2, s = 1. Throughout, we assume that Ax− b = 0 admits at least one solution.

4r is a real parameter that varies continuously over R. For the purpose of running the program,
however, r is discretized; see also section 4 on the practical use of L1–RCA.
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REGULARIZED RANDOM CONVEX PROGRAMS 3537

Set r̄ to be the largest r such that dim(Z(r)) = q.5

(c) Solve

(2.5) min
x∈Z(r̄)∩X

max
i=1,...,N

L(x, δ(i)),

and let x∗
N and L∗

N be the optimal solution and the optimal value of this
problem.

Example 1 (continued). For lasso regularization, step (b) prescribes to pro-
gressively enlarge the L1-ball ‖x‖1 ≤ r. Typically, the number of nonzero components
of x increases with r (it is possible that this growth is not monotone; see the example
in section 4.1), and one is asked to stop when the optimal solution last switches from
q to q + 1 nonzero components. Optimization in point (c) is performed over the q
nonzero components. �

In general, finding the “optimal” q-dimensional subspace Zopt determined by
setting to zero some of the rows of Ax−b so that minx∈Zopt∩X maxi=1,...,N L(x, δ(i)) ≤
minx∈Z∩X maxi=1,...,N L(x, δ(i)) for any other choice of the q-dimensional subspace Z
is a horrendous combinatorial problem.6 The L1-regularization logic implemented in
step (b) is a heuristic to find variables that exhibit a strong effect on the optimization
cost.

A suitable selection of q has to meet two requirements: guaranteeing adequate
generalization properties, while also allowing for a satisfactory optimal cost. In a given
application, a priori knowledge on the sparsity of a good solution can be available,
and this knowledge can indicate a suitable choice of q. More often, one is driven by
empirical evidence. The optimal cost is computed corresponding to various values of q,
and a value of q among the tested values is chosen if it meets a satisfying compromise
between incurred optimization cost and generalization properties. This a posteriori
evaluation procedure can be implemented on a rigorous ground based on the results
of this paper, and section 4.2 offers a discussion, along with a numerical example.

In the next section we study the generalization properties of L1–RCA. Our
ultimate goal is to prove that the user keeps control on the generalization properties
by a suitable selection of the complexity parameter q. Numerical results are presented
in section 4.

3. Theory: Generalization results. By definition L∗
N = maxi=1,...,N L(x∗

N ,
δ(i)), that is, L∗

N is a guaranteed cost for the scenarios δ(i). The goal of the present
section is to establish the validity of Generalization Property 1 stated in the intro-
duction, that is,

(3.1) max
δ∈Δε

L(x∗
N , δ) ≤ L∗

N

holds for a set Δε ⊆ Δ that has at least probability 1− ε. The interpretation is that,
when solution x∗

N is applied, cost L∗
N is guaranteed to hold not only for the seen δ(i)’s,

but also for most of the unseen situations, those that have not been accounted for

5We could have taken “any r̄ such that dim(Z(r̄)) = q” instead of the “largest r” and the
generalization results in the next section would continue to hold; the only reason for considering the
largest r is that the largest r provides better optimization results in normal cases.

6A similar problem has been studied in [19] for the case that one wants to minimize the sum of
squares, and an efficient algorithm has been derived that works with d values as large as 30.
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3538 M. C. CAMPI AND A. CARÈ

during the optimization procedure. The precise result is stated below in Theorem 3.2.
Theorem 3.2 holds virtually for every L(x, δ) that are convex in x, so that the theory
has wide applicability.

Notation. For future use, we introduce the notation δ = (δ(1), δ(2), . . . , δ(N))
and call δ a multisample. Note that δ is a random element in ΔN , the N -fold Carte-
sian product of Δ with product probability P

N , where the probability is a product
probability because of the independence of the δ(i)’s.

Existence of solutions. We assume existence and uniqueness of the solution to
all random convex programs as stated in the next assumption.

Assumption 2. With probability 1 with respect to the multisample δ, any random
convex program considered in the analysis of this section admits a unique solution.

Even though this condition can be relaxed (see, e.g., [5]), we make it because it
is not very restrictive and its introduction streamlines the presentation.

Properties of x∗
N(r). x∗

N (r) is a continuous path as a function of r. This is
a consequence of the fact that x∗

N (r) is the unique minimizer of a convex function
maxi=1,...,N L(x, δ(i)) over a closed domain {‖Ax − b‖1 ≤ r} ∩ X that expands with
continuity as r increases.7

For brevity, let m(r) := dim(Z(r)). m(r) is an integer-valued function that,
for each r, returns the dimension of the affine subspace Z(r) to which the solution
x∗
N (r) belongs (refer to point (b) in the L1–RCA algorithm). We make the following

assumption.
Assumption 3. With probability 1 with respect to the multisample δ, when func-

tion m(r) increases, it does so one unit at a time, that is, it does not have jumps up
of 2 or more units, and m(∞) := limr→∞ m(r) = d.

To see that this assumption is natural, suppose we follow the path x∗
N (r) back-

ward: we start from r = ∞ and then progressively shrink the optimization domain
by decreasing r. Suppose that, at r = r̃, m(r) drops in value, i.e., m(r̃−) < m(r̃+);
this means that at least one more row aThx

∗
N (r̃)− bh becomes null. For having a jump

down of two or more units, that is, m(r̃−) ≤ m(r̃+) − 2, x∗
N (r̃) must simultaneously

hit two subspaces aThx − bh = 0, which happens only in nongeneric cases. On the
other hand, for r = ∞ there is no L1-regularization, so that the optimal solution falls
exactly on a subspace aThx − bh = 0, and therefore m(∞) < d, only in nongeneric
cases.

Termination of L1–RCA. For r = 0, ‖Ax∗
N (0)−b‖1 = 0 so thatAx∗

N (0)−b = 0,
which entails that m(0) = s. Thus, under Assumption 3, m(r) goes from s to d and,
when it increases, it does so one unit at a time. Hence, an r exists where m(r) = q.
Moreover, the sup of the r values for which m(r) = q is indeed a max as it can be
argued from the fact that x∗

N (r) is a continuous path, and so r̄ in point (b) of L1–
RCA exists. After r̄ is determined in point (b), solving (2.5) at point (c) of L1–RCA
generates x∗

N and L∗
N and terminates the algorithm. We have proven the following

theorem.
Theorem 3.1. Under Assumptions 2 and 3, with probability 1 with respect to the

multisample δ, the L1–RCA algorithm comes to termination.

Generalization result. For a multisample δ, L1–RCA generates x∗
N . Thus,

x∗
N depends on δ, a fact that we henceforth explicitly indicate by the notation x∗

N (δ).

7In [35], it is shown that x∗
N (r) is piecewise linear when L(x, δ) is quadratic in x (in which case

maxi=1,...,N L(x, δ(i)) is piecewise quadratic) and X is a polyhedron so that it has flat faces.
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Similarly, we write L∗
N(δ).

Going back to result (3.1), we now see that this result can be more explicitly
written as

(3.2) max
δ∈Δε

L(x∗
N (δ), δ) ≤ L∗

N (δ),

where the appearance of δ indicates that (3.2) is a random statement. We cannot
expect that (3.2) holds true for any multisample δ, as we may stumble upon a multi-
sample that badly represents the variability of δ in Δ. The following theorem asserts
a fundamental fact that invalidity of (3.2) happens with a probability that can be
made so small as to be negligible for any practical purpose, and this is achieved for
reasonable and implementable values of N .

Theorem 3.2. Take

(3.3) N ≥ 2

ε

[
ln

1

β
+ q + (p− d+ q) ln

(
p · e

p− d+ q

)]

in the L1–RCA algorithm (“ln” is natural logarithm, and “e” is the Nepero constant
e = 2.718 . . .). Under Assumptions 1, 2, and 3, the following statement holds true
with confidence 1 − β, that is, the statement is true for all multisamples δ with the
exception of a set whose probability P

N is at most β:
There is a set Δε with P{Δε} ≥ 1− ε such that

(3.4) max
δ∈Δε

L(x∗
N (δ), δ) ≤ L∗

N (δ).

Before proving the theorem, some remarks are in order.
Remark 3.1 (on assumptions in Theorem 3.2). Theorem 3.2 requires Assump-

tions 1, 2, and 3. The crucial assumption is the convexity Assumption 1; Assumptions
2 and 3 have a minor role and are introduced only to ensure that the L1–RCA algo-
rithm comes to termination. Assumptions 2 and 3 can be easily substituted by other
assumptions in modified setups.

Remark 3.2 (role of P). Notice that probability P plays a double role in the
theorem statement. Initially, N scenarios δ(i), i = 1, . . . , N , are sampled according
to P; then the generalization property refers to sampling another scenario δ again
according to P, and verifying whether L(x∗

N (δ), δ) ≤ L∗
N(δ). What happens if the

testing probability and the verification probability do not coincide? While studying
this topic is outside the scope of this paper, we note that this issue has been considered
in [18] in relation to the classical scenario approach, and the authors showed that, if
these two probabilities are not too apart in the Prohorov metric, the generalization
property is preserved with minor modifications. It is natural to expect that a similar
result can be established in the context of the present paper.

Remark 3.3 (role of β and ε). The confidence parameter β appears in (3.3)
under the sign of logarithm. This fact is important for the practical appeal of the
method because one can take β so small, e.g., β = 10−10, that it can practically be
neglected and (3.3) is virtually always valid. Picking β = 10−10, (3.3) is written as

(3.5) N ≥ 2

ε

[
23.1 + q + (p− d+ q) ln

(
p · e

p− d+ q

)]
,

where 23.1 is an upper bound to ln(1010). The dependence on ε is instead inversely
proportional, and therefore N increases relatively fast as ε approaches 0. This fact
limits the range of values of ε to which the approach can be applied.
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Remark 3.4 (handy formulas). The sample complexity in (3.3) can be simplified
in specific cases. Often p = d; this is, e.g., the case for the lasso regularization of
Example 1 and the basalt column regularization of Example 2. If so, condition (3.3)
reduces to

(3.6) N ≥ 2

ε

[
ln

1

β
+ q

(
1 + ln

d · e
q

)]
.

In the special case when β = 10−10, (3.6) further reduces to

(3.7) N ≥ 2

ε

[
23.1 + q

(
1 + ln

d · e
q

)]
.

The sample complexity provided by formulas (3.5) and (3.7) returns values for N that
are reasonable for real implementation in many application problems.

Remark 3.5 (a more general result). Equation (3.3) is obtained by making (3.12)
in the proof explicit with respect to N . For easy reference, (3.12) is repeated here:

(3.8)

(
p

d− q

) q∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β.

An explicit expression like (3.3) comes in handy for a quick computation of N , and,
moreover, it readily shows certain dependencies (e.g., N scales logarithmically in 1/β,
and linearly in 1/ε). On the other hand, in typical cases a direct use of formula (3.8)
leads to an N smaller than that given by (3.3) by a factor of 2 or so. Since solving
(3.8) for N can be troublesome in practice, a ready-to-use MATLAB code for solving
(3.8) for N is provided in Appendix A.1.

Proof of Theorem 3.2. In L1–RCA, x∗
N (δ) is obtained by solving program

min
x∈Z(r̄)∩X

max
i=1,...,N

L(x, δ(i)),

which can be equivalently written in epigraphic form as

min
L∈R,x∈Z(r̄)∩X

L(3.9)

subject to L(x, δ(i)) ≤ L, i = 1, . . . , N.(3.10)

This program has the structure of a scenario program according to the definition in
[7] in q+1 variables, where 1 accounts for variable L, and q accounts for the variables
x confined to belonging to an affine subspace of dimension q.

Theorem 1 in [7] states that the solution of a scenario program violates more than
an ε-fraction of the unseen constraints with a small probability that is bounded by
a Beta distribution. For a given δ, the constraint is written as L(x, δ) ≤ L, and, for
x = x∗

N (δ) and L = L∗
N(δ), this constraint becomes L(x∗

N (δ), δ) ≤ L∗
N (δ). Thus, one

might hope to apply Theorem 1 in [7] directly in the present context to show that
(3.4) holds with high probability. However, one difficulty in applying Theorem 1 in
[7] directly is that the latter reference requires that the domain of the optimization
problem be completely set in advance, prior to seeing any δ(i). Here, instead, the
optimization domain Z(r̄) ∩ X for x depends on δ(i) via the construction of Z(r̄) in
the L1–RCA algorithm. This difficulty can be circumvented by considering all the
potential candidates for Z(r̄) ∩ X , a route followed in the reasoning below.
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Z(r̄) has by construction dimension q. So, referring to step (b) of the algorithm,
Ax∗

N (r̄) − b must have at least d − q null components, and Z(r̄) is determined by
d − q linearly independent equations of the type aThx − bh = 0. Now, the number of
different ways of choosing d−q equations aThx−bh = 0 out of the p rows of Ax−b = 0
is given by the binomial coefficient

(
p

d−q

)
. Thus, applying Theorem 1 in [7], we arrive

at the result that
(3.11)

P
N{δ : P{δ ∈ Δ : L(x∗

N (δ), δ) > L∗
N(δ)} > ε} ≤

(
p

d− q

) q∑
i=0

(
N

i

)
εi(1− ε)N−i,

where
∑q

i=0

(
N
i

)
εi(1 − ε)N−i in the right-hand side is the bound in Theorem 1 in

[7] that holds for a given domain of optimization, and the term
(

p
d−q

)
accounts for

the number of potential optimization domains. The right-hand side of (3.11) keeps
control on the probability of “bad” multisamples δ such that P{δ ∈ Δ : L(x∗

N (δ), δ) >
L∗
N(δ)} > ε. The complementary condition P{δ ∈ Δ : L(x∗

N (δ), δ(i)) > L∗
N (δ)} ≤ ε

can be equivalently written as follows: there is a set Δε with P{Δε} ≥ 1− ε such that

max
δ∈Δε

L(x∗
N (δ), δ) ≤ L∗

N (δ);

so what is left to show (compare with the theorem statement) is that, under condition
(3.3) on N , the right-hand side of (3.11) is smaller than or equal to β, i.e.,

(3.12)

(
p

d− q

) q∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β.

To show (3.12), start from (3.3) and write

N ≥ 2

ε

[
ln

1

β
+ q + (p− d+ q) ln

(
p · e

p− d+ q

)]
[to ease notation, let α := p− d+ q]

⇒ N ≥ 2

ε

[
ln

1

β
+ q + α ln

(p · e
α

)]
[use α! ≥ (α/e)α, which implies that the term added at the next row is

not positive]

⇒ N ≥ 2

ε

[
ln

1

β
+ q + α ln

(p · e
α

)
+ ln

(
α
e

)α
α!

]

⇒ N ≥ 2

ε

[
ln

1

β
+ q + ln

[(p · e
α

)α

·
(
α
e

)α
α!

]]

⇒ N ≥ 2

ε

[
ln

1

β
+ q + ln

pα

α!

]

⇒ 1

2
Nε− q ≥ ln

1

β
+ ln

pα

α!

[since (Nε−q)2

2Nε ≥ 1
2Nε− q]

⇒ (Nε− q)2

2Nε
≥ ln

1

β
+ ln

pα

α!
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⇒ lnβ ≥ ln
pα

α!
− (Nε − q)2

2Nε

⇒ β ≥ pα

α!
· exp

(
− (Nε− q)2

2Nε

)

⇒ β ≥
(

p

p− α

)
· exp

(
− (Nε− q)2

2Nε

)
[apply Chernoff’s bound, which states that the exp term is an upper bound

to a Binomial tail; see [14] or [40]]

⇒ β ≥
(

p

p− α

)
·

q∑
i=0

(
N

i

)
εi(1− ε)N−i,

(3.13)

which is (3.12). This completes the proof.
Remark 3.6 (comparison with [7]). Suppose that the L1-regularization is not

used, and program (1.1) is solved. Program (1.1) can be written in epigraphic form as

min
L∈R,x∈X

L

subject to L(x, δ(i)) ≤ L, i = 1, . . . , N,(3.14)

and Theorem 1 in [7] can be applied to this problem, leading to

(3.15)

d∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β.

Moreover, this same evaluation (3.15) can also be applied to problem (2.1), (2.2) for
a fixed r. Indeed, (2.1), (2.2) can be written in epigraphic form as

min
L∈R,x∈X̄

L

subject to L(x, δ(i)) ≤ L, i = 1, . . . , N,

where X̄ = {x ∈ X : ‖Ax − b‖1 ≤ r} replaces X in formulation (3.14). We want to
compare formula (3.15) with (3.8) when p = d.

The fundamental difference between (3.15) and (3.8) is that the summation in
(3.15) extends till d, while that in (3.8) stops at q; if q is significantly smaller than
d, this implies a substantial saving in the sample complexity N . This fact can be
appreciated by explicit formulas. By making (3.15) explicit with respect to N via a
calculation similar to (3.13), it is found that

N ≥ 2

ε

[
ln

1

β
+ d

]
.

Here N grows linearly with d, while in (3.6) d is under the sign of logarithm and q
replaces the role of d in the linear growth. For a direct numerical comparison of (3.15)
and (3.8), take ε = 0.2, β = 10−10, p = d = 200, q = 7 (these choices are taken from
Example 1 in section 4). Formula (3.15) gives N = 1469, while (3.8) gives N = 332.
With the values ε = 2.03%, β = 10−10, p = d = 2000, q = 6 taken from Example 2 in
section 4 we instead find N = 113094 with (3.15) and N = 4000 with (3.8). Table 3.1
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Table 3.1

Values for N obtained using formula (3.15) (1st line in italic) and formula (3.8) (2nd through
9th lines); β = 10−10, p = d = 2000.

ε = 1% ε = 2% ε = 3% ε = 4% ε = 5% ε = 6% ε = 7% ε = 8% ε = 9% ε = 10%

229735 114793 76478 57321 45826 38163 32689 28584 25390 22836

q = 1 3403 1693 1123 838 668 554 472 411 364 325

q = 2 4427 2203 1462 1091 869 720 614 535 473 424

q = 3 5403 2689 1784 1332 1060 879 750 653 578 517

q = 4 6346 3158 2096 1564 1245 1033 881 767 679 608

q = 5 7264 3615 2399 1791 1426 1182 1009 878 777 696

q = 10 11594 5771 3829 2859 2276 1888 1610 1402 1240 1111

q = 15 15644 7786 5167 3858 3072 2548 2173 1893 1674 1500

q = 20 19506 9709 6443 4810 3831 3177 2711 2361 2088 1870

provides a numerical comparison of (3.15) and (3.8) for various values of ε and q.
This benefit of having a reduced sample complexity comes from exploiting in Theorem
3.2 the structure provided by the sparsity.

Suppose now that p 
= d. L1-regularization tends to set to zero the rows of Ax−
b. However, if p is significantly less than d, regularization is not effective and the
benefits in terms of sample complexity are lost. This can also be seen in the L1–
RCA algorithm where s, the dimension of the affine subspace in R

d identified by the
relation Ax − b = 0, is certainly no smaller than d − p, i.e., s ≥ d − p. Since q is
bigger than s, we have q > s ≥ d− p. From this we see that the complexity parameter
q cannot be made small compared to d if p is small compared to d. On the other
hand, increasing p so that it is much bigger than d results in too many choices of
subspaces of dimension q, and this kills the benefit of regularization as well. This is
seen from (3.3), where a p as large as p = 2d leads to an N that scales linearly in d.
Thus, putting this all together, to exploit the benefit of regularization p must be not
too different from d, and p = d is indeed the most common choice.

4. Practical use of L1–RCA. Section 4.1 presents an example in regression
that illustrates the general theory developed in previous sections. Often, a suitable
selection of q is made based on empirical evidence, and this aspect is discussed in the
example of section 4.2.

4.1. Example 1: Minimax regression. A signal s(t) is obtained as the com-
position of 200 sinusoids,

s(t) =

200∑
j=1

αj sin(jt),

where α1=α5=α8=α45=0.2 and the other 196 coefficients are given by the coordi-
nates of a point selected at random on the simplex of size 0.2 (i.e.,

∑
j 	=1,5,8,45 αj = 0.2,

αj ≥ 0). Note that
∑200

j=1 αj = 1 and αj ≥ 0, j = 1, 2, . . . , 200; that is, signal s(t) is
obtained as the convex combination of 200 sinusoidal waveforms, while just 4 sinusoids
are the dominating ones.

We want to construct a reduced order signal ŝ(t) that approximates s(t) according
to a minimax criterion of best fit. To this purpose, suppose that we can access signal

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

92
.1

67
.2

3.
21

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3544 M. C. CAMPI AND A. CARÈ
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Fig. 4.1. Samples (t(i) , s(t(i))).

s(t) by computing its value in correspondence of selected values of the variable t.8

To be concrete, suppose N = 332 samples (t(i), s(t(i))) are gathered, where the
t(i) are picked independently of each other according to the uniform distribution in
[−π, π]. Some of these samples are shown in Figure 4.1. Also, take ŝ(t) of the form

ŝ(t) =
∑7

k=1 xjk sin(jkt), that is, ŝ(t) is composed by 7 sinusoidal waveforms whose
frequencies, however, are not a priori decided and instead must be chosen based on
the samples. To estimate the 7 frequencies jk and the associated coefficients xjk , the
L1–RCA algorithm is used. First, allow ŝ(t) to be formed by 200 sinusoids, that is,

ŝ(t) =

200∑
j=1

xj sin(jt),

and write the L1–RCP program (2.1), (2.2) with lasso regularization

min
x∈R200

max
i=1,...,332

|s(t(i))− ŝ(t(i))|,
subject to ‖x‖1 ≤ r.

This program produces solutions ŝ(t) of variable complexity, i.e., with a variable
number of null coefficients, depending on the regularization parameter r. Figure 4.2
visualizes the number of nonzero coefficients that we obtained when this program was

8Even though the simple example of this section has just illustrative purposes, the problem of
extracting reduced order descriptions of signals and functions is a fundamental problem in signal
processing. Among many contributions, refer, e.g., to [24, 2]. One common assumption of many
approximation schemes is that a good approximating function is representable as the linear combi-
nation of not too many basis functions, provided one is able to select suitable basis functions from
a set of potential candidates that contains many elements. Though very simple, our example here
where 4 sinusoids are dominant in a set of 200 elements follows this scheme.
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Fig. 4.2. Number of nonzero coefficients for r ≤ 0.8; the horizontal line is at level q = 7.

run with the data shown in Figure 4.1, and with r ranging from 0 to 0.8 over a grid
with step 0.01.9

Selecting q = 7 in L1–RCA, we halted increasing r at the value r̄ = 0.58, where
the solution had q = 7 nonzero coefficients for the last time; the nonzero coefficients
were associated with frequencies j1=1, j2=5, j3=8, j4=41, j5=45, j6=109, j7=127,
showing the ability of the algorithm to capture the sinusoids that have the strongest
content in s(t).10 We further solved

min
xj1 ,...,xj7

max
i=1,...,332

∣∣∣s(t(i))− 7∑
k=1

xjk sin(jkt
(i))

∣∣∣,
as prescribed by point (c) of L1–RCA, obtaining

x∗
j1 = 0.1909, x∗

j2 = 0.1964, x∗
j3 = 0.2033, x∗

j4 = 0.0187, x∗
j5 = 0.2059,

x∗
j6 = 0.0271, x∗

j7 = 0.0184,

and optimal value L∗
332 = 0.0649. A portion of the profile of ŝ∗332(t) =

∑7
k=1 x

∗
jk

sin(jkt) against that of s(t) is shown in Figure 4.3.
Next, we use Theorem 3.2 to assess the robustness properties of the solution. To

help the reader link the present example to the general theory developed in previous

9The reader may have noticed that the jumps up in this function are at times of 2 or more units,
and this may appear to be in contradiction with Assumption 3. It is worthwhile pointing out that
this behavior is due to the discretization of r and that a finer discretization leads to jumps up of
only one unit.

10The reader may be interested to know that we repeated the same experiment with q = 6, 5, 4
and found that the algorithm was unable to capture all 4 largest sinusoidal components of s(t). This
fact has to be ascribed to the heuristic nature of L1-regularization.
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Fig. 4.3. Signal s(t) (solid line) and reduced order signal = ŝ∗332(t) (dashed line).

sections, we notice that the t(i) here corresponds to the δ(i) of the general theory, and
[−π, π] is Δ.

Now, substituting ε = 0.2, β = 10−10, p = 200, d = 200, and q = 7 in (3.8), we
obtain N = 332, which is the actual number of samples we have used. Thereby, an
application of Theorem 3.2 permits us to conclude with very high confidence 1−10−10

that (3.4) holds with ε = 20%, which means that

|s(t)− ŝ∗332(t)| ≤ 0.0649

is satisfied with probability at least 80% with respect to random choices of t. Proba-
bility 80% can be increased by increasing N . Setting a probability of 95%, from (3.8)
we find N = 1429, while probability 99% gives N = 7277. Increasing N results in an
increased computational complexity of the optimization program.

Increasing the confidence in the result by a posteriori evaluation. The
value of 80% can also be increased by an a posteriori evaluation that does not in-
volve optimizing over an increased number N of samples. To this end, the following
proposition can be applied.

Proposition 4.1. Let x∗
N be the solution obtained with L1–RCA. Take

(4.1) M ≥ 1

ε′
ln

1

β′

i.i.d. samples δ(N+1), . . . , δ(N+M) distributed according to P and independent of δ(1),
. . . , δ(N), and let

L∗ = max
i=N+1,...,N+M

L(x∗
N , δ(i)).

Then, with confidence 1 − β′ with respect to the multisample δ(N+1), . . . , δ(N+M),
relation

(4.2) L(x∗
N , δ) ≤ L∗

holds with probability at least 1− ε′ with respect to random choices of δ.
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Proof. To prove this simple result, suppose that (4.2) is true with probability less
than 1 − ε′, i.e., L(x∗

N , δ) ≤ L∗ over a set Δε′ that has probability < 1 − ε′. Since,
by construction of L∗, L(x∗

N , δ(i)) ≤ L∗ for all i = N + 1, . . . , N +M , then all δ(i)’s
have to fall in Δε′ , and the probability of this happening is bounded by (1 − ε′)M .
Imposing that this event is rare and has probability at most β′ yields (1− ε′)M ≤ β′

or, equivalently, M ≥ ln β′

ln(1−ε′) . Finally, observe that lnβ′

ln(1−ε′) ≤ ln β′

−ε′ =
ln 1

β′
ε′ , so that

imposing M ≥ 1
ε′ ln

1
β′ suffices in order that (4.2) holds with probability at least 1− ε′

with high confidence 1− β′ .
For an application of this result to the context of the minimax regression ex-

ample, pick ε′ = 7%, β′ = 10−10, so that M = 330. In this case L∗ writes
L∗ = maxi=N+1,...,N+330 |s(t(i))− ŝ∗332(t)|, and we found L∗ = 0.0719.

The a posteriori evaluation does not require any optimization procedure and can
therefore be carried out with little additional computational burden. On the other
hand, the a posteriori evaluation does not allow the solution to be adapted to the
extra M samples, which are used only for evaluation purposes.

Remark 4.1 (sample complexity: a priori vs. a posteriori). The reader has
probably noticed that the number M = 330 of samples needed for an a posteriori
assessment with ε′ = 7% and β′ = 10−10 is similar to the number N = 332 of samples
needed for applying the L1–RCA algorithm with ε = 20% and β = 10−10. Further
inspecting (3.6) and (4.1), we see that both of these equations show a linear dependence
on the inverse generalization parameters, 1/ε or 1/ε′, and a logarithmic dependence
on the inverse confidence parameter, 1/β or 1/β′. Thus, a posteriori and a priori
evaluations have sample complexities that are comparable in structure, a fact that is
perhaps surprising.

Remark 4.2 (tightness of (3.8)). One reason that is key to obtaining a re-
sult as tight as that given in Theorem 3.2 is that in the proof of Theorem 3.2 atten-
tion is paid to control only the generalization properties in correspondence of x∗

N , the
optimal solution. This is in contrast with other generalization theories, chiefly the
Vapnik-Chervonenkis theory [39], which aims to control generalization uniformly over
all potential solutions x.

Remark 4.3 (multidimensional functions). Still referring to the problem of ap-
proximating a function from samples, but now broadening our point of view beyond
the 1-dimensional example of this section, note that the number N of samples given
by (3.8) does not depend on the dimension of the domain of definition of the function
being approximated. Thus, while for the sake of simplicity we have used here an ex-
ample with a signal of a 1-dimensional variable t, should we instead have considered a
function defined over a higher-dimensional space, the value of N would have remained
the same. This fact is in contrast with deterministic gridding approaches where typ-
ically N explodes exponentially with the dimension, a fact known as the “curse of
dimensionality.”11

4.2. Example 2: Reconstruction of a sparse high-dimensional vector.
It may be difficult in a given application to fix the value of q in advance. In these
cases, one way to proceed consists in inspecting the optimal value obtained for various
values of q, and then selecting a value of q that meets an adequate compromise of
performance and robustness guarantees. This procedure is illustrated in this second
example.

11On the other hand, it is also true that the number of basis functions needed to faithfully
reconstruct a function normally scales up with the dimensionality, so that in higher dimensions a
larger q is usually selected in L1–RCA, and this fact indirectly impacts on the value of N .
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A vector z of size 2000 has only 4 nonzero components, whose values are 2.2, −2.7,
1.8, −1.9. z is multiplied by various random vectors b(i), and we are given the result of
the multiplication corrupted by an error term e(i). In more precise terms, 4000 vectors
b(i) are generated independently of one another. Each b(i) has 2000 components that
are uniformly extracted from [−1, 1] and such that each component is independent of
the other components. Vector z is multiplied by b(i), thus obtaining zT b(i), and to the
result an error term e(i) is added, whose value is extracted uniformly from [−0.1, 0.1].
The error terms e(i) form an independent sequence, which is also independent of the
vectors b(i). Thus, our measurements a(i) can be written as

a(i) = zT b(i) + e(i), i = 1, . . . , 4000.

In order to reconstruct z, we consider the L1–RCP program (2.1), (2.2) with lasso
regularization

min
x∈R2000

max
i=1,...,4000

|a(i) − xT b(i)|
subject to ‖x‖1 ≤ r

and set out to solve the corresponding L1–RCA algorithm for increasing values of q
between 1 and 10. The graph in Figure 4.4 represents the cost obtained for different
values of q. Based on this graph, we selected q = 6, and this gave a solution x∗ where
the 4 nonzero components of z were correctly identified up to an error of less than
10−4, while all other components of x∗ were less than 3 · 10−5 in absolute value.12

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Fig. 4.4. Cost of L1–RCA obtained for different values of q.

Let us now go back to the theory, and see how the theory can be applied to the
present context. Formula (3.8) can be applied with β = 10−10, p = 2000, d = 2000,
N = 4000, and q = 1, 2, . . . , 10 obtaining, for each value of q, a different value of ε,

12For q = 7, not all the 4 nonzero components of z were correctly identified. This behavior is due
to the heuristic nature of the L1-regularization procedure. We also notice that a graph like the one
shown in Figure 4.4 is sensitive to the selected b(i) and e(i), and for different samples of b(i) and e(i)

the graph exhibits a different profile, it can, e.g., be monotonically decreasing.
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REGULARIZED RANDOM CONVEX PROGRAMS 3549

which we here denote as εq. q is a posteriori selected based on the cost incurred for
different q values, and we denote the selected q as q̄. After selecting q̄, we want to
state that

|a− (x∗
4000)

T b| ≤ L∗
q̄

holds with probability at least 1 − εq̄, where a = zT b + e is a hypothetical new
measurement that has not been seen yet, with b and e distributed as b(i) and e(i), but
independent of all the seen measurements. Since the statement that

(4.3) |a− (x∗
4000)

T b| ≤ L∗
q

holds with probability at least 1 − εq is true for each single q ∈ {1, . . . , 10} with
confidence 1−10−10, the statement that (4.3) holds with probability at least εq is true
for all q simultaneously with confidence 1−10−10 · (number of possible choices of q) =
1−10−9. Therefore, at least with the confidence 1−10−9, we can conclude that when
a q̄ is a posteriori selected, relation

|a− (x∗
4000)

T b| ≤ L∗
q̄

holds with probability at least 1− εq̄. In our example, we have εq̄ = ε6 = 2.03% and
L∗
q̄ = L∗

6 = 0.0997, so that the statement that we make with high confidence 1− 10−9

is that |a− (x∗
4000)

T b| ≤ 0.0997 holds with probability at least 97.97%.

5. An assessment of the robustness-loss curve. x∗
N (δ) denotes the optimal

solution obtained by applying the L1–RCA algorithm for givenN and q. Throughout
this section, N and q are kept to fixed values.

Theorem 3.2 establishes that

(5.1) max
δ∈Δε

L(x∗
N (δ), δ) ≤ L∗

N(δ)

holds over Δε with high confidence. This result links a loss value L∗
N(δ) to the

probability 1− ε with which such a loss value is guaranteed. The question this section
addresses is: Is it possible to go beyond result (5.1) and investigate how rapidly the
loss value associated to x∗

N (δ) improves, provided one is ready to decrease the level
of probability? We show in this section that a whole robustness-loss curve can in fact
be constructed.

Let

(5.2) ε� =
�

N
+

g − 1 +
√
g2 + 2(�− 1)g

N
, � = q+1, . . . , q+h,

where h is an arbitrary integer chosen by the user such that q + h ≤ N , and

(5.3) g = ln

[
1

β
·
(p · e

α

)α
]
, α := p− d+ q.

To ease notation, henceforth we write x∗ for x∗
N (δ). Define

L∗
ε�

= max{L such that L ≤ L(x∗, δ(i)) for � scenarios δ(i)}.

Thus, L∗
ε�
are the values L(x∗, δ(i)) listed in decreasing order of magnitude; see Figure

5.1.
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2ε
∗L

3ε
∗L

4ε
∗L

5ε
∗L

L

∗x x

Fig. 5.1. Visualization of L∗
ε�

for q = 1. Each constraint represents the region where L ≥
L(x, δ(i)) for some δ(i).

We have the following theorem.
Theorem 5.1. The statement

L(x∗, δ) ≤ L∗
ε� holds with probability at least 1− ε�

is true simultaneously for all � = q+1, . . . , q+h with confidence 1− hβ.
L∗
ε�

are the loss values corresponding to the scenarios δ(i)’s, and to each L∗
ε�

the
theorem associates a probability 1− ε�. Thus, the theorem permits us to determine a
robustness-loss curve over the whole range � = q+1, . . . , q+h. An example of such a
curve is given in Figure 5.3. The proof of the theorem is provided at the end of this
section.

Remark 5.1 (structure of ε�). ε� is formed by two terms: �
N and

g+
√

g2+2(�−1)g

N .
The first term is the empirical proportion, or the “empirical probability,” of the sce-
narios that are greater than or equal to L∗

ε�
. This empirical proportion alone cannot

be expected to be a bound for the real probability that L(x∗, δ) > L∗
ε�
. Indeed, for one

thing an empirical probability is subject to stochastic fluctuation; moreover, in our
context, there is a reason of bias for the real probability to be larger than the empirical
probability because x∗ has been computed via an optimization procedure. The second

term
g+

√
g2+2(�−1)g

N is the adjustment term accounting for the mismatch between em-
pirical and real probability. Interestingly, when N is increased and � is kept at a fixed
proportion with N , the second term goes to zero as fast as O(1/

√
N).

Remark 5.2 (a more general result for ε�). While (5.2) has the advantage of
being an explicit expression for ε�, an inspection of the proof of Theorem 5.1 reveals
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that the ε� obtained from relation

(5.4)

(
p

d− q

) �−1∑
i=0

(
N

i

)
εi�(1− ε�)

N−i = β

is still a valid probability for Theorem 5.1 to hold true. A MATLAB code to compute
ε� from (5.4) is provided in Appendix A.2.

Proof of Theorem 5.1. We first concentrate our attention on one � value in
the range [q+1, q+h] and bound the probability P

N of multisamples δ such that
P{L(x∗, δ) > L∗

ε�
} > ε�.

Similarly to the proof of Theorem 3.2 in section 3, one difficulty is that the opti-
mization domain Z(r̄)∩X in point (c) of the algorithm depends on the scenarios δ(i)

via the construction of Z(r̄). We follow the same approach as in the proof of Theorem
3.2 and consider one by one each single candidate domain Z(r̄)∩X . Correspondingly,
in what follows we consider a fixed optimization domain; later on in the proof we
shall account for the fact that the optimization domain is one among many candidate
domains. This first part of the proof is similar to Part 1 in the proof of Theorem 1 in
[7], and is provided here for completeness.

To ease the presentation, we assume that, for any given (x̄, L̄), P{L̄ = L(x̄, δ)} =
0. This is a nondegeneracy condition requiring that functions L = L(x, δ) do not
accumulate in any given point (x̄, L̄); this condition can be removed similarly to Part
2b in the proof of Theorem 1 in [7].

As an intermediate step in the derivation of the final result, we first consider the
case when N = �. Let

(5.5) F (α) := P
N{δ : P{L(x∗

� , δ) > L∗
ε�} ≤ α}

be the probability distribution of P{L(x∗
� , δ) > L∗

ε�
} (here, we write x∗

� to recall that
x∗ has been obtained with � scenarios). We shall prove that this distribution is

(5.6) F (α) = α�.

To prove (5.6), consider Δm, the space whose elements are m instances of δ,
which we write as (δ(1), . . . , δ(m)). Dimension m is any integer bigger than or equal
to � and has to be thought of as a fixed number. Given an element (δ(1), . . . , δ(m))
of Δm, compute the solution to problem (3.9), (3.10), where N is substituted by m,
and further single out the indexes of the � functions L = L(x, δ(i)) that are at the
top � positions on the line that passes through the solution. For � = 4 these are the
functions that touch the half-line in bold in Figure 5.2. Further, group all elements
in Δm having the same indexes. In this way,

(
m
�

)
sets SI are constructed forming a

partition (up to a probability 0 set) of Δm, where I ⊆ {1, . . . ,m} is a set of cardinality
� containing the indexes of the top � functions. We claim that the probability of each
of these sets is

(5.7) P
m{SI} =

∫ 1

0

(1− α)m−�F (dα),

where F (α) is defined in (5.5); using (5.7), later on in the proof we shall show that
F (α) has the expression in (5.6).

To establish (5.7) in a more concrete way, consider one of the sets SI , e.g., the set
where the indexes of the top � functions are 1, . . . , �. Select fixed values δ̄(1), . . . , δ̄(�)
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4ε
∗L

L

∗x x

Fig. 5.2. The 4 functions singled out in the proof of the theorem are those touching the bold
half-line.

for δ(1), . . . , δ(�), solve (3.9), (3.10) with N = � for the given δ̄(1), . . . , δ̄(�), and let
x̄∗
� be the optimal solution and L̄∗

ε�
the value corresponding to x̄∗

� obtained by the

lowest function. Let α(δ̄(1), . . . , δ̄(�)) = P{L(x̄∗
� , δ) > L̄∗

ε�}. Then the probability that

δ(�+1), . . . , δ(m) are not among the � top functions, i.e., (δ̄(1), . . . , δ̄(�), δ(�+1), . . . , δ(m))
∈ SI , is (1−α(δ̄(1), . . . , δ̄(�)))m−�. Integrating over the domain Δ� for (δ̄(1), . . . , δ̄(�)),
we then have

P
m{SI}
=

∫
Δ�

(1 − α(δ̄(1), . . . , δ̄(�)))m−�
P
�(dδ̄(1), . . . , dδ̄(�))

=

∫ 1

0

(1− α)m−�F (dα),

where the second equality is a change of variables from (δ̄(1), . . . , δ̄(�)) to α. This
establishes (5.7).

Recalling that the sets SI form a partition of Δm up to a probability 0 set and
noting that Pm{Δm} = 1, (5.7) yields

(5.8)

(
m

�

)∫ 1

0

(1 − α)m−�F (dα) = 1 for all m ≥ �.

Expression F (α) = α� in (5.6) is indeed a solution of (5.8), as is easily verified by
integration by parts; on the other hand, no other solutions exist, since determining
an F satisfying (5.8) is a moment problem for a distribution with finite support and
its solution is unique; see, e.g., Corollary 1, section 12.9, Chapter II of [36]. Thus, we
have proven that F (α) has the expression (5.6).
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Consider next a generic N , not necessarily equal to �. Partition the set {δ :
P{L(x∗

N , δ) > L∗
ε�} > ε�} by intersecting it with the

(
N
�

)
sets SI grouping elements of

ΔN such that the � top functions have the same indexes. We then have

P
N{δ : P{L(x∗

N , δ) > L∗
ε�} > ε�}

= P
N
{ ∪I {δ : P{L(x∗

N , δ) > L∗
ε�
} > ε�} and the functions at top

positions have indexes in I}}
[IA is the indicator function of set A, i.e., IA = 1 over A and IA = 0 otherwise]

=

(
N

�

)∫
Δ�

(1− α(δ̄(1), . . . , δ̄(�)))N−�
I{α(δ̄(1),...,δ̄(�))>ε�}P

�(dδ̄(1), . . . , dδ̄(�))

=

(
N

�

)∫ 1

ε�

(1− α)N−� F (dα)

[since F (dα) = �α�−1 dα]

=

(
N

�

)∫ 1

ε�

[
(1− α)N−��α�−1

]
dα

[integrating by parts]

=

(
N

�

)[
− (1− α)N−�+1

N − �+ 1
�α�−1

∣∣∣∣
1

ε�

+

∫ 1

ε�

(1− α)N−�+1

N − �+ 1
�(�− 1)α�−2 dα

]

=

(
N

�− 1

)
ε�

�−1(1− ε�)
N−�+1 +

(
N

�− 1

)∫ 1

ε�

(1− α)N−�+1(�− 1)α�−2 dα

= · · ·
=

(
N

�− 1

)
ε�

�−1(1− ε�)
N−�+1 + · · ·+

(
N

1

)
ε�(1 − ε�)

N−1 +

(
N

1

)∫ 1

ε�

(1− α)N−1 dα

=

�−1∑
i=0

(
N

i

)
ε�

i(1− ε�)
N−i.

Next, we sum up over all the potential candidates for Z(r̄)∩X , which are
(

p
d−q

)
,

thus obtaining

P
N{δ : P{L(x∗

N , δ) > L∗
ε�
} > ε�} ≤

(
p

d− q

) �−1∑
i=0

(
N

i

)
εi�(1− ε�)

N−i,

or equivalently that

(5.9) L(x∗
N , δ) ≤ L∗

ε� holds with probability at least 1− ε�

with confidence 1− (
p

d−q

)∑�−1
i=0

(
N
i

)
εi�(1− ε�)

N−i.

When � varies in the range [q+1, q+h], the conclusion is drawn that (5.9) is true
simultaneously for all � = q+1, . . . , q+h with confidence

(5.10) 1−
q+h∑

�=q+1

[(
p

d− q

) �−1∑
i=0

(
N

i

)
εi�(1− ε�)

N−i

]
.

If we show that each term in square brackets is bounded by β, namely,

(5.11)

(
p

d− q

) �−1∑
i=0

(
N

i

)
εi�(1 − ε�)

N−i ≤ β, � = q+1, . . . , q+h,

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

92
.1

67
.2

3.
21

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3554 M. C. CAMPI AND A. CARÈ

then confidence (5.10) is not less than 1− hβ, and the proof is complete.
To prove (5.11) observe first that the ε� given by (5.2) satisfies relation

(Nε� − �+ 1)2

2Nε�
= g,

from which, recalling the expression for g in (5.3), we obtain

(5.12)
(p · e

α

)α

· exp
(
− (Nε� − �+ 1)2

2Nε�

)
= β.

The first term on the left-hand side is lower-bounded by

(5.13)
(p · e

α

)α

≥ [use α! ≥ (α/e)α] ≥ pα

α!
≥

(
p

p− α

)
=

(
p

d− q

)
,

while an application of the Chernoff bound for the Binomial tail (see [14] or [40]) to
the second term yields

(5.14) exp

(
− (Nε� − �+ 1)2

2Nε�

)
≥

�−1∑
i=0

(
N

i

)
εi�(1− ε�)

N−i.

Substituting (5.13) and (5.14) in (5.12) gives (5.11). This concludes the proof.

5.1. Example 1: Minimax regression, continued. Consider again the ex-
ample of section 4.1 with N = 7277 samples. As seen in section 4.1, N = 7277 is
enough samples to guarantee with confidence 1− 10−10 that

|s(t)− ŝ∗7277(t)| ≤ L∗
7277

holds with probability at least 99%. The value found for L∗
7277 was L∗

7277 = 0.0834.
Figure 5.3 shows the robustness-loss curve where L∗

ε�
is represented on the vertical axis

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fig. 5.3. Robustness-loss curve: L∗
ε�

(vertical axis) vs. ε� (horizontal axis). � is in the range
8, . . . , 6007.
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against ε�, represented on the horizontal axis, for � values in the range 8, . . . , 6007.
The interpretation is that the value on the vertical axis is a guaranteed bound for
|s(t) − ŝ∗7277(t)| with probability given by 1 minus the value on the horizontal axis.
Based on Theorem 5.1, all the points in the robustness-loss curve are simultaneously
guaranteed with confidence 1− 6000 · 10−10 = 1− 6 · 10−7.

6. Concluding remarks. In this paper random convex programs with L1-
regularization have been introduced. L1-regularization allows one to shrink the num-
ber of optimization variables, and thereby enhance the generalization properties of the
random convex program. Explicit formulas for evaluating the level of generalization
have been derived.

In some applications, the scenarios δ(i) are sampled from Δ by the user accord-
ing to a probabilistic model. In other applications, the δ(i)’s come as data and the
underlying probability P is not known (referring, e.g., to the minimax regression ex-
ample of section 4.1, one can think of situations in which the samples (t(i), s(t(i)))
are observed data). Importantly, the results of this paper are perfectly tailored to
deal with this second setup as well. Indeed, knowledge of probability P is not needed
to run the L1–RCA algorithm (since this algorithm uses only the scenarios), nor
is knowledge of P required to apply the theoretical results (since all results in this
paper are distribution-free, i.e., they hold irrespective of P). This observation opens
up important opportunities for applying the findings of this paper to signal process-
ing problems and, more generally, to any data-based minimax optimization problem
arising, e.g., in finance, classification, and engineering design.

The work presented in this paper refers to uncertain objective functions. Extend-
ing the results herein to uncertain constraints is certainly of interest.

Appendix A. MATLAB codes.

A.1. MATLAB code to solve (3.8) for N .
Function inputs: eps = ε; bet = β; p = p; d = d; q = q.
Remark. In the function, N is computed by bisection; N1 is the initial lower

bound, while N2 is the initial upper bound and corresponds to formula (3.3).

Function findN

function N = findN(eps,bet,p,d,q)

N1 = q;

N2 = 2/eps*(log(1/bet) + q + (p-d+q)*log((p*exp(1))/(p-d+q)));

while N2-N1>1

N = floor((N1+N2)/2);

if (1/((p-d+q)*beta(d-q+1,p-d+q)))*(betainc(1-eps,N-q,q+1))>bet

N1=N;

else

N2=N;

end

end

N = N2
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A.2. MATLAB code to compute ε�.
Function inputs: l = �; N = N ; bet = β; p = p; d = d; q = q.

Function findepsl

function epsl = findepsl(l,N,bet,p,d,q)

eps1 = l/N;

eps2 = 1;

while eps2-eps1 > 1e-10

epsl = (eps1+eps2)/2;

if (1/((p-d+q)*beta(d-q+1,p-d+q)))*(betainc(1-epsl,N-l,l+1))>bet

eps1 = epsl;

else

eps2 = epsl;

end

end

epsl = eps2
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[18] E. Erdoğan and G. Iyengar, Ambiguous chance constrained problems and robust optimiza-
tion, Math. Program. Ser. B, 107 (2006), pp. 37–61.

[19] G. Furnival and R. Wilson, Regression by leaps and bounds, Technometrics, 16 (1974),
pp. 499–511.

[20] S. Garatti and M. C. Campi, Modulating robustness in control design: Principles and algo-
rithms, IEEE Control Syst. Mag., 33 (2013), pp. 36–51.

[21] M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex Programming,
http://cvxr.com/cvx/.

[22] M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in Recent
Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and
H. Kimura, eds., Springer, New York, 2008, pp. 95–110.

[23] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2nd ed.,
Springer, New York, 2009.

[24] L. K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates
for projection pursuit regression and neural network training, Ann. Statist., 20 (1992),
pp. 608–613.

[25] K. Knight and W. Fu, Asymptotics for lasso-type estimators, Ann. Statist., 28 (2000),
pp. 1356–1378.

[26] Y. Lin and H. Zhang, Component selection and smoothing in smoothing spline analysis of
variance models, Ann. Statist., 34 (2006), pp. 2272–2297.
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