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SUMMARY

Standard switching control methods are based on the certainty equivalence philosophy in that, at each
switching time, the supervisor selects the candidate controller that is better tuned to the currently estimated
process model. In this paper, we propose a new supervisory switching logic that takes into account the
uncertainty on the process description when performing the controller selection. Specifically, a probability
measure describing the likelihood of the different models is computed on-line based on the collected data
and, at each switching time, the supervisor selects the candidate controller that, according to this
probability measure, performs the best on the average. If the candidate controller class is hierarchically
structured so that for each model one has available several controllers with distinct levels of robustness, the
supervisor automatically selects the controller that suitably compromises robustness versus performance,
given the current level of model uncertainty. The use of randomized algorithms makes the supervisor
implementation computationally tractable. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Suppose that a process with transfer function G8 has to be regulated by choosing a controller in
some candidate controller class fKðgÞ; g 2 Gg: In a standard optimal control setting, the control
performance achieved by applying controller KðgÞ to the process G8 is measured by some
(positive) cost criterion J ðG8;KðgÞÞ: the lower the value of J ðG8;KðgÞÞ; the more satisfactory the
control performance. Here, J can represent any cost, e.g., of the H2 or H1 type. If the process is
known, an optimal controller is computed by minimizing J over the candidate controller class.
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Consider now the case when the process is not known, and suppose that a parametric class of
admissible process models is introduced, fGðWÞ; W 2 Yg: Then, the problem of selecting the best
controller according to J can be addressed along a dual control approach by introducing a state
variable representing the unknown parameter vector, and solving the resulting optimal control
problem on the augmented state-space representation of the process. The optimal controller
incorporates a self-adjusting mechanism, in that it selects a control input that compromises the
control objective versus estimation needs (dual action, see e.g. Reference [1]). However, such an
optimal dual control approach is generally difficult to implement because it is computationally
excessive.

A computationally feasible}though sub-optimal}approach to the design of self-adjusting
controllers is the so-called switching control design method originally introduced in Reference
[2] and further developed in e.g. References [3–7]. The switching control scheme consists of an
inner loop where a candidate controller is connected in closed-loop with the process, and an
outer loop where a supervisor decides which controller to select and when to switch to a
different one, based on the input–output data.

The switching times are chosen so as to avoid switching that is too fast with respect to the
system’s settling time, thus causing instability. As for the controller selection, it is typically
based on an ‘estimator-based’ procedure [3, 4]. Specifically, at any switching time, a
performance signal}given e.g. by the integral norm of an estimation error}is computed for
each admissible model parameter. The supervisor then selects the candidate controller
associated with the model that minimizes the performance signal (certainty equivalence
approach). Implementation and analysis of the switching control scheme are typically simplified
by considering a finite set of candidate controllers. This set is called a finite controller cover [8, 9].

In a standard switching control scheme, the compromise between robustness and
performance is made offline when the controller cover is designed. If the controller cover
consists of a small number of controllers, each one stabilizing a wide set of models, then stability
is generally rapidly achieved, even before a large amount of information has been accrued, but
in the long run the resulting performance is typically low. In contrast, if the controller cover
consists of a large number of controllers, each one tailored to a narrow set of models, a highly
performing control system is potentially achieved, but poor performance will most likely occur
until there is sufficient data to obtain an accurate estimate of the process model.

In this paper, we propose a cautious switching logic that still relies on a parameterized class of
admissible process models but, differently from the certainty equivalence-based logic, also takes
into account the uncertainty in the process description when performing the controller selection.

The controller choice is based on a probability measure Pt computed on-line, which describes
the likelihood of the different process models. At any switching time t; the supervisor selects the
controller that minimizes the average control cost ctðgÞ :¼ EPt ½J ðW; gÞ�; g 2 G; where J ðW; gÞ is the
short-hand-notation for J ðGðWÞ;KðgÞÞ and EPt ½J ðW; gÞ� is the expectation of J ðW; gÞ with respect to
the measure Pt for W: Minimizing ctð�Þ corresponds to optimizing the average control system
behaviour where different models are given different weights according to their likelihood at
time t (cautious control, References [10] [1, p. 438]).

With cautious switching, we overcome the difficulty in standard switching control that arises
from being forced to establish an a priori compromise between robust stability and performance
by associating to each model a single candidate controller. Thanks to the cautious switching
logic, this association is no longer necessary. To be specific, we propose to integrate in the
cautious switching scheme a hierarchically structured class of candidate controllers composed of
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different finite controller covers: the lower level cover contains controllers with a high level of
robustness (with respect to uncertainty in the system parameter W), but low performance
guarantees, and, as we go up in the hierarchical structure, we have controller covers with
increasing performance, while progressively penalizing robustness. When the distribution Pt is
spread over the set Y; it is expected that the cautious supervisor will select a controller that is
robust, though low performing. As time goes by, more and more information is accumulated
and the distribution Pt is expected to become more sharply peaked around the model that better
describes the actual process. Consequently, the cautious supervisor will select controllers better
tailored to the true process, ultimately resulting in an improvement of performance. Thus, in
finite time the control scheme is robust, and it progressively becomes better performing.

The use of average control cost criteria was originally proposed in References [11, 12] in the
context of robust control and then extended to an adaptive scenario in Reference [13]. In
Reference [13], a general adaptive control set-up is considered and asymptotic tuning properties
are proved under certain stability conditions. No stability analysis is performed however. The
contribution of this paper is twofold:

1. proposing a hierarchical structure within the framework of switching control;
2. providing a stability analysis for the corresponding cautious scheme.

In the light of the stability analysis developed in the present paper, the results in Reference [13]
can be used to further prove tuning properties of the control scheme proposed herein.

The paper is structured as follows. The cautious switching scheme is described in Section 2.
The stability analysis is dealt with in Section 3. Section 4 concludes the paper with final remarks
and a discussion of open issues.

2. THE CAUTIOUS SWITCHING SCHEME

Process. Consider the stochastic linear process

AðW8; z�1Þytþ1 ¼ BðW8; z�1Þut þ wtþ1 ð1Þ

where the polynomials AðW8; z�1Þ ¼ 1�
Pnp

i¼1 ai8z�i and BðW8; z�1Þ ¼
Pmp

i¼1 bi8z�ði�1Þ depend on
the unknown parameter vector W8 ¼ ½a18; . . . ; anp8 ; b18; . . . ; bmp8 �T with np; mp > 0; and fwtg is a
sequence of independent and identically distributed Gaussian random variables with zero mean
and variance s2 > 0:

We suppose that some a priori knowledge on W8 is available. Specifically, we assume that:

Assumption 1

W8 is an interior point of a known compact set Y � Rnpþmp ; such that for all W 2 Y system (1)
with W in place of W8 is l-stabilizable (05l51), i.e. AðW8; z�1Þ and BðW8; z�1Þ have no pole-zero
cancellations in fz 2 C : jzj > lg:

Model class. The model class is obtained from (1) by replacing W8 with a generic parameter
W 2 Y:

AðW; z�1Þytþ1 ¼ BðW; z�1Þut þ wtþ1; W 2 Y ð2Þ
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Candidate controller class. As for the controller class, we consider a finite set of candidate
controllers with structure

Cðg; z�1Þut ¼ Dðg; z�1Þyt

where the polynomials Cðg; z�1Þ ¼ 1�
Pmc

i¼1 ciz�i and Dðg; z�1Þ ¼
Pnc

i¼0 diz�i are parameterized
by g ¼ ½d0; . . . ; dnc ; c1; . . . ; cmc �

T 2 G � Rncþmcþ1: We assume that to each W 2 Y there corresponds
at least one g 2 G such that the closed-loop system formed by the model with parameter W and
the controller with parameter g is l-stable, namely all the closed-loop eigenvalues are less than l
in absolute value. The way such a controller class is generated is immaterial for the analysis to
follow. However, one can think that it has been formed by putting together all controllers
belonging to a hierarchical structure of covers as discussed in the introduction. Details on how
such structure can be constructed in a specific context is beyond the scope of the present paper
and the reader is referred to References [8, 9] for more discussion.

Control cost criterion. The control cost of the closed-loop system formed by the model with
parameter W and the controller with parameter g is evaluated by

J ðW; gÞ :¼

aJ 0ðW; gÞ
1þ aJ 0ðW; gÞ

if the closed-loop system is l-stable

1 otherwise

8><
>: ð3Þ

where J 0ðW; gÞ is some positive performance criterion (e.g. an H2 or H1 cost), and a is a positive
constant. The criterion J thus combines both stability and performance requirements and
penalizes those controllers unable to meet the robust l-stability requirement. J is normalized so
that it takes values in ½0; 1�: This is done for technical reasons related to the cautious controller
selection through randomized methods as discussed in Section 2.1.

Switching logic. The tasks of the switching logic are to generate a switching signal that triggers
the replacement of the controller in the loop with a new controller and to select the new
controller. The controller selection is described in detail in Section 2.1. As for the switching signal,
we adopt the so-called dwell-time switching logic where a dwell-time is forced between consecutive
switching instants [4, 14–16]. The actual dwell-time selection is discussed in Section 2.2.

2.1. Cautious controller selection

At each switching time t; the supervisor selects the next candidate controller by minimizing the
average cost ctðgÞ ¼ EPt ½J ðW; gÞ� over the controller parameter set G: The controller selection
procedure involves two steps: (i) computing the probability measure Pt; and (ii) computing and
minimizing the average cost ctð�Þ: These two steps are discussed separately.

Computing and minimizing ctð�Þ:
An exact computation of ctð�Þ (the integral of J ðW; gÞ over Y with respect to measure Pt) is in

general hard. As a matter of fact, for many control objectives the integrand function J ðW; gÞ
cannot be computed in a closed-form, so that even the evaluation of J ðW; gÞ for a given pair ðW; gÞ
may be time consuming. Additional difficulties arise in connection with the computation of the
integral. The approach adopted here to overcome this difficulty follows to a large extent the
ideas in References [12, 13] and is based on the use of randomized methods. The resulting
minimizer is only approximately optimal.

First, we state a procedure that describes how ctð�Þ is minimized along the randomized
approach. The properties of the so-obtained minimizer are discussed in turn.
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Algorithm 1

Given e 2 ð0; 1Þ and d 2 ð0; 1Þ; do the following:

1. extract at random Mðe; dÞ5ð2=e2Þ ln ð2jGj=d) independent model parameters W1; t; W2;t; . . . ;
WMðe;dÞ; t according to the probability distribution Pt;

2. compute #EEPt ½J ðW; gÞ� :¼ 1=Mðe; dÞ
PMðe;dÞ

i¼1 J ðWi;t; gÞ;
3. choose gt :¼ arg ming2G #EEPt ½J ðW; gÞ�:

We prove next that the controller parameter gt obtained through Algorithm 1 is an
approximate minimizer of EPt ½J ðW; gÞ� over G: In the following proposition, the phrase ‘with
probability not less than 1� d’ makes reference to the probability involved in the random
extractions of Wi;t’s, once the past up to time t has been fixed.

Proposition 1

The controller parameter gt computed via Algorithm 1 is an approximate minimizer of
EPt ½J ðW; gÞ� to accuracy e with confidence 1� d; i.e. EPt ½J ðW; gtÞ�4ming2G EPt ½J ðW; gÞ� þ e; with
probability not less than 1� d:

Proof

gt is the minimizer of the sampling estimate #EEPt ½J ðW; gÞ�; which is based on a random selection of
parameters Wi;t 2 Y and, as such, it is a random variable over the space YMðe;dÞ :¼ Y�Y�
� � � �Y; Mðe; dÞ times. Consider the set Qt of multi-samples x ¼ ðW1; . . . ;WMðe;dÞÞ 2 YMðe;dÞ such
that #EEPt ½J ðW; gÞ� ¼ 1=Mðe; dÞ

PMðe;dÞ
i¼1 J ðWi; gÞ is an uniformly good approximation to EPt ½J ðW; gÞ�

over the set G to accuracy e=2; namely

Qt :¼ x 2 YMðe;dÞ: max
g2G

j #EEPt ½J ðW; gÞ� � EPt ½J ðW; gÞ�j4
e
2

� �

Then, if x 2 Qt; letting gt :¼ argming2G #EEPt ½J ðW; gÞ�; and gt8 :¼ argming2G EPt ½J ðW; gÞ�; we have

EPt ½J ðW; gtÞ�4 #EEPt ½J ðW; gtÞ� þ
e
2
4 #EEPt ½J ðW; g8t Þ� þ

e
2

4EPt ½J ðW; gt8Þ� þ
e
2
þ

e
2
¼ min

g2G
EPt ½J ðW; gÞ� þ e ð4Þ

The proof is concluded by showing that xt ¼ ðW1; t; . . . ; WMðe;dÞ; tÞ belongs to Qt with probability
no smaller than 1� d:

Since the parameters W1; t; . . . ;WMðe;dÞ; t are independently extracted according to Pt; an
application of Hoeffding’s inequality [17] yields

Prfxt 2 Qtg ¼ 1�P
Mðe;dÞ
t xt 2 YMðe;dÞ: max

g2G
j #EEPt ½J ðW; gÞ� � EPt ½J ðW; gÞ�j >

e
2

� �

5 1� 2jGje�Mðe;dÞe2=2

Recalling that Mðe; dÞ5ð2=e2Þ ln ð2jGj=d), it is straightforward to conclude that
Prfxt 2 Qtg51� d: &
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Computing Pt.
In general, Pt describes the likelihood of different parameters in Y: Depending on the

situation at hand, Pt can be given different mathematical formalizations. Here, we discuss in
detail the case in which Pt is the exact a posteriori probability density of W8 given data, where W8
is assumed to be a stochastic variable.

It is important to emphasize that regarding W8 as a random variable simply allows us to
motivate the algorithm used to compute Pt: Once this algorithm had been derived, the
stochastic nature of W8 is immaterial and, in fact, the stability proof in Section 3 will be valid for
any value of W8 in Y (regardless of whether or not there is an underlying distribution).

Assume then that W8 is stochastic and randomly chosen according to a distributionP: Having a
stochastic W8 is a common assumption in adaptive control and is known under the name of
Bayesian embedding [18–23] For instance, in References [20–22] W8 is supposed to be Gaussian
and independent of fwtg: Then, under the assumption that ut is a Borel measurable function of the
observations yi; i4t; the a posteriori distributionPt of W8 given the observations up to time t is still
Gaussian with mean and variance that can be computed using the Kalman filter equations [23].

As in References [20–23], we assume that W8 is independent of the noise process fwtg:
However, here W8 takes values in the compact set Y according to a Gaussian distribution
truncated to Y: Specifically, we set P � NYðM ; V Þ; where NYðM ; V Þ denotes the rescaled
Gaussian probability density with meanM and variance V > 0; whose support is restricted to the
set Y: Thus, our framework differs from the standard Bayesian embedding setting of Reference
[23] in two respects: (1) the selection of ut ultimately depends on the randomized Algorithm 1
and, as a consequence, the assumption made in Reference [23] that ut is a Borel measurable
function of the observations yi; i4t; is no longer satisfied; and (2) we do not assume that W8 is
Gaussian, but a truncated Gaussian.

Due to the above two differences, the results in Reference [23] are not directly applicable to our
context. On the other hand, as for (1), it is just a matter of technical details to show that the results
in Reference [22] extend to our context, provided that Pt is interpreted as the a posteriori
distribution of W8 given the observations yi; i4t; and the parameters ðW1;i; . . . ;WMðe;dÞ;iÞ; i5t;
extracted at step 1 of Algorithm 1. As for difference (2), we can take advantage of the special
structure ofP � NYðM ; V Þ; to derive a recursive expression forPt still based on the Kalman filter
equations. Indeed, the fact that W8 2 Y can be recast as an additional observation. When computing
the a posteriori distribution of W8; one can first compute it as though W8 were not restricted to Y
(and therefore use a Kalman filter), and then complement the resulting distribution with the
additional observation that W8 2 Y: This final step simply amounts to truncating (and rescaling) the
distribution achieved through the Kalman filter. This leads to the following algorithm.

Algorithm 2

1. compute Mt and Vt through the Kalman filter equations

Kt�1 ¼ Vt�1jt�1=ðj
T
t�1Vt�1jt�1 þ s2Þ

Mt ¼ Mt�1 þ Kt�1ðyt � jT
t�1Mt�1Þ

Vt ¼ Vt�1 � Vt�1jt�1j
T
t�1Vt�1=ðjT

t�1Vt�1jt�1 þ s2Þ

initialized with M0 ¼ M and V0 ¼ V ;
2. set Pt � NYðMt; VtÞ:
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In the algorithm jt ¼ ½yt; . . . ; yt�npþ1; ut; . . . ; ut�mpþ1�T is the regression vector associated with
the model (2) rewritten as

ytþ1 ¼ jT
t Wþ wtþ1

2.2. Dwell-time selection

We adaptively select the dwell-time interval between consecutive switchings based on the model
parameters extracted in step 1 of Algorithm 1. Specifically, we compute the switching time
sequence ftig by the recursive equation

tiþ1 ¼ ti þ tDðxti ; gtiÞ; i ¼ 0; 1; . . . ð5Þ

initialized with t0 ¼ 0; where tD : YMðe;dÞ � G ! N is the dwell-time function, and xti ¼ ðW1; ti ; . . . ;
WMðe;dÞ;tiÞ is the set of Mðe; dÞ model parameters extracted at step 1 of Algorithm 1 at time t ¼ ti:

To define the dwell-time function, we first introduce some notation. Consider the closed-loop
system

AðW; z�1Þ ytþ1 ¼ BðW; z�1Þ ut þ wtþ1

Cðg; z�1Þut ¼ Dðg; z�1Þyt
ð6Þ

By letting xt :¼ ½yt . . . yt�ðn�1Þ ut�1 . . . ut�ðm�1Þ�T where n :¼ maxfnp; nc þ 1g and m :¼ maxfmp;
mc þ 1g; system (6) can be rewritten as

xtþ1 ¼ AðWÞxt þ BðWÞut þ Cwtþ1

ut ¼ LðgÞxt

where

AðWÞ ¼

a1 . . . an�1 an b2 . . . bm�1 bm

1 0 . . . 0 . . . 0

. .
. . .

. . .
.

0

1 0 0

0 . . . . . . 0 0 . . . . . . 0

0 . . . . . . 0 1 0

. .
. . .

. . .
. . .

.

0 0 1 0

2
666666666666666666664

3
777777777777777777775

; BðWÞ ¼

b1

0

..

.

0

1

0

..

.

0

2
666666666666666666664

3
777777777777777777775

; C ¼

1

0

..

.

0

0

0

..

.

0

2
666666666666666666664

3
777777777777777777775

LðgÞ ¼ d0 � � � dn�2 dn�1 c1 � � � cm�2 cm�1

� �
with ai ¼ 0 if i > np; di ¼ 0 if i > nc; bi ¼ 0 if i > mp; ci ¼ 0 if i > mc; thus leading to the state-
space representation xtþ1 ¼ F ðW; gÞ xt þ Cwtþ1; where F ðW; gÞ ¼ AðWÞ þ BðWÞLðgÞ:

Fix now a contraction constant m 2 ð0; 1Þ: Then, tDðxti ; gtiÞ is defined as

tDðxti ; gtiÞ ¼ minfk51: jjF ðWj;ti ; gti Þ
k jj4m for at least one j 2 f1; . . . ;Mðe; dÞgg ð7Þ
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It is a fact proven in Theorem 1 that such Wj;ti actually exists. The intuitive idea is that the
controller with parameter gti is kept fixed until the k-step transition matrix F ðW; gti Þ

k becomes a
contraction at least for one selected model parameter.

3. STABILITY ANALYSIS

In this section, we analyse the cautious switching control scheme

ytþ1 ¼ ½1�AðW8; z�1Þ�ytþ1 þBðW8; z�1Þ ut þ wtþ1

ut ¼ Dðgt; z
�1Þ yt þ ½1� Cðgt; z

�1Þ� ut
ð8Þ

where

gt :¼
gti if t ¼ ti

gt�1 otherwise

(

The analysis is performed under the following assumption.

Assumption 2

For any admissible model with parameter W 2 Y; there exists a candidate controller (identified
here by parameter gðWÞ) attaining closed-loop l-stability and supW2Y J 0ðW; gðWÞÞ51 (J 0 appears
in definition (3)).

The first part of this assumption simply requires that the controller class be selected in a ‘wise’
way so that at least one controller is able to l-stabilize any potential true process. If the
controller with parameter gðWÞ l-stabilizes the model with parameter W; then J 0ðW; gðWÞÞ51 for
any common performance criterion J 0: Since Y is compact, supW2Y J 0ðW; gðWÞÞ51 is then met
under a continuity condition satisfied by any commonly used control method.

Under Assumption 2, we shall prove that the closed-loop system (8) is L2-stable in the
following usual sense

lim
N!1

1

N

XN�1

t¼0

½u2t þ y2
t �51 a:s: ðalmost surelyÞ ð9Þ

We start with the following preliminary result.

Proposition 2

The model parameters W1; t;W2;t; . . . ;WMðe;dÞ; t are such that

ðWi;t � W8ÞT
Xt
s¼1

js�1j
T
s�1ðWi;t � W8Þ ¼ o

Xt
s¼1

jjjs�1jj
2

 !
a:s: i ¼ 1; . . . ;Mðe; dÞ

Proof. Fix a real constant b > 0 and define

vt ¼ log1þb
Xt
s¼1

jjjs�1jj
2

 !
ð10Þ

and St ¼ fW 2 Rnpþmp : ðW�MtÞ
TV �1

t ðW�MtÞ > vtg:
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We prove the intermediate result thatR
St
fgðW;Mt; VtÞ dWR

Y fgðW;Mt; VtÞ dW
¼ o

1

t2

� �
a:s: ð11Þ

where fgð�;Mt; VtÞ denotes the Gaussian density function with mean Mt and variance Vt; from
which the proposition thesis will then be derived.

To determine the asymptotic behaviour of the left-hand side of (11), we need first to prove
that vt grows unbounded as t tends to infinity at the following rate:

log1þbðtÞ ¼ OðvtÞ a:s: ð12Þ

From the equality yt ¼ jT
t�1W8þ wt; we have that y2

t þ jjjt�1jj
25hw2

t ; t50; where h is a suitable
constant. Since np > 0 so that yt is one entry of jt; this in turn implies that jjjtjj

2 þ jjjt�1jj
25hw2

t ;

t50 and, hence,
Pt

k¼1 jjjk�1jj
25h=2

Pt�1
k¼1 w2

k : Due to the fact that t ¼ Oð
Pt�1

k¼1 w2
kÞ; a.s., this

entails t ¼ Oð
Pt

k¼1 jjjk�1jj
2Þ; a.s., which yields (12) in view of the definition (10).

We now bound separately the numerator and the denominator in (11).
Let fw2 ð�; np þ mpÞ be the w2 density with np þ mp degrees of freedom and define Z : Rnpþmp !

½0; 1� to be the integral of the tail of the w2 distribution fw2 ; i.e.

ZðvÞ ¼
Z
z>v

fw2ðz; np þ mpÞ dz ð13Þ

Based on the definition of St; it is easily seen that the numerator of the left-hand side of Equation
(11) can be expressed in terms of Z as follows:Z

St

fgðW;Mt; VtÞ dW ¼ ZðvtÞ ð14Þ

Thus, recalling that fw2ðz; np þ mpÞ ¼ cz ½ðnpþmpÞ=2�1�e�z=2 ¼ cz ½ðnpþmpÞ=2�1�e�z=4e�z=4; where c is a
normalizing constant, we conclude thatZ

St

fgðW;Mt; VtÞ dW ¼
Z
z>vt

cz ½ðnpþmpÞ=2�1�e�z=4e�z=4 dz

We want to bound the expression cz ½ðnpþmpÞ=2�1�e�z=4 under the sign of integral. The function
cz ½ðnpþmpÞ=2�1�e�z=4 is decreasing for any z large enough. Hence, as vt ! 1 a.s. (see (12)),

cz ½ðnpþmpÞ=2�1�e�z=44cv½ðnpþmpÞ=2�1�
t e�vt=4; 8z > vt; for any t large enough, say t5t0; almost surely.

For t5t0; we then conclude thatZ
St

fgðW;Mt; VtÞ dW4cv½ðnpþmpÞ=2�1�
t e�vt=4

Z
z>vt

e�z=4 dz ¼ cv½ðnpþmpÞ=2�1�
t 4e�vt=2 ¼ oðe�vt=4Þ ð15Þ

Consider now the denominator in Equation (11). It can be bounded as follows:Z
Y
fgðW;Mt; VtÞ dW5

Z
Dt

fgðW;Mt; VtÞ dW; t50 ð16Þ

where Dt :¼ fW 2 Rnpþmp : ðW� W8ÞTV �1
t ðW� W8Þ4Dg; for a suitably chosen D > 0: Indeed, a

D > 0 such that fW 2 Rnpþmp : ðW� W8ÞTV �1
0 ðW� W8Þ4Dg � Y can be found since W8 is an interior

point of Y (Assumption 1). The fact that fW 2 Rnpþmp : ðW� W8ÞTV �1
t ðW� W8Þ4Dg � Y; 8t50;
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then follows from the fact that V �1
t is increasing since it is given by

V �1
t ¼

1

s2
Xt
s¼1

js�1j
T
s�1 þ V �1 ð17Þ

The right-hand side of (16) can be further bounded as follows:Z
Dt

fgðW;Mt; VtÞ dW5 e�ðW8�MtÞ
TV �1

t ðW8�MtÞ
Z
Dt

e�1=2ðW�W8ÞTV �1
t ðW�W8ÞfgðW; W8; VtÞ dW

5 e�ðW8�MtÞTV �1
t ðW8�MtÞe�D=2

Z
Dt

fgðW; W8; VtÞ dW

5 e�ðW8�MtÞ
TV �1

t ðW8�MtÞe�D=2ð1� ZðDÞÞ ð18Þ

where the first inequality follows from ðW�MtÞ
TV �1

t ðW�MtÞ42ðW� W8ÞTV �1
t ðW� W8Þþ

2ðW8�MtÞ
TV �1

t ðW8�MtÞ; the second from the definition of Dt; and the third from definition
(13) of Z: We now appeal to References [24, Theorem 4.1] and [25] to claim that

ðW8�MtÞ
TV �1

t ðW8�MtÞ ¼ O log
Xt
s¼1

jjjs�1jj
2

 ! !
a:s: ð19Þ

This jointly with (10) and (12) implies that there exists a.s. a time instant *tt50 such that
e�ðW8�MtÞ

TV �1
t ðW8�MtÞ5e�1=8vt ; 8t5*tt: Using this bound in (18) and recalling Equation (16), we getZ

Y
fgðW;Mt; VtÞ dW5

Z
Dt

fgðW;Mt; VtÞ dW5e�1=8vte�D=2ð1� ZðDÞÞ 8t5*tt ð20Þ

From (15) and (20): the left-hand side of (11) is a oðe�1=4vt=e�1=8vt Þ ¼ oðe�1=8vt Þ; which, by (12),
leads to the fact that the left-hand side of (11) is a oðe�1=8 log1þbðtÞÞ: By noticing that e�1=8 log1þbðtÞ ¼
t�1=8 logbðtÞ ¼ oðt�2Þ; (11) is proven to hold.

The next step in the proof consists of showing that, based on (11), there exists with probability
1 a %tt50 such that, 8t5%tt; the parameters W1; t; . . . ;WMðe;dÞ; t are outside St; which in turn implies
that

ðWi;t �MtÞ
TV �1

t ðWi;t �MtÞ ¼ o
Xt
s¼1

jjjs�1jj
2

 !
a:s: i ¼ 1; . . . ;Mðe; dÞ ð21Þ

Consider the event where at least one of the parameters extracted at time t belongs to St; i.e.
At :¼ fW1; t 2 St or � � � or WMðe;dÞ; t 2 Stg; and let Ft be the s-algebra generated by all variables at
any time instant up to t except the last extractions of W parameters W1; t; . . . ;WMðe;dÞ; t: Since the
extractions of W1; t; . . . ; WMðe;dÞ; t are independent, conditionally to Ft; we have

PrfAt=Ftg ¼Mðe; dÞPrfW1; t 2 St=Ftg ¼

R
St\Y fgðW;Mt; VtÞ dWR
Y fgðW;Mt; VtÞ dW

4Mðe; dÞ

R
St
fgðW;Mt; VtÞ dWR

Y fgðW;Mt; VtÞ dW
¼ o

1

t2

� �
a:s:
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where we have used (11) in the last equality. So,

X1
t¼0

PrfAt=Ftg51 a:s:

An application of the conditional Borel–Cantelli lemma (see e.g. Exercise 7 of Section 7.4 in
Reference [26]) permits one to conclude that PrfAt i:o:g ¼ 0; where i.o. means infinitely often.
Thus, there exists with probability 1 a %tt50 such that, 8t5%tt; all model parameters W1; t; . . . ;
WMðe;dÞ; t are outside St:

Finally, observe now that by Equation (17), for any i 2 f1; . . . ;Mðe; dÞg;
ðWi;t�W8ÞT

Pt
s¼1 js�1j

T
s�1ðWi;t � W8Þ4s2ðWi;t � W8ÞTV �1

t ðWi;t � W8Þ42s2ðWi;t �MtÞ
TV �1

t ðWi;t �MtÞþ
2s2ðW8�MtÞ

TV �1
t ðW8�MtÞ: In view of Equations (19) and (21), this concludes the proof. &

We can now state and prove the main result of the paper.

Theorem 1

Under Assumptions 1 and 2, the cautious switching control scheme (8) is L2-stable.

Proof

We start by showing that for each switching time ti there exists a parameter value in the set
xti ¼ ðW1; ti ; . . . ;WMðe;dÞ;tiÞ such that the closed-loop system formed by the model with this
parameter and the controller with parameter gti is l-stable. This is proved by contradiction.

Suppose that the claim is false. Then, by (3), #EEPti
½J ðW; gti Þ� ¼ 1: Pick any k 2 f1; . . . ;Mðe; dÞg

and consider Wk;ti : Since Wk;ti 2 Y; by Assumption 2 there exists a %gg 2 G such that J ðWk;ti ; %gg Þ51:
Then, #EEPti

½J ðW; %gg Þ�41=Mðe; dÞðMðe; dÞ � 1þ J ðWk;ti ; %gg ÞÞ51 ¼ #EEPti
½J ðW; gtiÞ�; which is a contra-

diction with the fact that gti is optimal.
Now, let us call Wj;ti the parameter in xti (the existence of which has just been proved) such that

the closed-loop system formed by the model with parameter Wj;ti and the controller with
parameter gti is l-stable. Then, F ðWj;ti ; gtiÞ in Equation (7) is stable and we let k be the integer
such that Equation (7) holds.

Define

Wt ¼
Wj;ti if t ¼ ti

Wt�1 otherwise

(
ð22Þ

We represent the closed-loop system (8) as a perturbation system with respect to the time
varying closed-loop system formed by the model with parameter Wt and the controller with
parameter gt as follows

ytþ1 ¼ ½1�AðWt; z�1Þ� ytþ1 þBðWt; z�1Þ ut þ et þ wtþ1

ut ¼ Dðgt; z
�1Þ yt þ ½1� Cðgt; z

�1Þ� ut
ð23Þ

where et :¼ jT
t ðW8� WtÞ (the perturbation term) is regarded as an exogenous input.

This representation has two nice properties: (a) over each dwell-time interval ½ti; tiþ1Þ; the
closed-loop system (23) is time invariant and has a l-stable dynamic matrix F ðWti ; gtiÞ; and (b)
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W8� Wt appearing in the exogenous input et is bounded at each switching time by
ðWti � W8ÞT

Pti
s¼1 js�1j

T
s�1ðWti � W8Þ ¼ oð

Pti
s¼1 jjjs�1jj

2Þ (Proposition 2).
The rest of the proof is structured as follows. We first show that

(i) the dwell-time interval sequence ftiþ1 � tigi50 is bounded,
(ii) the time-varying system (23) where et is seen as an exogenous input is exponentially

stable, uniformly in time,
(iii) the perturbation term feeding system (23) is bounded as indicated in (25).

Equation (9) then follows from (i)–(iii).

Proof of (i). To each g 2 G; we can associate the set of parameters Yg � Y such that the
closed-loop system formed by the model with parameter W and the controller with parameter g is
l-stable:Yg :¼ fW 2 Y : jlmaxðF ðW; gÞÞj4lg; where lmaxðF ðW; gÞÞ is the maximum eigenvalue of the
closed-loop matrix F ðW; gÞ defined in Section 2.2. Note that since lmaxðF ð�; gÞÞ; g 2 G; is a
continuous function of W and Y is compact, Yg is a compact set.

Consider now a parameter g 2 G and fix n 2 ðl; 1Þ: The matrix 1=nF ðW; gÞ is exponentially stable
8 W 2 Yg: Hence, the solution PgðWÞ to the Lyapunov equation

1

n
F ðW; gÞTP

1

n
F ðW; gÞ � P ¼ �I

is positive definite. Thus,

xT
1

n
F ðW; gÞT PgðWÞ

1

n
F ðW; gÞx 4 xTPgðWÞx; 8x 2 Rnþm�1

and, by applying k times this equation, we get

xT
1

nk
F ðW; gÞk

� �T

PgðWÞ
1

nk
F ðW; gÞkx 4 xTPgðWÞx; 8x 2 Rnþm�1

which leads to

jjF ðW; gÞkxjj4cgnk jjxjj; 8x 2 Rnþm�1; 8W 2 Yg ð24Þ

where cg :¼ maxW2Yg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPgðWÞÞ=lminðPgðWÞÞ

p
: Note that cg51 because PgðWÞ is continuous on

the compact set Yg (see e.g. Reference [27]).
Define Tg :¼ inffk 2 N : cgnk4mg: Then, jjF ðW; gÞTg jj ¼ supjjxjj=0jjF ðW; gÞ

Tg xjj=jjxjj4m; 8 W 2 Yg;
8g 2 G: Therefore, ftiþ1 � tigi50 is uniformly bounded by %TT :¼ maxg2G Tg; as one concludes from
observing that

tiþ1 � ti ¼ minfk51 : jjF ðWti ; gtiÞ
k jj4mg4minfk51 : sup

W2Ygti

jjF ðW; gtiÞ
k jj4mg4 %TT

Proof of (ii). Consider the state-space representation xtþ1 ¼ F ðWt; gtÞxt þ Cðet þ wtþ1Þ of the
time-varying system (23). In each interval ½ti; tiþ1Þ this system is time invariant and by (24)
its dynamic matrix F ðWti ; gtiÞ satisfies jjF ðWti ; gtiÞ

k jj ¼ supjjxjj=0 jjF ðWti ; gtiÞ
k xjj=jjxjj4cnk with

c :¼ maxg2G cg: Also, jjF ðWti ; gti Þ
tiþ1�ti jj4m:
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Consider two time instants 04t05t: If t0; t do not belong to the same dwell-time interval, say
04t05ti5 � � �5tjþ15t; then,

jjxtjj ¼ jjF ðWtjþ1
; gtjþ1

Þt�tjþ1F ðWtj ; gtjÞ
tjþ1�tj � � � F ðWti ; gtiÞ

tiþ1�tiF ðWti�1
; gti�1

Þti�t0xt0 jj

4 jjF ðWtjþ1
; gtjþ1

Þt�tjþ1 jj jjF ðWtj ; gtj Þ
tjþ1�tj jj � � � jjF ðWti ; gti Þ

tiþ1�ti jj jjF ðWti�1
; gti�1

Þti�t0 jj jjxt0 jj

4 cnt�tjþ1mjþ1�icnti�t0 jjxt0 jj4c2 %nnt�t0 jjxt0 jj

where %nn :¼ maxfn;m1= %TTg:
If instead t0; t belong to the same dwell-time interval, we still have jjxtjj4cnt�t0 jjxt0 jj4c2%nnt�t0 jjxt0 jj:

This proves the uniform exponential stability of (23).

Proof of (iii). Since ftiþ1 � tigi50 is bounded and ðWti � W8ÞT
Pti

s¼1 js�1j
T
s�1ðWti � W8Þ ¼ o�

ð
Pti

s¼1 jjjs�1jj
2Þ; a.s. (see (b) at the beginning of the proof), by Proposition 3.3 in Reference [16]

we have that et is bounded as follows

XN�1

t¼0; t =2 QN

e2t ¼ o
XN�1

t¼0

jjjtjj
2 þ N

 !
a:s: ð25Þ

where QN is a set of times which may depend on N but whose cardinality is uniformly bounded:
jQN j4K;8N :

To conclude the proof of the theorem, it is convenient to adopt the following representation
for (23). Fix N > 0: For every t 2 ½0;N Þ system (23) can be represented as

xtþ1 ¼
F ðW8; gtÞxt þ Cwtþ1 t 2 QN

F ðWt; gtÞ xt þ C½et þ wtþ1� t =2 QN

(
ð26Þ

From the uniform exponential stability of xtþ1 ¼ F ðWt; gtÞxt; it is straightforward to show that
the xt generated by (26) can be bounded as follows:

jjxtjj4k1
Xt
i¼1

nt�ijwij þ
Xt�1

i¼0;i =2 QN

nt�ijeij

8<
:

9=
;; t4N

where k1 and n 2 ð0; 1Þ are suitable constants, from which we get

1

N

XN
t¼1

jjxtjj24k2
1

N

XN
t¼1

w2
t þ

1

N

XN�1

t¼0;t =2 QN

e2t

8<
:

9=
;

where k2 is a suitable constant, independent of N : Because of
PN

t¼1 w2
t ¼ Oð1Þ and Equation

(25), we then have 1=N
PN

t¼1 jjxtjj2 ¼ Oð1Þ þ oð1=N
PN�1

t¼0 jjjtjj
2Þ; a.s.. Since 1=N

PN�1
t¼0 jjjtjj

2

41=N
PN

t¼0 jjxtjj2; this implies that 1=N
PN�1

t¼0 jjjtjj
2 remains bounded, thus concluding

the proof. &

4. CONCLUSIONS

In this paper, we combined cautious randomized control and switching control to overcome
existing difficulties of both methods, while preserving their positive features. For the class of
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systems described by a linear input–output model affected by Gaussian noise, we introduced a
randomized cautious switching control scheme that is robust in finite time and asymptotically
stable.

Based on this stability result, it is also possible to obtain self-tuning properties for the
proposed scheme. For example, if a dither noise is added to the control input as suggested in
Reference [13], then the results in Reference [13] can be applied to the present context so as to
prove that the switching controller is optimal in the long run.

Still, important issues remain open. These include taking into consideration the presence of
unmodelled dynamics when updating Pt; and studying an easy-to-implement procedure for the
construction of a hierarchical controller cover structure. These problems represent a stimulus
for future research.
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