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Non-Asymptotic Confidence Sets for the
Parameters of Linear Transfer Functions

Marco C. Campi, Senior Member, IEEE, and Erik Weyer, Member, IEEE

Abstract—We consider the problem of constructing confidence
sets for the parameters of input-output transfer functions based on
observed data. The assumptions on the noise affecting the system
are reduced to a minimum; the noise can virtually be anything,
but in return the user must be able to select the input signal. In
this paper a procedure for solving this problem is developed in the
general framework of leave-out sign-dominant confidence regions.
The procedure returns confidence regions that are guaranteed to
contain the true transfer function with a user-chosen probability
for any finite data set.

Index Terms—Confidence regions, finite sample results, linear
systems, system identification, transfer function estimation.

I. INTRODUCTION

A model is never a perfect description of a real system. Con-
sequently, it is important to determine if the uncertainty

in the model is within limits that can be tolerated by the ap-
plication at hand. Developing methods and procedures for as-
sessing the model quality is therefore a central issue in system
identification.

In this paper we present a procedure which gives rigorously
guaranteed non-asymptotic confidence regions for the parame-
ters of a linear dynamical system which is affected by arbitrary
noise. The procedure consists of a simple input design step, fol-
lowed by an algorithm named LSCR (Leave-out Sign-dominant
Correlation Regions) which constructs the confidence set from
the observed data points. The procedure can be applied and the
results are valid for any finite number of data points.

Problem Addressed in This Paper: Consider a dynamical
system

as in Fig. 1. The transfer function belongs to a set
of transfer functions parameterized by , that is

for some . The structure of the
model class is known, but itself is unknown. The
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Fig. 1. Dynamical system.

noise describes all other sources, apart from , that cause
variation in , and is independent of .

We have access to the system for experimentation. The
problem consists in using a finite number of input and output
data collected at time to determine a confi-
dence region for . The region must contain with a
given probability chosen by the user, and moreover must
be constructed without any a-priori knowledge of the strength,
distribution or correlation pattern of the noise.

In order to put our results into perspective we next review
some common methods for construction of confidence regions,
before providing more details in the form of a preview example
on the approach developed in this paper.

Asymptotic Theory: A standard approach to deriving con-
fidence regions is to employ asymptotic system identification
theory (see, e.g., [1] or [2]). Although used with success in many
applications, asymptotic results are only guaranteed when the
number of data points tends to infinity. When the number of
data points is finite, asymptotic theory may generate misleading
results, even for large data sets, see, e.g., [3], [4]. Moreover, the
asymptotic theory looses relevance for scarce data sets.

In order to make practical use of the asymptotic theory a full
description of the system is required, that is both as
well as the noise transfer function ( ,

white) must belong to the specified model classes.
Set Membership Identification: In set membership identifica-

tion, e.g., [5]–[10], the parameter confidence regions are guar-
anteed for any finite . No noise model is necessary, and un-
modeled dynamics in is also allowed. All system com-
ponents that are not described by are assumed to be
bounded by known constants, and the parameter region is deter-
mined as the set of parameter values that do not invalidate the
a priori bounds. No probabilistic framework is assumed in this
approach.

Bootstrap: The underlying idea in bootstrap methods used in
system identification (e.g., [11] and [12]) is that the prediction
errors evaluated at the estimated parameters are representative
for the behaviour of the noise process. The effect of the noise
on the estimated model is then assessed by generating new noise
sequences by random resampling from the prediction errors. For
this approach to apply, the noise must be modelled in full so that
the prediction error becomes white. Moreover, while asymptotic
properties of bootstrap have been studied, e.g., in [13], finite
sample results are substantially lacking.
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Leave-Out Sign-Dominant Confidence Regions: In [14], it
was recognized that a methodology able to work out confidence
regions without assuming a-priori knowledge on the noise level
was highly desirable. A procedure called leave-out sign-domi-
nant correlation regions (LSCR) was developed. LSCR as intro-
duced in [14] is able to return guaranteed confidence regions for
any finite number of data points under two assumptions: i) both

and belong to specified classes of transfer
functions; ii) the noise entering is zero mean and sym-
metrically distributed.

The Method of the Present Paper: In this paper, it is assumed
that we can select the input .1 However, it can be subject to
constraints, such as bounds on the magnitude, , and the
experimentation time may be limited. Under these conditions
a procedure within the LSCR framework is designed with the
following properties:

i) the procedure works for any noise and no a-priori
knowledge on the noise characteristics is required. The
noise can be white or correlated, zero mean or biased, the
signal-to-noise ratio can be high or low;

ii) for any size of the data sample, belongs to the con-
structed confidence region with a guaranteed proba-
bility specified by the user;

iii) shrinks around for increasing .
Thus, the method presented in this paper is a significant step

forward from the results in [14] in that it requires no assump-
tions on the noise or noise model. However, differently from
[14], we do assume that the system input can be designed. In
this paper we also derive expressions for the shape and size of
the confidence sets which shed light on the role of user chosen
quantities such as the input signal. A further aspect worth noting
is that in this paper unlike [14] we introduce and employ sto-
chastic strings in the LSCR algorithm, a choice that offers sig-
nificant computational advantages.

Property (i) is important since noise characteristics are hardly
known in practice. can, e.g., describe external influences gen-
erated by other systems, measurement noise, etc.; often it is even
difficult to figure out what all the external influences are. Note
that all possible noise situations are encompassed by the system
in Fig. 1 since, under linearity, noise can be recast as additive at
the output without any loss of generality. Property (ii) is funda-
mental for the use of the results in robust design problems since
the number of data points used for model building is always fi-
nite. Property (iii) is a desirable and natural property as it allows
us to make stronger and stronger claims about the nature of the
system as the number of data points increases.

Further discussions and earlier results on finite sample
properties of system identification methods can be found in
[15]–[19].

A. Preview Example

A simple example serves the purpose of giving a preview of
the main ideas behind the method introduced in this paper. Con-
sider the system

(1)

1Extensions to the case when � is not user-chosen are briefly outlined in
Section IV-A.

We have no information about the noise process , other than
that is independent of .

Our goal is to generate input data and
to construct a confidence interval from the observed output
data such that . Next we describe the input
design and the procedure for constructing followed by simu-
lation results. The proof of why the confidence region has the
property is given later in Theorem 1.

Input Design: Let , , be independent and
identically distributed (iid) with distribution

with probability
with probability .

(2)

Procedure for Construction of the Confidence Interval :
Rewrite the system as a model with generic parameter

By ignoring the noise term we obtain a predictor and a predic-
tion error

Compute the prediction errors for
as a function of using the observed data

and calculate

Using the ’s, we want to compute empirical estimates of the
correlation . Note that

. Hence, the empirical estimates will be zero
mean random variables for . Based on this observation,
we compute a number of estimates of the correlation using dif-
ferent subsets of the data, and we discard those regions in pa-
rameter space where the empirical estimates take positive (or
negative) values “too many” times.

We select 19 subsets of data at random and compute the em-
pirical estimates

where are iid with distribution

with probability
with probability

(3)

i.e., determines if is used when we compute the th
estimate of the correlation. (The estimates are actually scaled
estimates, but this is of no consequence as only the sign is used
in the procedure.)

Next we plot , , as functions of . Since it is
very unlikely that all the ’s have the same sign, we discard
the regions where none or only one function is less than zero or
greater than zero. The resulting interval is the confidence region
for .

Simulation Results: (A) The value was used, and
was an independent sequence of normally distributed variables
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Fig. 2. Input-output data—case (A).

Fig. 3. � ��� functions together with the confidence interval—case (A).

with mean 0.5 and variance 0.1, i.e., the noise was biased. The
input-output data are shown in Fig. 2, and the functions ,

, are plotted in Fig. 3. We then discarded the values
of for which none or only one function was greater/smaller
than 0. As shown in Fig. 3, the resulting confidence interval for

is [0.874, 1.119].
No knowledge about the noise was used in the construc-

tion of the confidence interval, yet it is a rigorous fact (stated in
Theorem 1) that the so-constructed confidence interval has exact
probability of containing the true parameter
value . Despite the fact that the noise is biased, the procedure
provides a guaranteed confidence interval.

As expected, due to the small number of data points, this con-
fidence interval is rather large and the associated probability is
low. Next we repeated the experiment with 2000 data points,
and computed 999 empirical estimates of the correlation using
random subsets. We kept the values of where at least 25 of
the 999 functions are greater than 0 and at least 25 are smaller
than zero. The resulting interval was . This

Fig. 4. � ��� functions together with the confidence interval—case (B).

procedure returns a that contains the true parameter value
with exact probability (see Theorem 1).

(B) As before and , but this time was nor-
mally distributed with mean 0 and variance 0.001, that is very
little noise affects the data. The functions are shown in
Fig. 4 and the 80% confidence interval narrows down to

. We see that when the noise is reduced the interval
becomes smaller and this is achieved automatically, without
making any a priori assumption on the noise level.

Remark 1: What is crucial in the above example is that a cer-
tain sign property of the ’s is valid irrespective of the char-
acteristics of the noise , and this is what makes the procedure
valid regardless of what the noise is. Certainly, the level and the
type of noise impact on the final result (i.e., will be larger
or smaller depending on the noise characteristics.) What is im-
portant is that the procedure can be implemented without any
a-priori knowledge on the noise. To state it simply, the proce-
dure lets the data speak without assuming what they have to tell
us.

B. Organization of the Paper

For the sake of clarity we first present the basic ver-
sion of our procedure which is applicable to systems
where the transfer function between input and output

is parameterized in terms
of the numerator and denominator coefficients. All the main
ideas and key technical points in the proofs are introduced in
this part. Then, we extend the setting to a larger model class,
and we introduce a more general version of the procedure using
filtered signals.

In Sections II and III we introduce the data generating system
and we present the basic version of our algorithm. Moreover,
in Section III we also prove that the constructed confidence
sets have guaranteed probability for any finite number of data
points, and we show that the confidence sets shrink around
the true parameter as the number of data points increases. In
Section IV-A we present the extended version of the algorithm,
and in Section IV-B we show how user choices in the algorithm
affect the shape of the obtained confidence regions. Conclu-
sions are given in Section V.
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Fig. 5. Closed loop system recast as an open loop system.

II. DATA GENERATING SYSTEM

The data generating system is given by

(4)

where where is the back-
ward shift operator and

Assumptions:
1) The user can choose the input signal , and the choice of

does not affect .
In mathematical terms, and are independent.

2) Upper bounds and ( , ) on the model
orders are known.

There are no assumptions on . No upper bound on its mag-
nitude is assumed, and it is allowed to have non-zero mean and
any autocorrelation properties.

Remark 2: There is no loss of generality in having additive
at the output. Disturbances not entering at the output can for
example be represented by where is the real
disturbance.

Remark 3: Assumption 1 entails an open loop configuration.
Closed loop systems can be cast in the present setting as shown
in Fig. 5 where plays the role of and

(5)

and .
Assuming that is known, (5) provides an expression

for as a function of . If a parameterized model
of the unknown transfer function is substituted in this
expression, a model of parameterized in terms of the
unknown parameters of is obtained, and we can apply
LSCR to this model. The functional dependence of
on the unknown parameters can possibly be complex, but this
is not a problem since the LSCR algorithm does not require
any particular parameterization of the transfer function. When
applying the LSCR algorithm to the system in the lower part
of Fig. 5, is selected by the user in the same way as was
selected in the original system in Fig. 1.

III. PROCEDURE FOR CONSTRUCTION

OF CONFIDENCE REGIONS

Our goal is to construct confidence regions for the transfer
function between the input and the output . The procedure
developed below consists of an easy input design step, followed
by an algorithm that constructs the region from the observed
data. Let

and let .

Input design.

Let , , be an iid sequence of random
variables symmetrically distributed around 0. is applied to
the system, and the initial conditions of the system are arbitrary.

Construction of confidence sets.
1) Using the data, compute the predictions2 as function of :

where

2) Compute the prediction errors

3) Form the vector

and compute the vector

4) Select an integer and construct binary
({0,1}-valued) stochastic strings of length as follows:
Let be the string of all zeros.
Every element of the remaining strings takes the values
0 or 1 each with probability 0.5, and the elements are
independent of each other. Moreover, each string is
constructed independently of previous strings. However,
if a string turns out to be equal to an already constructed
string, this string is removed and another string to be used
in its place is constructed according to the same rule.
Name the constructed non-zero strings ;

; . Compute

Note that .

2The predictors are obtained from (4) by ignoring � . The predictors are
not the one step ahead predictors commonly used in system identification as
these predictors require more knowledge about the noise than is available
in the present setting.
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5) Let denote the th element of the vector ,
. Select an integer in the interval .

Construct the regions such that at least of the
functions are strictly larger than and at least
are strictly smaller than . The confidence set is
given by

(6)

Remark 4: The algorithm above has connections with In-
strumental Variable (IV) methods for system identification. The
main idea behind IV methods is that the prediction errors should
be uncorrelated with past data. By taking in point 3 above as
the instrumental variable, the estimate would be given by

In our approach, the confidence set is constructed by ex-
cluding the regions in parameter space where the components
of takes on positive or negative values too
many times.

Remark 5: One aspect that deserves some further comments
is how the region should be constructed in practice. One
can easily ascertain whether a given value belongs to by
simply inspecting the sign of functions . This suggests
that can be constructed by exploring a grid of values. This
method is practical for problems where has few elements,
but it becomes computationally intensive when has many
elements. Finding suitable ways to construct regions at low
computational effort is an important topic for future research.

Let be the vector of the coefficients of the system in (4),
where suitable zeros have been added to match the size of
with that of . The intuitive idea behind the algorithm is that
for the functions
take on positive and negative values at random since

where are
symmetrically distributed around 0. It is therefore unlikely that
only a small fraction of them are positive or negative, and point
5 in the algorithm excludes the regions in parameter space
where this happens. The probability that belongs to each of
the is given in the next theorem.

Theorem 1: Consider a and assume that
, . Then

(7)

where is constructed in point 5 of the algorithm above, and
and are introduced in points 5 and 4 respectively.

Proof: See Appendix A-A.
An immediate consequence of Theorem 1 is
Corollary 2: Under the assumptions in Theorem 1

(8)

where is given by (6).
Note that the probability in (7) is the exact probability, not

a lower bound. The inequality in (8) is due to that the events
, , may overlap.

The only reason for the assumption is
to prevent ties with the zero function at from
occurring in point 5 of the procedure. This assumption is mild.
It is for example satisfied whenever and admit densities.
One particular case of some interest where the assumption is not
satisfied is when there is no noise, in which case all the
functions are 0 for . Such ties with the zero function

can be broken by a priori assigning a random ordering
to the , , functions and by resorting
to this ordering whenever one of the non-zero functions ,

, takes on the value 0. Using this ordering
permits one to drop the assumption , and
an inspection of the proof reveals that the above theorem holds
true under this generalization. However, we have chosen to keep
the assumption in order to simplify the presentation.

Theorem 1 and Corollary 2 show that the constructed con-
fidence sets have guaranteed probability. The next Theorem 3
shows that the confidence sets concentrate around the true pa-
rameter as the number of data points increases.

Theorem 3: In addition to the assumptions of Theorem 1,
assume that

1) and have no common factors;
2) is asymptotically stable;
3) for some ; moreover, with prob-

ability 1 for some and , where and are
allowed to depend on the noise realization.

Suppose that an initial confidence set is obtained from the
algorithm and then this set is updated as new data are observed
by extending the stochastic strings with new random
variables for while is kept fixed. Then,
for all

that is, there exists a realization dependent such that the
confidence set is included in an -neighborhood of for all

.
Proof: See Appendix A–B.

The first assumption is a standard one ensuring that the
system has a unique representation within the model class.
The assumption on is very mild since is allowed to grow
unbounded. It is for example satisfied if is white Gaussian
noise. The assumption that is bounded can be relaxed but
we have decided to maintain it since it appears natural and
simplifies the proof.

A. Simulation Example

In this section, we show through an example how the ob-
tained confidence sets depend on the noise characteristics and
the number of data points. The system is given by

(9)

where and . This corresponds to
and

in (4). is
independent and uniformly distributed on , i.e., it is
zero mean with variance 1.
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Fig. 6. Non-asymptotic confidence region for �� � � � (blank region). 1000
data points. �� is lowpass filtered white noise. � � ���� 	
�
�����.

For we consider two different processes:
A) is lowpass filtered white noise

where and is white Gaussian noise with
variance 0.12;

B) is a biased version of : .
The predictor is given by

For each noise scenario, the system (9) was simulated from
to . The prediction errors were given by

and binary strings were constructed according to the
procedure in point 4 of the algorithm. Next, we computed the
empirical correlations

In order to obtain a 95% confidence set, we discarded those
values of and for which zero was among the 12 largest or
smallest values of or zero was among the 12 largest
or smallest values of . Then, according to Corollary 2,

belongs to the constructed region with probability at
least .

The obtained confidence sets are the blank areas in Fig. 6 (un-
biased noise) and Fig. 7 (biased noise). The areas marked with

is where 0 is among the 12 smallest values of and the
areas marked with is where 0 is among the 12 largest values
of . Likewise for where represents where 0
are among the 12 smallest values and among the 12 largest.
The true value is marked with a diamond. As we can

Fig. 7. Non-asymptotic confidence region for �� � � � (blank region). 1000
data points. �� is biased lowpass filtered white noise. � � ���� 	
�
�����.

see, each step in the construction of the confidence set excludes
a particular region.

In this case the final confidence set was obtained as the inter-
section of two sets, and the probability in Corollary 2 is a lower
bound. To verify the tightness of this bound, we ran 1 000 000
Monte Carlo simulations and found that the empirical proba-
bility with which the true parameter belonged to the confidence
set was 0.951, both with unbiased and biased noise, showing
that the theoretical lower bound 0.95 is not conservative.

Using the algorithm for the construction of we have
obtained a bounded confidence set with a guaranteed proba-
bility based on a finite number of data points. As no asymp-
totic theory is involved this is a rigorous finite sample result.
Moreover, the results were obtained without using any a priori
knowledge about the noise.

Obviously, the size of the confidence set depends on the noise
and the set is larger when the noise is biased. Also, the bound-
aries of the confidence set are nearly parallel to the axes when
the noise is unbiased, while they are forming an angle with the
“ ” axis when the noise is biased. The shape of the confidence
sets is studied in Section IV-B.

Next we increased the number of data points to ,
and generated binary strings of length 4000. As be-
fore, the regions in parameter space where zero were among the
12 largest or smallest values of and were ex-
cluded in order to obtain a 95% confidence set. The results are
shown in Figs. 8 and 9. The size of the sets are smaller than with
1000 data points illustrating that the confidence set concentrates
around the true parameter as the number of data points increases.

IV. VARIATIONS OF THE ALGORITHM

In this section we introduce a number of generalizations and
extensions of the algorithm that provide the user with more flex-
ibility and freedom. The main extensions are:

• generalized predictors can be used;
• the input signal does not have to be white;
• the instrumental variable can be an arbitrary iid sequence

which is uncorrelated with the noise but correlated with the
input signal;
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Fig. 8. Non-asymptotic confidence region for �� � � � (blank region). 4000
data points. �� is lowpass filtered white noise. � � ���� 	
�
�����.

Fig. 9. Non-asymptotic confidence region for �� � � � (blank region). 4000
data points. �� is biased lowpass filtered white noise. � � ���� 	
�
�����.

• filtered prediction errors can be used.
The theory from Section III still remains valid with these ex-

tensions, and in Section IV-B an analysis is presented which
sheds light on the role of the user choices, showing in partic-
ular how they affect the shape of the confidence set.

A. Generalized Procedure for Construction of Confidence
Regions

1) Data Generating System: The data generating system is
as before

(10)

and we assume that the input signal is user-chosen and inde-
pendent of . However, we do not require to be an indepen-
dent sequence.

2) Generalized Predictors: Here, generalized predictors, still
in the regression form from Section III

(11)

are considered with

where , , are linear in the observations:
with and asymptot-

ically stable filters. Typical examples of predictors in the form
(11) are Laguerre predictors (see, e.g., [20], [21]) and predictors
using general orthonormal basis functions (see, e.g., [22]).

As in Section III, we assume that the true system can be rep-
resented in the model class, i.e., there exists a such that

(12)

3) Procedure:

Input design.

Let , where is an iid sequence of random
variables symmetrically distributed around 0 and is
an asymptotically stable filter.

Construction of confidence sets.
1) Compute the predictions

2) Compute the prediction errors ,
, and the filtered prediction errors

where are asymptotically stable filters.
3) Choose a vector sequence of instrumental variables

such that, for each , , , is a
sequence of independent random variables symmetrically
distributed around 0 and independent of , and compute

...
(13)

4) Select an integer and construct binary stochastic
strings of length as in point 4 of the algorithm in
Section III and compute

5) Let denote the th element of the vector ,
. Select an integer in the interval .

Construct the regions such that at least of the
functions are larger than and at least are
smaller than . The confidence set is given by

(14)
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By a comparison, it is easily seen that the procedure in
Section III is a particular case of the above procedure. The
only changes from Section III are in point 1, 2 and 3. Different
filters can be used for each scalar correlation equation, and this
allows us to control the shape of the confidence set as discussed
in Section IV-B. A typical choice of instrumental variables
are delayed versions of the signal used in the input design,
and this choice satisfies the condition stated in point 3 that

should be independent of . Theorem 1 and Corollary 2
hold unchanged in the present generalized setting and they are
restated below.

Theorem 4: Consider a and assume that
, . Then

(15)

Proof: See Appendix A-C.
Corollary 5: Under the assumptions in Theorem 4

(16)

Under some mild stability and regularity conditions, it holds
that the confidence set concentrates around . We thus have the
following equivalent to Theorem 3.

Theorem 6: In addition to the assumptions of Theorem 4,
assume that

1) .
2) is asymptotically stable.
3) for some ; moreover, with prob-

ability 1 for some and , where and are
allowed to depend on the noise realization.

4)

...
(17)

with non-singular, and is a row vector whose
elements are the elements of filtered through .

Suppose that an initial confidence set is obtained from the
algorithm and then this set is updated as new data are observed
by extending the stochastic strings with new {0,1} random
variables for while is kept fixed. Then,
for all

The assumptions on now apply to . The assumption on
is unchanged, and the assumption that is non-singular re-

places the assumption that and have
no common factors. The proof of Theorem 6 follows mutatis-
mutandis that of Theorem 3 and is therefore omitted.

Remark 6: A fundamental requirement in order for the
constructed region to contain with given probability is that
the vector is component-wise an independent sequence
which is also independent of the noise affecting the system.

Constructing with this property is easy, but securing that the
region shrinks around also demands that exhibits suitable
correlation properties with the system input. This property has
been achieved in this paper by assuming that the system input
can be chosen. However, the ideas developed here carry over
to when is not user-chosen, in which case can, e.g., be
constructed by suitable whitening filters applied to .

B. Size and Shape of the Confidence Sets

In Theorem 6 we have shown that the confidence set will
eventually be included in an -neighborhood of . In this sec-
tion we examine the shape of the confidence set and the rate at
which it shrinks around . As the confidence set is constructed
by excluding the regions where the functions take on pos-
itive or negative values too many times, the boundary of the con-
fidence set is pieced together by patches of surfaces described
by for some values of and .

The next theorem shows that can be written as
a linear equation in with stochastic perturbations
which are asymptotically normally distributed with zero mean
and covariances which tend to zero as .

Theorem 7: In addition to the assumptions in Theorem 4 and
6, assume that

1) is given by

where is a bounded deterministic sequence, is
an asymptotically stable filter, and is a sequence of in-
dependent random variables with zero mean and bounded
moments of order for some .

2) The limit in (29) in Lemma 9 in Appendix A-D exists.
Let , then

...
(18)

can be written as

(19)

where is given by (17), and and are a random matrix
and a random vector whose elements are asymptotically jointly
Gaussian with zero mean.

Proof: See Appendix A-D.
The main implication of this theorem is that it provides us

with information about the shape and size of the boundary of the
confidence set. Let and denote the th row of and
respectively, and let be the th element of . The equation

describes a hyperplane in the parameter space which, for
some values of , will form the boundary of the confidence
set. Asymptotically, this hyperplane is orthogonal to vector

, hence the matrix determines the asymptotic shape of
the confidence set. The stochastic fluctuations in the normal
vector is given by which tends to zero as .
Moreover, the stochastic translation of the hyperplane is due to
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the term , and this term essentially determines the
size of the confidence set.

The importance of the terms in (19) are summarized as
follows:

shape of confidence set;

fluctuation in shape of confidence set;

size of the confidence set.

When has only one non-zero element in each row, each cor-
relation equation will asymptotically determine the confidence
in one parameter. The above considerations are now made more
concrete by re-examining the example in Section III-A in the
light of Theorem 7.

C. Simulation Example (Continued)

In the example, and
and hence

(20)

The boundaries of the confidence set are therefore asymptot-
ically parallel to the axes, in agreement with Figs. 8 and 9. The
first equation asymptotically determines the confidence in the
parameter while the second equation determines the confidence
in the parameter. We also note that when the number of data
points is increased with a factor 4 (Figs. 8 and 9) the size of the
confidence set is reduced with a factor two relative to Figs. 6
and 7 in both the and directions and the boundaries become
more parallel to the axes in accordance with the theory.

The term responsible for the size of the confidence set is

(21)

[to verify this formula one has to inspect the proof of Theorem
7, see (28)]. The two elements in the vector in (21) are about
equal, and since we expect from the value of in (20)
that the confidence set will be about 1/0.3 times wider in the

direction than in the direction which is in agreement with
Figs. 6–9. Having boundaries which are asymptotically parallel
to the axes is beneficial in that the construction of the confidence
region becomes easier from an algorithmic point of view. In fact,
in order to find the approximate range for a parameter say ,
one can set all other parameters to arbitrary values and use the
appropriate correlation equation to determine the approximate
range of . Besides the obvious theoretical interest, Theorem 7
provides insight on how to obtain sets with boundaries parallel
to the axes.

V. CONCLUSION

We have presented an algorithm for construction of confi-
dence sets for the parameters of linear transfer functions. The
constructed confidence sets contain the true parameters with a
guaranteed probability for any finite number of data points and
the results are non-conservative. As the confidence sets give a
description of the model uncertainty, the results in this paper are
relevant for robust control systems design.

Theory-wise, the most remarkable feature of the introduced
algorithm is that it works with basically no assumptions on the

noise. This is also of practical importance since the noise charac-
teristics are hardly known in most real applications. In addition,
we have shown that under natural conditions the confidence set
shrinks around the true parameter values as the number of data
points increases, and the asymptotic size and shape of the con-
fidence set have been derived.

APPENDIX A
PROOFS

A. Proof of Theorem 1

The following preliminary proposition is instrumental to the
proof of Theorem 1.

Proposition 1: Let be the stochastic matrix with
elements , , , constructed ac-
cording to point 4 of the algorithm for the construction of confi-
dence sets in Section III, and further let be a
vector independent of of mutually independent random vari-
ables symmetrically distributed around 0. Given a

, let be the matrix whose rows are all equal to the th
row of . Then, and have the same -dimen-
sional distribution provided that the th element of
(which is 0) is repositioned as first element of the vector.

Proof: Let be the set of all deterministic {0,1}-valued
matrices whose first row is all zeros and where the rows

are all different from each other. An inspection of point 4 of
the algorithm in Section III reveals that the stochastic matrix
constructed there takes on a value in , and each matrix in
carries the same probability to be obtained.

Given a specific matrix , introduce the notation
to indicate the matrix where each element of has

been substituted by its absolute value. Consider the following
map:

It is easy to verify that this map transforms elements into
elements of and, moreover, if , then

. That is, the map is one-to-one on .
Now, due to that the map is one-to-one and that the stochastic

matrix constructed in point 4 takes all possible matrices in
with the same probability, it turns out that has the

same probability distribution as .
Introduce next the new variables

and let be the vector with elements . We show below that
vector : (i) is independent of (so that is also independent
of ); and (ii) it has the same distribution as .

To verify these two properties without too much notational
clutter, suppose that . Fix a specific matrix and
concentrate on the event where . The entries of the
row of will take on fixed numerical values, for the sake of
concreteness say . Then, over the event
where , for given sets and , we have:
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, showing that and have the
same distribution, conditionally to that . Since the
same holds for any other choice of , the conclusion is drawn
that has the same joint distribution as .
Generalizing to any , we similarly get that has the
same joint distribution as . Now, property (i) that is
independent of follows from that is independent of ,
since the joint distribution of and is the same as that of
and . Moreover, the marginals of and are obviously the
same, and this is property (ii).

To conclude the proof, observe now that
, so that the vector where the th element is

repositioned as the first entry is the same as . Since
is distributed as , is distributed as , and

and are independent, has the same distribution as
and the proposition is established.

Remark 7: Interestingly enough, the above proposition ad-
mits an easy generalization that can prove useful in the con-
struction of modified identification algorithms. Suppose that, in
the construction of strings in point 4 of the algo-
rithm, a string is discarded if it turns out to be equal to an already
constructed string or if it differs from an already constructed
string by 1 element only. Then, the result stated in Proposi-
tion 1 keeps true. Moreover, we can push this process further
and ask that a string be discarded whenever it differs from an
already constructed string by less than elements. By applying
the so modified proposition, the proof of Theorem 1 given below
goes through. The advantage of having strings that are well apart
from each other is that they carry more diversified information,
so that the resulting confidence regions are in general tighter.

We turn now to the proof of Theorem 1.
We first prove that each variable , ,

has the same probability to be in the generic th position
(i.e., there are exactly other variables smaller than the
variable under consideration).

Pick a variable . is in the th position if the
inequality

is satisfied for exactly choices of , or,
equivalently, if

(22)

holds for selections of . Let , and
note that (22) can be rewritten as

so that the requirement that “ holds for
selections of ” is the same as asking that entries of

are negative. Fix now a realization of the noise , that is
is regarded from now on as deterministic; in mathematical

terms, this corresponds to say that derivations are carried out
conditionally to . We next appeal to Proposition 1 and observe
that, by an easy inspection, the assumptions there introduced are
all satisfied (particularly, the fact that are mutually
independent holds here conditionally to the picked realization
of , a fact that holds true due to that is an independent
sequence and that and are independent of each other, see
Assumption 13). From Proposition 1 we have that
has the same distribution as and therefore the probability of
the event where “ entries of are negative” is the
same as the probability of the event where entries of
are negative. But this latter event does not depend on , showing
that the probability of being in the th position is the same for
any . Since this holds for any realization of the noise, it
also holds unconditionally, and the probability is therefore
since can take on possible values.4

To conclude the proof, let

Since has the same probability to be in the
generic th position, . Next, suppose the prob-
abilistic event has occurred. Then, either holds for
at most selections of or holds for at most
selections of , so that (recall the construction of in
point 5 of the algorithm). Viceversa, if the probabilistic event
has not occurred, then holds for at least selections
of and holds for at least selections of , yielding

. Thus,
and (7) is proven.

B. Proof of Theorem 3

The proof is technical. We start with a preliminary conver-
gence result given in the following lemma. In the lemma we
have used the argument to show the explicit dependence of
some empirical matrices and vectors on the observed realiza-
tion of the stochastic processes.

Lemma 8: Let , ,
and furthermore

let

(23)

(24)

3Note that this is the very point where the open loop assumption plays a cru-
cial role.

4Note that the probability that any two random variables � �� � and � �� �
coincide is zero. In fact, � �� ��� �� � � �with non-zero probability implies
that an element of �� � � �� is zero with non-zero probability and this in
turn means that an element of �� other than the first one is zero with non-zero
probability, a possibility which is excluded by the assumptions of the theorem.
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Under the assumptions in Theorem 3

where is a non-singular matrix given by

with , identity matrix of size ,
matrix of size whose elements are all zero, and

...
...

...
...

...

...
...

...
...

...

where are the Markov coefficients of the system
, i.e.

Proof: Since is a fixed number, “ ”
does not influence the convergence results and the operator
is ignored in the sequel. The sequence is independent after

(it is not for due to the string removal described
in point 4 of the algorithm). However, as the first elements
have no importance for asymptotic results, we treat as an
independent sequence.

The proof is carried out by showing convergence with proba-
bility 1 for each element in the matrices and vectors .
We consider the different types of terms one by one.

A straightforward application of Hoeffding’s inequality (see
Appendix B) gives for

which establishes uniform convergence in probability of
to . Convergence with probability

1 follows by an application of the Borel-Cantelli Lemma (see,
e.g., [23]).

For the terms , , we observe
that can be written as union of two
disjoint sets

such that each set on the right hand side consists of mutually
independent variables. Then

and convergence with probability 1 of
to 0 follows by applying

Hoeffding’s inequality and the Borel-Cantelli Lemma as above
to each of these two terms.

Next we consider terms of the type .
Consider first , that is the same expres-
sion as before with replacing . As in the proof of Theorem
1 we can treat as a deterministic sequence, that is derivations
are carried out conditionally to the realization of . From the
assumption that for some and , using
again Hoeffding’s inequality we have

and convergence follows as before. Since is
simply a linear combination of terms, uniform convergence
of follows in the same way.

Finally, we consider the terms .
The system output can be written as

where accounts for the effect of the initial conditions.
Hence

Similar to previous results, the second term on the right hand
side converges to 0 with probability 1. Moreover, the last term
is also vanishing due to the asymptotic stability of the system.
When , the first term contains (take )

, which, similarly to previous re-
sults, converges to with probability 1. If we remove

from the first term, the absolute
value of the remaining expression can be bounded as follows
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(to simplify notations, in the derivation below we let for
):

(25)

Since is asymptotically stable, there exist
and such that . Thus, recalling that

, it follows from (25) that

the condition
implies that

(26)

for at least some . But, again using Hoeffding’s
inequality, (26) holds on an event whose probability is bounded
by , for suitable constants and , so that (26)
holds for some with probability no more than

, which proves that the left hand side of (25) goes
to zero in probability. Convergence with probability 1 then
follows by the Borel-Cantelli Lemma.

Combining the above results we get that
converges to with

probability 1.
Putting everything together it follows that converges

with probability 1 to and that converges with proba-
bility 1 to 0.

The fact that is nonsingular follows from the fact that
and have no common factors, see the

proof of Theorem 3.2 in [14].
We now return to the proof of Theorem 3. The idea is to show

that at least one entry of the vector
converges with probability 1 to a nonzero value uniformly in
as tends to infinity for all . This means that for
sufficiently large at least one entry of vector
is larger than 0 or smaller than 0 for all and
hence this parameter value is excluded from the confidence set
in point 5 of the algorithm in Section III.

Proof: First we rewrite in a form
more suitable to draw our conclusions. Note that

where . Then

where and are given in Lemma 8.
Now, pick a such that and observe that

, where is given in Lemma 8. From

Lemma 8, and tend to zero with
probability 1 uniformly in . On the other hand, being non-
singular, where is the minimum
singular value of , so that at least one element of —say
the th element—is greater than or equal to in
magnitude. Then, it is easy to see that with probability 1 there
exits an such that for the sign of the th
element of is the same as that of the th
element of for all , that is it is either positive or negative
for all . Moreover, does not depend on the specific .
Thus, after , all with will be excluded from
in point 5 of the algorithm in Section III and concentrates
in an -neighborhood of .

C. Proof of Theorem 4

From the assumptions it follows that is indepen-
dent of . Hence, is a
sequence of variables that are, conditionally on , independent
and symmetrically distributed around 0. The remainder of the
proof is identical to the proof of Theorem 1.

D. Proof of Theorem 7

From (12) it follows that (18) can be written as:

...
...

(27)
where is the “term depending on ” in (12), with sign
changed. Multiplying by and adding and subtracting

where is given in (17) gives

...

...
(28)

Let be an vector which contains all the elements
of the matrix and vector occurring in the two last terms of (28)

...

...

...
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Theorem 7 now follows from the next lemma.
Lemma 9: Assume that the limit

(29)

exists. Then is asymptotically normally dis-
tributed with zero mean and covariance matrix .

Proof: is given by ( and are
vectors containing the filters and )

Similarly, is a linear filtering of and . This means
that a generic element of the vector can be written as

where the filters , and are asymp-
totically stable. The proof for asymptotic normality now follows
from the proof of the asymptotic normality of the vector in
equation (9.A.13) in Appendix 9A of [1].

APPENDIX B
HOEFFDING’S INEQUALITY

Suppose are independent random variables with
for each , and such that for each .

Then .
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