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Abstract

The Virtual Reference Feedback Tuning (VRFT)
is a data based method for the design of feed-
back controllers. In previous papers, the VRFT
has been presented for the solution of the one de-
gree of freedom model-reference control problem
in which the objective is to shape the I/O trans-
fer function of the control system. In this paper,
the VRFT approach is extended so that it can be
used for the shaping of the sensitivity function.

1 Introduction

We consider the problem of designing a feedback
controller for a linear plant, whose transfer func-
tion P (z) is unknown. The design is based on a
set of I/O data (see also [6, 9, 4]).
The Virtual Reference Feedback Tuning (VRFT)
method [3, 7] gives a solution to the above prob-
lem without resorting to the identification of a
model of the plant. The idea on which VRFT is
based was originally proposed in [5]. In [2, 3, 7]
the VRFT was developed as a complete and ready
to use method for the design of the controller with
the objective of shaping the complementary sen-
sitivity of the designed control system. The aim
of this paper is to show how the same approach
can be used for the design of a feedback controller
in order to impose the output sensitivity transfer
function.
Figure 1: The feedback control system.

Problem formulation
It is assumed that the plant is a deterministic
and linear SISO discrete-time dynamical system
described by the rational transfer function P (z).
Such a transfer function is unknown and we can-
not make use of the knowledge of P (z) in the con-
troller design. Instead we will resort to a set of
data collected during an experiment on the plant.
We assume that an additive noise signal d(t) af-
fects the output of the plant.
The following one degree of freedom control sys-

tem - see fig.(1) - is considered:


ỹ(t) = P (z)u(t) + d(t)

u(t) = −C(z; θ)ỹ(t) + r(t)

in which C(z; θ) is a linear controller belonging
to a given family {C(z; θ)} of controllers param-
eterized by θ, d(t) is a disturbance signal and
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r(t) is an external reference signal (normally left
at zero). The control problem addressed herein
is the shaping of the sensitivity function with a
model-reference criterion. Namely, given a refer-
ence sensitivity model S(z) select the parameter
vector θ̄ so as to minimize the following model-
reference criterion:

JMR(θ) =
∥∥∥∥
(

1
1 + P (z)C(z; θ)

− S(z)
)
W (z)

∥∥∥∥
2

2
(1)

where W (z) is a user-chosen weighting function.
The attention is restricted to linearly parameter-
ized controllers of the form C(z; θ) = β(z)T θ in
which: β(z) is a vector of discrete-time transfer
functions and θ ∈ Rn is the n-dimensional vector
of parameters.
Outline of the paper
In Section 2 the Virtual Reference idea for the
shaping of the sensitivity is introduced. Based on
this idea a design algorithm is formulated. An
analysis of the achievable performance is given in
Section 3. For the sake of exposition clarity, in
Section 2 and 3 it is assumed that the collected
data are not corrupted by noise (i.e. d(t) = 0).
The use on noisy data is described in Section 4. A
simulation example, in Section 5, ends the paper.

2 The Virtual Reference framework for
the shaping of the sensitivity

The Virtual Reference idea
Let us assume that a set of data
{u(t), y(t)}t=1,..,N has been collected from a
noise-free experiment on the plant. Given the
measured y(t), construct a signal d̄(t) such that
y(t) + d̄(t) = S(z)d̄(t). Next, calculate the
signal ȳ(t) = y(t) + d̄(t) and notice that: if the
disturbance signal is d̄(t) and r(t) = 0 then
ȳ(t) = S(z)d̄(t) is the desired output of the
closed-loop system and, moreover, y(t) is the
desired output of the plant (see fig.(2)).
Even though plant P (z) is not known, we know
that when P (z) is fed by u(t) (the actually
measured input signal), it generates y(t) as an
output. Therefore, we can state that a good
feedback controller C(z), at least in the case in
which the disturbance is d̄(t) and r(t) = 0, is
one that generates u(t) when fed by ȳ(t). The
idea is to search for such a controller. Since u(t)
and ȳ(t) are known signals, the controller can be
7

Figure 2: The construction of d̄(t) and ȳ(t).

identified from these signals.
The design algorithm
We implement the above idea in the following
algorithm. In the algorithm we include also a
possible filtering action whose choice will be
discussed later.
Algorithm 1

Given the reference sensitivity model S(z), the
family of available controllers {C(z; θ)} and the
set of data {u(t), y(t)}t=1,..,N , do the following:

1. Calculate:

• a signal d̄(t) such that y(t) + d̄(t) =
S(z)d̄(t),

• and ȳ(t) = y(t) + d̄(t).

2. Filter the signals ȳ(t) and u(t) with a suit-
able filter L(z):

ȳL(t) = L(z)ȳ(t), uL(z) = L(z)u(t);

3. Select the controller parameter vector, say
θ̂N , that minimizes the following perfor-
mance index JN

V R(θ):

JN
V R(θ) =

1
N

N∑
t=1

(uL(t) + C(z; θ)ȳL(t))2.

(2)

Note that when the controller has the form
C(z; θ) = βT (z)θ, the performance index (2) is
quadratic and the parameter vector θ̂N is easily
obtained by solving the normal equations:

θ̂N =

[
1
N

N∑
t=1

ϕL(t)ϕL(t)T

]−1 [
− 1

N

N∑
t=1

ϕL(t)uL(t)

]
.

(3)
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3 Analysis of the design criterion

In the following, the performance index of the
model-reference control problem (1) and the de-
sign criterion of the Virtual Reference approach
(2) will be compared. Even if they look different,
it will be shown that their minimum arguments
can be made close to each other by a suitable se-
lection of the filter L(z). In this way, the Virtual
Reference approach can be used to solve, at least
approximately, the model-reference control prob-
lem stated in the introduction.
In order to give such a comparison, we introduce
the ideal controller C0(z) which exactly solves the
model matching problem. Namely, C0(z) is given
by:

C0(z) =
1

P (z)
1 − S(z)

S(z)
(4)

Notice that C0(z) is clearly an ideal controller. In
general it does not belong to the available fam-
ily of parameterized controllers {C(z; θ)}. Even
more so it should result to be not proper, that
is, strictly speaking, it should not be a transfer
function. Therefore, C0(z) is not expected to be-
long to the available family of parameterized con-
trollers {C(z; θ)} in practice. The ideal controller
C0(z) will be used in the following only as an anal-
ysis tool.
To start with, note that, using the definition of
2-norm of a discrete-time linear transfer function
and the definition of the ideal controller C0(z),the
model-reference criterion JMR(θ) can be written
as:

JMR(θ) =
1
2π

∫ π

−π

|P |2 |C0 − C(θ)|2
|1 + PC(θ)|2 |S|

2|W |2dω.

(5)
(throughout, we will drop the argument ejω

of transfer function). The minimum point of
JMR(θ) is indicated as θ̄.
Consider now the criterion JN

V R(θ), under the
hypothesis of ergodicity of the involved signals,
using the Parseval theorem (see [8]) and the
definition of C0(z) the following asymptotic (as
N → ∞) frequency domain representation of
JN

V R(θr, θy) can be written:

JV R(θ) =
1
2π

∫ π

−π

|P |2|C(θ) − C0|2 |S|
2|L|2

|S − 1|2 Φudω

(6)
where Φu is the power spectral density of u(t).
The minimum of JV R(θ) is indicated as θ̂ (the pa-
7

rameter vector θ̂N will converge to θ̂ as N → ∞).
For analysis purposes, JV R(θ) will be used exten-
sively in place of JN

V R(θ).
Notice, by comparing (5) and (6), that, if C0(z) ∈
{C(z; θ)}, then the minimum of JV R(θ) corre-
sponds to the ideal controller and coincides with
the minimum of JMR(θ), whatever the plant, the
filter and the reference model are. Therefore,
in the ideal case in which the ideal controller
belongs to the class of available controllers, the
controller estimated through the Virtual Refer-
ence approach coincides with the ideal one. On
the other hand, it is apparent that JV R(θ) and
JMR(θ) have different minimum points when the
class of available controllers has restricted com-
plexity (i.e. C0(z) 6∈ {C(z; θ)}).
In the following we present a result showing that
in general the minimum arguments of JV R(θ) and
JMR(θ) can be made close to each other by a suit-
able selection of the filter L(z).
The choice of the filters
The following choice of the filter is here proposed:
select L(z) such that

|L|2 = |S − 1|2|S|2|W |2 1
Φu

=
|S − 1|2|W |2
|1 + PC0|2

1
Φu

.

(7)
Notice that all quantities in the right-hand-side of
equations (7) are known and therefore L(z) can
be actually computed. The only Φu(ω) may be
considered known only in certain situations, when
the input signal has been selected by the designer;
otherwise Φu(ω) can be estimated using many dif-
ferent techniques, among which a high-order AR
or ARX model, or a high-order state-space model
- see [8].
In the following Proposition (1), we show that
choice (7) is optimal in a certain sense. Before
stating this result, some notations must be pre-
liminary settled.
Set

∆C(z) = C0(z) − βT (z)θ̄
β+(z) = [β1(z) β2(z) ... βn(z) ∆C(z)]T

θ+ = [ϑ1 ϑ2 ... ϑn ϑn+1]T ;

where θ̄ is the parameter vector which minimizes
JMR(θ); then define an extended family of con-
trollers as follows:

C+(z; θ+) = β+(z)T θ+.

Clearly, C0(z) ∈ {C+(z; θ+)} with θ̄+ =
[θ̄T 1]T . Finally, consider the extended perfor-
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2

2

.

mance index

J+
MR(θ+) =

∥∥∥∥
(

1
1 + P (z)C+(z; θ+)

− S(z)
)

W (z)
∥∥∥∥

and the second order Taylor expansion around
its global minimizer θ̄+ which is denoted by
J̃+

MR(θ+), namely:

J+
MR(θ+) = J̃+

MR(θ+) + o(‖θ+ − θ̄+‖2
2).

Using the above definitions, Proposition (1) can
now be stated.
Proposition 1
The parameter vector θ̄ which minimizes the per-
formance index JMR(θ), and the parameter vec-
tor θ̂ which minimizes the performance index
JV R(θ) when L(z) is selected as in (7) are such
that:

θ̄ = arg min
θ

J+
MR([θT 0]T );

θ̂ = arg min
θ

J̃+
MR([θT 0]T ).

proof: see [2]. 2

Discussion
The above result is interesting since it provides a
formal relationship between the parameter vector
θ̂ obtained using the Virtual Reference approach
(in the special case when L(z) is selected accord-
ing to (7)), and the

"

optimal” parameter vector θ̄,
which minimizes the original performance index
JMR(θ). Based on this result, we conclude that
if the transfer function ∆C(z) plays a marginal
role in determining C0(z), namely the family
of controllers {C(z; θ)} is only slightly under-
parameterized given a certain reference sensitiv-
ity model, then C(z; θ̂) is a good approximation
to C(z; θ̄) since J+

MR(θ+) is well approximated in
a neighborhood of its minimum by its second or-
der expansion J̃+

MR(θ+).

4 The use of noisy data
It has been shown that the controller can be es-
timated, on the basis of a set of noise-free data,
by solving an ad-hoc identification problem. Now
let us assume that a set {u(t), ỹ(t)}t=1,..,N of data
has been collected from an open-loop noisy exper-
iment. We make the standard assumption that
the signal u(t) and the noise signal d(t) are er-
godic and uncorrelated signals.
If one applies the Algorithm 1 to the set
{u(t), ỹ(t)}t=1,..,N of noisy data then he obtains
a perturbed version, say θ̃N , of the right parame-
ters vector θ̂N . The reason is that the regression
7

.

vector in (3), now constructed from ỹ(t), namely:

ϕ̃L(t) = β(z)L(z)S(z)(S(z) − 1)−1ỹ(t),

is corrupted by noise. Due to the presence of
noise, in the limit we have:

lim
N→∞

θ̃N 6= θ̂ = lim
N→∞

θ̂N .

In the following, we propose the use of an Instru-
mental Variable method to counteract the effect
of noise ([8]). In this way, the results given in pre-
vious sections can be saved for the case in which
the data are corrupted by noise.
Instrumental Variables
The idea behind the Instrumental Variable
method is to use a generic regression vector ζ(t),
uncorrelated with the noise but correlated with
ϕ̃L(t), and estimate the parameter vectors as fol-
lows:

θ̂IV
N =

[
1
N

N∑
t=1

ζ(t)ϕ̃L(t)T

]−1 [
− 1

N

N∑
t=1

ζ(t)uL(t)

]

(8)
The elements of ζ(t) are called instrumental vari-
ables. If the instrumental variables are uncor-
related with the noise then the limit estimate
θ̂IV = limN→∞ θ̂IV

N does not depends on the
noise. We can say that the noise is

"

correlated
out” by the instrumental variables. However, the
quality of the estimate depends on the choice of
the instrumental variables. The more ζ(t) is cor-
related with ϕL(t), the more θ̂IV is close to θ̂.
Some appropriate choices are discussed below.
Choice of the instrumental variables
We propose two different choices for the in-
strumental variables. The first guarantees that
asymptotically θ̂IV = θ̂. However an additional
experiment on the plant is required. The second
does not guarantee that asymptotically θ̂IV = θ̂
but the residual error is expected to be small.
This choice does not require an additional exper-
iment on the plant but calls for additional com-
putational effort since it requires a model fitting
step. The proposed choices are as follows:

• Repeated experiment
Given the data {u(t), ỹ(t)}t=1,..,N , repeat
the experiment on the plant using the same
input {u(t)}t=1,..,N and collect the corre-
sponding output sequence {ỹ(t)′}t=1,..,N .
Then construct the instrumental variables
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as:

ζ(t) = β(z)L(z)S(z)(S(z) − 1)−1ỹ′(t) (9)

Notice that {ỹ(t)′}t=1,..,N will be different
from {ỹ(t)}t=1,..,N since the two sequences
are affected by two different realizations of
the noise coming from two distinct experi-
ments. It is reasonable to assume that the
noise signals in the two experiments are un-
correlated.

• Identification of the plant
Identify a model P̂ (z) of the plant from
the set of data {u(t), ỹ(t)}t=1,..,N and gen-
erate the simulated output ŷ(t) = P̂ (z)u(t).
Then construct the instrumental variables
as:

ζ(t) = β(z)L(z)S(z)(S(z) − 1)−1ŷ(t) (10)

The identification of the plant is a stan-
dard open-loop identification problem. The
model P̂ (z) can be estimated using different
techniques - see [8]. Notice that, since the
model P̂ (z) is used only as a simulator of
the plant, there are no strict limitations to
its order (because it is not directly involved
in the design of the controller). As a con-
sequence, high-order models can be used to
achieve high accuracy.

The choices of the instrumental variables pro-
posed in (9) and (10) are analyzed in the following
proposition.
Proposition 2
Assume that: (i) the data {u(t), ỹ(t)}t=1,..,N

and the instrumental variables {ζ(t)}t=1,..,N are
realizations of ergodic stochastic processes; (ii)
E[ζ(t)ϕL(t)] > 0; (iii) E[ζ(t)d(t)] = 0; then

• if ζ(t) is chosen as in (9) then θ̂IV satisfies

θ̂IV = θ̂ with probability 1.

• if ζ(t) is chosen as in (10) then θ̂IV min-
imizes (with probability 1) the following
quadratic criterion:

ĴV R(θ) =
1
2π

∫ π

−π

PP̂ |C(θ)−C0|2 |S|
2|L|2

|S − 1|2 Φudω

Proof: see [7] 2
7

Closed-loop noisy data
The VRFT method can be successfully applied
to data collected in closed-loop as well. An ex-
tended discussion on the use of closed-loop data
goes beyond the scope of this paper. Here, it suf-
fices to say that the above instrumental variable
procedure can still be applied by replacing the
repeated open-loop experiment with a repeated
closed-loop experiment with the same reference
signal (or the identification of P̂ (z) with the iden-
tification of the complementary sensitivity of the
closed-loop system). The interested reader is re-
ferred to [7].

5 A Numerical Example
The following continuous-time plant is considered
(from [1]):

P (s) =
µ

1 + (2ζ/ωn)s + (1/ω2
n)s2

where: µ = 0.63, ωn = 304, ζ = 0.18. The plant
is sampled at Ts = π/104 s. The magnitude Bode
plot of P (s) is shown in Fig.(3). The output of
the plant if affected by an additive disturbance
signal d(t) having the following form:

d(t) = sin(ωd · t) + ν(t)

where the frequency of the sinusoidal component
ωd = 2π · 38 rad/s in known and ν(t) is white
noise with variance σ2

ν = 10−4. The design ob-
jective is to design a controller for disturbance re-
jection. The following sensitivity reference model
expresses the desired performance:

S(z) =
(

1 − (1 − α)z−1

1 − αz−1

)
· H(z)

where α = e−ω̄Ts , ω̄ = 2π · 100 rad/s and H(z) is
a notch filter centered on e−jωdTs (see [1] and the
works cited therein):

H(z) = c · 1 − 2 cos(ωdTs)z−1 + z−2

1 − 2ρ cos(ωdTs)z−1 + ρ2z−2

where ρ = 0.98 and c̄ is such that C̄(z) has uni-
tary gain. The Magnitude bode plot of the ref-
erence model is shown in Fig.(3). The weighting
factor has been chosen as: W(z) = 1. The follow-
ing class of controllers has been adopted:

C(z; θ) =
ϑ0 + ϑ1z

−1 + ϑ2z
−2 + ϑ3z

−3

1 − z−1
· C̄(z)

C̄(z) = c̄ · 1 − 2ρ cos(ωdTs)z−1 + ρ2z−2

1 − 2 cos(ωdTs)z−1 + z−2
54



.1
where c̄ is such that C̄(z) has unitary gain. In the
controller a fixed integral action is included and,
moreover poles, corresponding to the zeros of the
notch filter H(z), are included in order to meet
the specification on the disturbance rejection sig-
nal. A set {u(t), ỹ(t)}t=1,..,N of open-loop noisy
data has been collected by feeding the plant with
a white noise signal (Φu(ω) = 1) for 1 s. The pa-
rameter vector θ̂IV

N have been estimated from the
data through the Virtual Reference method. The
optimal filter (7) has been chosen. The data have
pre-filtered through H(z) in order to eliminate
the sinusoidal component of the disturbance. As
for the stochastic components, a set of data, ob-
tained by repeating the experiment on the plant
with the same input, has been used in order
to construct the instrumental variables (see Sec-
tion 4). The estimated parameters vectors was:
θ̂IV

N = [62.015 − 142.614 101.534 − 20.59] The
achieved control system is illustrated below. In
Fig.(4.a) the magnitude bode plot of the sensitiv-
ity transfer function of the achieved control sys-
tem is compared with the one of the reference
model. In Fig.(4.b) the response of the control
system to the disturbance signal is shown.
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