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for Linear Continuous-Time Systems
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Abstract—This paper presents a novel approach for the iden-
tification of continuous-time systems directly from sampled I/O
data based on trial iterations. The method achieves identification
through iterative learning control (ILC) concepts in the presence
of heavy measurement noise. The robustness against measurement
noise is achieved through 1) projection of continuous-time I/O sig-
nals onto a finite dimensional parameter space and 2) Kalman filter
type noise reduction. In addition, an alternative simpler method
is given with some robustness analysis. The effectiveness of the
method is demonstrated through numerical examples for a non-
minimum phase plant.

Index Terms—Continuous-time systems, iterative learning con-
trol, Kalman filter, system identification.

I. INTRODUCTION

O NE of the most important issues in control system de-
sign is to obtain an accurate model of the plant to be con-

trolled. Though most of the existing identification methods are
described in discrete-time, it would often be convenient to have
continuous-time models directly from the sampled I/O data. In-
deed many controller design approaches are cast in a contin-
uous-time set-up and, moreover, it is often times easier for us to
capture the plant dynamics intuitively in continuous-time rather
than in discrete-time.

A basic difficulty of continuous-time identification is that
standard approaches (at times called direct methods) require to
compute the time-derivatives of I/O data, a nontrivial and very
delicate task in the presence of measurement noise. A compre-
hensive survey of this difficulty and of the attempts made to
overcome it has been first given by [19] and then by [17]. For
more information on direct methods, the reader is referred to the
book [14]. Furthermore, the Continuous-Time System Identifi-
cation (CONTSID) tool-box has been developed on the basis of
these direct methods [5]–[7].

On a different topic, iterative learning control (ILC) has at-
tracted much attention over the last two decades as a powerful
model-free control methodology [1]–[4], [10], [11], [18]. ILC
returns the input which achieves output tracking by iteration of
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trials for uncertain systems. Though ILC can deal with plants
having large uncertainty, most ILC approaches need time-deriva-
tives of I/O data in the continuous-time case [15], and therefore
it is quite sensitive to measurement noise. Recently, Hamamoto
and Sugie [8], [9] proposed an ILC where the learning law
works in a certain finite-dimensional subspace and showed that
time-derivatives of the tracking error is not required to achieve
perfect tracking in the proposed scheme. Based on this work,
Sugie and Sakai [13], [16] proposed an ILC which works in the
presence of heavy measurement noise (more than 30% noise
to signal ratio) and, moreover, the method was shown to be
applicable to the identification (as opposed to the control) of
continuous-time systems as well. This identification method
proved several advantages such as: 1) no time-derivatives of
I/O data are required, 2) it delivers unbiased estimations, and
3) the identified model quality can be estimated by inspecting
the tracking performance through experiments. An important
restriction applies to this method though: only models with no
zeros can be dealt with and this restriction should be removed.

The purpose of this paper is to introduce an identification
method for linear continuous-time systems with poles and zeros
based on the ILC approach proposed in [13] and [16]. An ad-
ditional important advantage of the method proposed herein is
that, differently from the algorithm in [13] and [16], it guaran-
tees zero convergence of the parameter estimation error as the
number of trials increases.

The following notations will be used. Superscript denotes the
trial number and subscript denotes the element of a set or a ma-
trix. For instance, input at the th trial is written as while

is the th element of the vector .
Section II contains the system description, while the new iden-

tification procedure is given in Section III. Section IV presents
a simplified scheme and implementation issues are discussed in
Section V. Finally, simulation examples are given in Section VI.

II. SYSTEM DESCRIPTION

Consider the continuous-time SISO system described by

where and are the input and the output, re-
spectively, and
are coefficient parameters, while is the differential operator,
i.e., . We assume the following.

• Many experiments on the system can be repeated and the
system can be set any time at rest, that is, it can be operated
with zero initial state.

• Though the true parameters and are unknown,
and are coprime and their order and are known.
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Fig. 1. Data generation scheme at �th trial.

• We can measure , the output contaminated with noise

where is zero-mean measurement noise.
The goal is to determine a model in the class

based on I/O measurements and .

III. IDENTIFICATION PROCEDURE

A. Data Generation Scheme and Parameter Updating Law

Choose a smooth signal , such that
. At the th trial, perform the

following experiment which produces the signal when the
parameter estimates from the previous
trial are given (see Fig. 1).

1) Define

2) Compute .
3) Inject into the system, and collect .
4) Compute .
5) Compute the mismatch signal by

.
Note that if and

, that is the effect of on disappears. Moreover,
is obtained without taking any derivative of noisy mea-

surements, only derivatives of are required. Note also that
can also be written as

Now, we introduce square-integrable functions
, which satisfy the following

condition.
Condition 1: If

(1)

are satisfied, then holds.

In words, Condition 1 requires that if the projection
of onto is zero for all

’s, then must be zero. Since

linearly depends on
parameters, determining ’s such that this condition is
satisfied is not difficult.

Remark 1: One sensible choice for and for func-
tions corresponds to select a “well-exciting” signal

and to let
, where is

some estimate (either a priori or obtained during the iden-
tification process) of . If we assume for simplicity
that , then

. The “useful” part of , i.e.,
, is signal filtered through

a polynomial in of order , so that all useful information
lies in the subspace generated by ,
namely by , and projecting
onto this subspace preserves the information while filtering out
noise. Another choice is to take to be a multi-sinusoidal
signal with components and let each be one of
the sinusoids.

Note also that implies that
and since and are

coprime.
We next regard and as

elements of , the space of square-integrable func-
tions defined over with inner product

, and project onto the finite-dimensional
subspace described by

The projection is written as

(2)

and is its vector representation.
We are now in a position to describe how parameters

are updated. Let for brevity

Then the iterative identification procedure is described as fol-
lows (where is chosen by the designer).

Step 0) Fix an initial estimate , set .
Step 1) Generate from according to the scheme
shown in Fig. 1.
Step 2) Update with the following rule:

(3)

where is a learning gain. If , stop the
iterations. Otherwise, set and go back to Step 1.

The choice of will be discussed in the next subsection.

B. Optimal Selection of

First, we rewrite in a more convenient form.
Let for the time being [ will be reintroduced

later]. A simple inspection reveals that step 1 in the identifica-
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tion procedure defines an affine operator from (space
for ) to (space for ), that is

(4)

where is an matrix (depending on
the true system) and is the offset term. Note that from Condi-
tion 1 it follows that implies . This also means
that the equation

has the only solution , so that is nonsingular and
. Thus, (4) can be rewritten as

with nonsingular.
When noise is taken into account, becomes

(5)

where accounts for the projection of onto .
Inserting (5) in (3) yields

Thus, defining , we have

(6)

which is the equation that describes how the error propagates
through trials.

Now, define

(we assume for simplicity that is constant through trials).
We next discuss how to select so as to reduce opti-

mally under the assumption that and are known. The ob-
tained results will drive us later in the selection of when this
assumption will be relaxed. The computation to come are in line
with Kalman filtering variance minimization. Noise is assumed
to be independent in different experiments.

From (6), we have

(7)

Therefore, is minimized by the choice

(8)

With this choice, we obtain

(9)

Equations (8) and (9), where (9) is initialized with
, give the way to select .

The following theorem proves that the proposed method gives
us the true parameter in the presence of measurement noise
through iteration of trials.

Theorem 1: With the updating law (3) where is given by
(8) and (9), and (9) is initialized with , it holds
that

Proof: In (7), take with [in-
stead of (8)] and denote by the solution of (7) obtained with
initialization . We have

from which

holds and the first term vanishes as grows.
Now, we claim that holds for any . By induction

. Assume , then we obtain

so closing the induction. Consequently, we have

The right-hand side can be made arbitrarily small by selecting
close to zero while the left-hand-side does not depend on , so
proving that the left-hand side is actually zero.

It is easy to see that the convergence result that
is preserved if is not known

and (9) is instead initialized with a conventional .
The gain determined by (8) and (9) is optimal and should

therefore be implemented as such when and are known
or when a good estimate of and is available. Such a gain
performs an optimal compromise between exploitation of in-
formation and rejection of noise. In the case when (no
noise), we have

so that

and the error goes to zero in one step.
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IV. SIMPLIFIED LEARNING GAIN

Simpler updating rules for than that given by (8) and (9)
can be designed that still guarantee the error convergence to
zero. One such rule is given by

(10)

A. Convergence Analysis

Theorem 2: If the updating law (3) is adopted where is
given by (10), then

Proof: Since

holds, we have

(11)

The above term vanishes as , which proves the
theorem.

Remark 2: One important merit of (10) is stated as follows.
From (11), it is obvious that if (no noise), we get

, i.e., the error goes to zero in one step like
for the optimal choice (8) and (9). The reason why this happens
is that so that

and the initial error is killed in 1 step. In general,
though not null, we expect that is small since just rep-
resents the noise component in the -dimensional
subspace .

B. Robustness Analysis

Suppose now we only have an estimate of , so that we
implement

(12)

in place of (10). We next want to investigate conditions under
which still holds by using (12).

Theorem 3: If holds for , then
with the choice in (12).

Remark 3: is a sign condition and in the
scalar case it reduces to say that has the same sign as . This
appears to be a minimal requirement since, if no sign knowledge
is available, information cannot be used to improve the esti-
mate. We thus see that (12) provides an updating gain leading
to asymptotic consistency under mild assumptions.

Proof: Consider function restricted to the unit
sphere, that is, for such that . Since the unit sphere is
compact and function is continuous, the of this
function over the unit sphere coincides with its , which, in
turn, has to be positive by the assumption that

. Thus, there exists a (which we also take to be
less than for convenience) such that

Hence, for any with , we obtain

which implies

(13)

Consider now (6) and solve it from time onward to obtain

(14)
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[by convention, we let ].
Using (13) and (14), can be bounded as follows:

(15)

To complete the proof, we shall show that the latter expres-
sion tends to 0 as . To this end, we need the following
inequality:

(16)

which we establish first. Expand the left-hand side of (16) as

and take logarithm

(16) is obtained by dropping the logarithm sign in this latter
expression.

Go now back to (15) and first consider expression

that multiplies . We have

(17)

(18)

and the last expression goes to 0 as .
Next, consider , the expres-

sion that multiplies in (15)

Again, this expression goes to 0 as , so that both terms
in the right-hand side of (15) tend to zero and this completes the
proof.

V. DIGITAL IMPLEMENTATION

In this section, we discuss how to approximately implement
the iterative identification method when the I/O are measured at
sampling times only. Precisely, we suppose that the I/O data are

, where is sampling time
satisfying .

A. Basis Functions and Reference Signal

Given functions , define
by

...
...

...
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Functions ’s should be chosen such that the columns of
are linearly independent. Note also that this is true if Condition
1 is satisfied and the sampling time is fast enough.

Let the QR decomposition of be

where and
is a nonsingular upper triangular matrix.

These ’s constitute an orthogonal basis for projection in the
digital implementation.

Next, we choose and define , and by

Then, and are written as

where is the matrix which consists of the first
columns of . Since the data are available only at sampling
times, we also define

and are defined similarly.
Also, we let be

...
...

...

Then, we have

B. Computation of

Since is an orthogonal
set of vectors with unitary norm, the projection of onto

is
, where is an approximate expression

for in (2). This suggests using

in place of in (3).

C. Estimation of and Overall Implementation

Note that, if sampling time is fast enough so that
does not change significantly between samples, we can approx-
imately write

(19)

where is a system-dependent Toeplitz matrix
of the form

...
...

...
...

Thus, the mismatch signal can also be expressed as

(20)

Substituting this expression for in yields

. Comparing with (4), we then obtain

(21)

(22)

Also, recall that , from which

(23)

The equations we have derived suggest the following practical
implementation of the identification algorithm. Data are first
used to obtain a rough estimate of the ’s, that is, the Markov
coefficients of system (19), and, through this, a rough estimate

of is obtained. Then, estimates of and of are de-
rived from (21) and (22) by substituting with . is used
in the gain of the ILC procedure. Moreover, a rough initial esti-
mate for is obtained [see (23)]. With and

in our hands, the iterative ILC procedure is then used to re-
fine the estimate .

Remark 4: Alternative indirect methods can be used in the
identification of continuous-time systems where one first con-
verts the model into a discrete-time version of it, then performs
identification with a standard discrete-time algorithm, and fi-
nally converts the system back to continuous-time.

The chief recognized drawback of this indirect approach is
that the final result becomes more and more sensitive to noise
as sampling is made faster; see, e.g., [12] for a thorough dis-
cussion on the dependability of indirect methods. Similarly, di-
rect methods where time derivatives of I/O data are used suffer
from the same drawback. The ILC approach presented herein
overcomes this drawback because no derivatives of measured
signals are considered. The fact that this drawback is overcome
can also be directly argued from an inspection of (20): this equa-
tion shows that noise enters the computation of —which is
the driving term in the updating equation for parameter estima-
tion—in a way that is unaffected by the sampling time .

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 2, 2008 at 04:47 from IEEE Xplore.  Restrictions apply.



CAMPI et al.: ITERATIVE IDENTIFICATION METHOD FOR LINEAR CONTINUOUS-TIME SYSTEMS 1667

Fig. 2. Output with noise for impulse-like input.

As an additional remark, we note that indirect methods re-
quire regular sampling whereas the digital implementation of
the ILC approach discussed in this section can be easily gener-
alized to the case of unequally spaced sampling.

VI. NUMERICAL EXAMPLE

The effectiveness of the proposed method will be evaluated
through simulation in this section.

Consider a linear, fourth-order, nonminimum phase system
with complex poles described by the transfer function (this is
the Rao–Garnier test system [12])

where [s], [rad/s], [rad/s],
and . The time span for each trial is [s], and
the sampling time is [ms]. Namely, the number of data
used for one trial is 1001.

With the goal of estimating the ’s, an impulse-like input was
injected in the system. Precisely, we let in the interval
0–10 [ms], and then the input was set to zero. Fig. 2 shows the
measured output [noise-to-signal ratio (NSR) was 100%, where
NSR is defined as ]. We took

and estimated and as indicated at the end of
the previous section.

We next proceeded to iterative identification. was ob-
tained as the output of the system

when the input is chosen as the following sum of five sinusoidal
signals:

(24)

and the system has zero initial conditions, so
that signal has zero initial derivatives. We also let

. The measurement noise was white
with zero mean and variance . The variance was
chosen so that the NSR was 100%, where NSR is defined as

.
We used the update law (3) where is given by (8) and (9)

with estimated as indicated before and where was used

Fig. 3. Measured output ����� and � ������� at 30th trial (NSR: 100%).

Fig. 4. Bode plots of the estimated system �� � ��.

for , which is a very coarse estimate of the true which was
about ten times larger. Fig. 3 shows the output obtained at
the 30th trial. The same figure also displays the signal
(thick line). As it can be seen, tracks very well
despite the heavy measurement noise, which indicates that the
plant model is identified accurately. In fact, an accurate descrip-
tion of the plant is obtained after few iterations. To confirm this,
Bode plots of the estimated system at the 3rd trial are shown in
Fig. 4 for 50 runs of the algorithm (bundle of thin lines) against
the Bode plot of the true system. For comparison, the results
achieved with the SRIVC method in the CONTSID tool-box are
shown in Fig. 5 when the input is (24), [s] and is
as before.

Fig. 6 shows an example of the estimated coefficients through
trials. From this figure, we see that the initial estimation is im-
proved quickly. The Euclidean norm of the parameter estima-
tion error is shown in Fig. 7.

VII. CONCLUSION

In this paper, a novel approach has been introduced for the
identification of linear continuous-time systems based on the
iterative learning control concept. The method achieves iden-
tification through repetition of trials in the presence of heavy
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Fig. 5. Bode plots of the system estimated with SRIVC.

Fig. 6. Identified coefficients ��� in each trial (True value: � � ����� � �

������ � � ���������� � ���������� � �� � � ��).

Fig. 7. Euclidean norm of the parameter estimation error ���� � ��� �.

measurement noise. The proposed method has several advan-
tages among which that no time-derivatives of I/O data is re-
quired and no data preprocessing (e.g., decimation or filtering)
is necessary. The effectiveness of the proposed method has been
demonstrated through numerical examples for a nonminimum
phase plant.

REFERENCES

[1] S. Arimoto, Control Theory of Non-Linear Mechanical Systems: A Pas-
sivity-Based and Circuit-Theoretic Approach. Oxford, U.K.: Oxford
Univ. Press, 1996, ch. 4 and 5.

[2] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robotics.,” J. Robot. Syst., vol. 1, no. 2, pp. 123–140, 1984.

[3] Z. Bein and J. X. Xu, Iterative Learning Control—Analysis, Design,
Integration and Applications. Norwell, MA: Kluwer, 1998.

[4] Y. Chen and C. Wen, Iterative Learning Control: Convergence, Ro-
bustness and Applications. New York: Springer-Verlag, 1999, vol.
LNCIS-248.

[5] H. Garnier, M. Gilson, and E. Husestein, “Developments for the Matlab
CONTSID toolbox.,” in Proc. IFAC Symp. System Identification, Rot-
terdam, The Netherlands, 2003.

[6] H. Garnier and M. Mensler, “CONTSID: A continuous-time system
identification toolbox for Matlab.,” in Proc. 5th Eur. Control Conf.,
Karlsruhe, Germany, 1999.

[7] H. Garnier and M. Mensler, “The CONTSID toolbox: A Matlab
toolbox for continuous-time system identification.,” in Proc. 12th
IFAC Symp. System Identification, Santa Barbara, CA, 2000.

[8] K. Hamamoto and T. Sugie, “An iterative learning control algorithm
within prescribed input-output subspace.,” Automatica, vol. 37, no. 11,
pp. 1803–1809, 2001.

[9] K. Hamamoto and T. Sugie, “Iterative learning control for robot ma-
nipulators using the finite dimensional input subspace.,” IEEE Trans.
Robot. Autom,, vol. 18, no. 4, pp. 632–635, Aug. 2002.

[10] S. Kawamura, F. Miyazaki, and S. Arimoto, “Realization of robot mo-
tion based on a learning method.,” IEEE Trans. Syst., Man., Cybern.,
vol. 18, no. 1, pp. 126–134, Jan./Feb. 1988.

[11] K. L. Moore, Iterative Learning Control for Deterministic Systems.,
ser. Advances in Industrial Control. London, U.K.: Springer-Verlag,
1993.

[12] G. P. Rao and H. Garnier, “Identification of continuous-time systems:
Direct or indirect?,” Syst. Sci., vol. 30, no. 3, pp. 25–50, 2004.

[13] F. Sakai and T. Sugie, “Continuous-time systems identification based
on iterative learning control.,” in Proc. 16th IFAC World Congr.,
Prague, Czech Republic, 2005.

[14] , N. K. Sinha and G. P. Rao, Eds., Identification of Continuous-Time
Systems. Methodology and Computer Implementation.. Dordrecht,
The Netherlands: Kluwer, 1991.

[15] T. Sugie and T. Ono, “An iterative learning control law for dynamical
systems.,” Automatica, vol. 27, no. 4, pp. 729–732, 1991.

[16] T. Sugie and F. Sakai, “Noise tolerant iterative learning control for con-
tinuous-time systems identification.,” in Proc. 44th IEEE Conf. Deci-
sion and Control and Eur. Control Conf., Seville, Spain, 2005.

[17] H. Unbehauen and G. P. Rao, “Continuous-time approaches to system
identification—A survey.,” Automatica, vol. 26, no. 1, pp. 23–35, 1990.

[18] J. X. Xu, “The frontiers of iterative learning control II,” Syst., Control,
Inf., vol. 46, no. 2, pp. 233–243, 2002.

[19] P. Young, “Parameter estimation for continuous-time models—A
survey.,” Automatica, vol. 17, no. 1, pp. 23–39, 1981.

Marco C. Campi (SM’08) was born in Tradate, Italy,
on December 7, 1963. In 1988, he received the Ph.D.
degree in electronic engineering from the Politecnico
di Milano, Milano, Italy.

He is a Professor of automatic control at the Uni-
versity of Brescia, Brescia, Italy, where he has been
since 1992. From 1988 to 1989, he was a Research
Assistant at the Department of Electrical Engineering
of the Politecnico di Milano. From 1989 to 1992, he
worked as a Researcher at the Centro di Teoria dei
Sistemi of the National Research Council (CNR) in

Milano. He has held visiting and teaching positions at many universities and
institutions including the Australian National University, Canberra, Australia;
the University of Illinois at Urbana-Champaign; the Centre for Artificial Intelli-
gence and Robotics, Bangalore, India; the University of Melbourne, Melbourne,
Australia; and Kyoto University, Kyoto, Japan. He is an Associate Editor of Sys-
tems and Control Letters and a past Associate Editor of Automatica and the Eu-
ropean Journal of Control. His research interests include: system identification,
stochastic systems, adaptive and data-based control, robust convex optimization,
robust control and estimation, and learning theory.

Dr. Campi received the “Giorgio Quazza” prize as the Best Original Doc-
toral Thesis for 1988. He serves as Chair of the Technical Committee IFAC
on Stochastic Systems (SS) and is a member of the Technical Committee IFAC
on Modeling, Identification, and Signal Processing (MISP) and of the Technical
Committee IFAC on Cost Oriented Automation. Moreover, he is a Distinguished
Lecturer under the IEEE Control Systems Society (CSS) Program.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 2, 2008 at 04:47 from IEEE Xplore.  Restrictions apply.



CAMPI et al.: ITERATIVE IDENTIFICATION METHOD FOR LINEAR CONTINUOUS-TIME SYSTEMS 1669

Toshiharu Sugie (M’89–SM’02–F’07) received the
B.E., M.E., and Ph.D. degrees in engineering form
Kyoto University, Kyoto, Japan, in 1976, 1978, and
1985, respectively.

From 1978 to 1980, he was a Research Member
of Musashino Electric Communication Laboratory in
NTT, Musashino, Japan. From 1984 to 1988, he was a
Research Associate of the Department of Mechanical
Engineering, University of Osaka Prefecture, Osaka,
Japan. In 1988, he joined Kyoto University, where
he is currently a Professor in the Department of Sys-

tems Science. His research interests are in robust control, learning control, non-
linear control, identification for control, and control application to mechanical
systems.

Dr. Sugie is a Fellow of the Society of Instrument and Control Engineers,
Japan. He is an Editor of Automatica and was also an Associate Editor of the
Asian Journal of Control and the International Journal of Systems Science.

Fumitoshi Sakai (M’05) was born in Tochigi,
Japan, in 1973. He received the B.S., M.S., and
Ph.D. degrees in engineering from Kanazawa Uni-
versity, Kanazawa, Japan, in 1996, 1998, and 2001,
respectively.

In 2001, he joined the Department of Mechanical
Engineering, Nara National College of Technology,
Nara, Japan, as a Research Associate. His research
interests include system identification and learning
control.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 2, 2008 at 04:47 from IEEE Xplore.  Restrictions apply.


