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Abstract

We introduce a new methodology for the design of cautious adaptive controllers based on the following two-step
procedure: (i) a probability measure describing the likelihood of di/erent models is updated on-line based on observations,
and (ii) a controller with certain robust control speci0cations is tuned to the updated probability by means of randomized
algorithms. The robust control speci0cations are assigned as average speci0cations with respect to the estimated probability
measure, and randomized algorithms are used to make the controller tuning computationally tractable.

This paper provides a general overview of the proposed new methodology. Still, many issues remain open and represent
interesting topics for future research.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. The optimal control problem

Consider a standard optimal control problem setting, where a plant described by a transfer function G◦(z−1)
has to be regulated by a controller to be chosen in a feasible controller set {K(�; z−1); �∈�}. For a generic
system G(z−1), the control performance achieved by applying controller K(�; z−1) to G(z−1) is measured by
a (positive) cost criterion J (G(z−1); K(�; z−1)) (this can be e.g. an H2 or an H∞ cost). The control objective
is to determine the control parameter � that minimizes J (G◦(z−1); K(�; z−1)).

1.2. The cautious adaptive control problem

Throughout the paper we assume that G◦(z−1) is not known. Then, according to the indirect approach to
adaptive control, the controller is selected based on some model of G◦(z−1). Typically, a parameterized family
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of models {G(#; z−1); #∈
} is considered, and the parameter # is estimated on-line based on
observations.
In this paper, we do not only update the parameter estimate, but also compute on-line a probability distri-

bution Pt describing the likelihood of the di/erent #’s at time t. The probability Pt is used in the de0nition
of the robust control cost

ct(�) := EPt [J (·; �)] (1)

(here, J (·; �) := J (G(·; z−1); K(�; z−1)) for ease of notation). Function ct(�) is the average performance of
controller K(�; z−1) for a set of plants distributed according to Pt . Minimizing ct(�) corresponds to optimizing
the average control system behavior where di/erent models are given di/erent weights according to their
likelihood at time t. When distribution Pt is spread over the set 
, the corresponding optimal controller is
expected to exhibit robust characteristics and, hence, it will be conservative. As time goes by, more information
is accumulated. Then, distribution Pt becomes more sharply peaked and the minimization of function ct(�)
leads to controllers better tailored to the true plant. This will ultimately result in an improvement of the
control performance.
The idea of minimizing average costs such as (1) is not new and, in fact, it has been previously introduced

under the name of cautious control, see e.g. [2,12]. On the other hand, average costs have been used only in
very speci0c and simple cases. The reason for this has to be found in mere computational issues. Speci0cally,
a main obstacle in the use of (1) is that integrating the cost criterion J (·; �) over 
 with respect to measure
Pt is a very diKcult computational task.

1.3. Randomized algorithms

Our main thrust in this paper is to propose the use of randomized algorithms to overcome the computational
diKculties involved in the implementation of the average cost approach. The use of randomized algorithms for
the controller selection in a non-adaptive context has been proposed in [31]. Roughly, the idea is to substitute
the expectation in the average cost with a 0nite sum, that is ct(�) in (1) is substituted by a sampling version
(see Section 3 for details). On the one hand, this makes the problem computationally tractable. On the other
hand, one can resort to very powerful results from the statistical learning literature (and, more precisely, from
the theory of uniform convergence of empirical means, [11,26–30]) to quantify the level of approximation
introduced by substituting the expectation with a 0nite sum.
In the context of adaptive control, we design algorithms with two main features: (i) the controller at time t

is selected via randomized methods and, therefore, exhibits robustness characteristics, and (ii) the probability
distribution Pt is updated through time starting from an initial probability distribution P, thus enabling the
controller to tune to the real plant.
Point (ii) is a key distinguishing feature with respect to [31] and has important implications: (a) it allows the

controller to tune to the plant characteristics; and (b) it makes the choice of the initial probability distribution
P much less critical than in the robust control setting of [31], where P is 0xed and a shrewd selection of it
is fundamental.
The paper is organized as follows. In Section 2, some notions of robust and tuning controllers are introduced.

A general algorithm for the controller selection via randomized methods is discussed in Section 3. Some
implementation aspects are left open in the presentation of the algorithm, namely: (a) the updating of Pt ;
(b) the computation of the so-called Pollard-dimension. These aspects are the subjects of Sections 4 and 5,
respectively. Section 6 presents the tuning properties of the proposed algorithm. In Section 7, we consider
LQG control as an application example. Finally, the issue of minimizing the sampling version of ct(·) is
discussed in Section 8.
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2. Robustness and tuning notions

Let Pt be the probability distribution on 
 describing the parameter likelihood at time t. According to the
cautious control philosophy, at time t the control objective is to minimize the cost function EPt [J (·; �)]. Given
that an exact minimization of this cost function is computationally excessive, we introduce general notions of
an approximate minimizer of EPt [J (·; �)].

De�nition 1. Given �¿ 0, �t is an approximate minimizer of EPt [J (·; �)] to accuracy � if EPt [J (·; �t)]6
inf �∈� EPt [J (·; �)] + �.

Suppose now that �t is selected according to a randomized procedure so that it is stochastic. Then, we have
the following de0nition:

De�nition 2. Given �¿ 0 and �¿ 0, a random �t is an approximate minimizer of EPt [J (·; �)] to accuracy �
with con0dence 1− � if EPt [J (·; �t)]6 inf �∈� EPt [J (·; �)] + �, with probability not less than 1− �.

Here the speci0cation “with probability not less than 1− �” makes reference to the probability involved in
the stochastic procedure for selecting �t .
De0nitions 1 and 2 are of robustness type. Basically, they require that the controller associated with �t

performs well in average over the uncertainty model set at a given time t.
In adaptive control applications, Pt is updated on-line. Therefore, in the instances in which the model class

is rich enough to contain the true transfer function G◦(z−1), one can expect that, under suitable excitation
conditions, Pt converges (in some sense) to the true parameter #◦ ∈
 and the adaptive controller self-tunes
to the optimal controller. This idea is formalized in the following de0nition.

De�nition 3. K(�t ; z−1) self-tunes if limt→∞ J (#◦; �t) = inf �∈� J (#◦; �), with probability 1.

3. A randomized algorithm for cautious adaptive control

In this section, we introduce a general algorithm for the implementation of the cautious adaptive control
approach described in Section 1.
To start with, we focus attention on the problem of computing an estimate of EPt [J (·; �)]. Later below, we

shall integrate such an estimate in the general algorithm.

3.1. A sampling estimate of EPt [J (·; �)]

Our discussion here is strictly related to the approach of [31]. Suppose that at time t distribution Pt has been
computed (the actual computation of Pt is discussed in Section 4). By de0nition (1), ct(�) is the integral of
function J (·; �) over the parameter space 
 with respect to probability measure Pt . Since an exact evaluation
of this integral is diKcult, we introduce a sampling version of it based on random extractions.
Denote by � := (#1; #2; : : : ; #M ) a sequence of M system parameters independently extracted from 


according to Pt . Then, a sampling version of EPt [J (·; �)] is given by

ÊPt ;M [J (·; �)] :=
1
M

M∑
i=1

J (#i; �): (2)

In principle, the original problem of minimizing the expected value EPt [J (·; �)] can be replaced by the
problem of minimizing the easy-to-compute approximant ÊPt ;M [J (·; �)]. However, for guaranteeing that this
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minimization leads to an approximate minimizer of EPt [J (·; �)], ÊPt ;M [J (·; �)] must be an uniformly good
approximation to EPt [J (·; �)] over the set �, namely

sup
�∈�

|ÊPt ;M [J (·; �)]− EPt [J (·; �)]|6
�
2

(3)

for some �¿ 0 (� is the so-called accuracy parameter). Indeed, letting

�t := argmin
�∈�

ÊPt ;M [J (·; �)]; �◦t := argmin
�∈�

EPt [J (·; �)] (4)

we have that

EPt [J (·; �t)]6 ÊPt ;M [J (·; �t)] +
�
2
6 ÊPt ;M [J (·; �◦t )] +

�
2

6 EPt [J (·; �◦t )] +
�
2
+
�
2
= inf

�∈�
EPt [J (·; �)] + �;

which proves that �t is an approximate minimizer of EPt [J (·; �)] according to De0nition 1. Observe that Eq.
(4) implicitly assumes that ÊPt ;M [J (·; �)] and EPt [J (·; �)] have a minimum over �. Should this not be the
case, nearly minimal points can be used instead.
Note that the sampling estimate (2) is based on a random selection of parameters #i ∈
 and, as such, it

is a random variable over the space 
M := 
 ×
 × · · · ×
, M times. Even for one 0xed parameter Q�, it
may happen that the randomly extracted multisample �∈
M provides a bad approximation of EPt [J (·; Q�)],
i.e., |ÊPt ;M [J (·; Q�)]−EPt [J (·; Q�)]| is large. This may happen a fortiori if we evaluate the supremum over � of
this quantity. Thus, in general, the best that one can hope for is that Eq. (3) holds true with high probability
in the space 
M and not for all multisamples � = (#1; #2; : : : ; #M ). This is precisely formalized as follows.
Set

q(M; �) := PM
t

{
�: sup

�∈�
|ÊPt ;M [J (·; �)]− EPt [J (·; �)]|¿

�
2

}
: (5)

We say that J (·; ·) has the uniform convergence of empirical means (UCEM) property if q(M; �) → 0, as
M → ∞, ∀�¿ 0. This is a fundamental property since it implies that we can select M so that Eq. (3) holds
with probability arbitrarily close to 1.
In the last two decades, the UCEM property for general classes of functions has been largely studied in

the statistical learning literature and general conditions for this property to hold are now available (see e.g.
[15,16,26,27,30]). For our purposes the main result is that the UCEM property of J (·; ·) holds if the function
J (·; ·) takes values in [0; 1] (which can be guaranteed by rescaling any J ′ to J = �J ′=(1 + �J ′) with �¿ 0)
and the class J (·; �) of functions from 
 to [0; 1] parameterized by �∈� has 0nite Pollard(P)-dimension (cf.
[30, p. 74]). Moreover, letting d be the P-dimension, q(M; �) de0ned in (5) is upper bounded as follows [30,
Theorem 7.1]:

q(M; �)6 8
(
32e
�

ln
32e
�

)d
e−M�2=128: (6)

By choosing M such that the right-hand side in (6) is smaller than or equal to �, we are sure that ÊPt ;M [J (·; �)]
is an uniformly good approximant of EPt [J (·; �)] to accuracy �=2 with con0dence 1− �. Thus, in view of the
discussion after Eq. (3), minimizing ÊPt ;M [J (·; �)] leads to an approximate minimizer of EPt [J (·; �)] according
to De0nition 2 in Section 2.

3.2. The general algorithm for cautious control

Based on the previous discussion, we are now in a position to state the following adaptive control algorithm.
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Algorithm 1. Let d be the P-dimension of {J (·; �); �∈�}. Given �¿ 0 and �¿ 0, at any instant t do the
following:

1. compute the probability distribution Pt ;
2. extract at random M (�; �)¿ 128=�2[ln 8=� + d ln 32e=� + d ln ln 32e=�] independent model parameters

#1; #2; : : : ; #M (�;�) according to probability Pt (the bound on M (�; �) follows straightforwardly from (6)
with q(M; �) = �);

3. compute ÊPt ;M [J (·; �)] = (1=M (�; �))
∑M (�;�)

i=1 J (#i; �);
4. choose �t = argmin�∈� ÊPt ;M [J (·; �)];
5. apply the controller K(�t ; z−1).

As a consequence of how �t is chosen in point 2, Algorithm 1 has robustness properties. Moreover, as time
goes by, uncertainty on the true system description is reduced by the observations and the adaptive controller
better tunes to the true plant characteristics. Under suitable conditions, this eventually leads to a self-tuning
controller (see Section 6).
Two issues need to be addressed for the actual implementation of Algorithm 1, namely:

(a) the updating of Pt ;
(b) the computation of the Pollard-dimension of {J (·; �); �∈�}.

Such issues are dealt with in the next two sections.

4. Updating Pt

As it is expected, no general recipe for computing the probability distribution Pt can be given. In this
section, we discuss two di/erent situations.

Situation 1. When the system has a very speci0c structure, Pt can be computed at a reasonable computational
cost as the a posteriori probability of the system parameter given observations.
A standard case is when the system is described by equation

A(#◦; z−1)yt+1 =B(#◦; z−1)ut + nt+1; (7)

where A(#◦; z−1)=1−∑n
i=1 a

◦
i z

−i and B(#◦; z−1)=
∑m

i=1 b
◦
i z

−(i−1), #◦=[a◦1 ; : : : ; a
◦
n ; b

◦
1 ; : : : ; b

◦
m]

T ∈
=Rn+m,
and {nt} is a white process with Gaussian G(0; �2) distribution. As is well known, in this case, if #◦ is assumed
to be Gaussian, computing Pt is a 0nite dimensional estimation problem that is solved by the Kalman 0lter
[9,17].

Situation 2. Unfortunately, in many cases assuming Gaussian distribution can be too restrictive. Then, the
problem of estimating the distribution Pt becomes in0nite dimensional and one has to compromise precision
in estimation towards computational e/ort.
Suppose again that the model class is rich enough so as to include an accurate description of the true

system, but drop the Gaussianity assumption. Then, the asymptotic theory of prediction error identi0ca-
tion methods can be used for computing Pt . In fact, under mild regularity conditions, Pt tends asymp-
totically to be Gaussian with the nominal model as mean and a variance which can be estimated from data
(see [18,19]).
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5. Computing the Pollard-dimension

It is a known fact that the computation of a P-dimension on the basis of its de0nition is a hard task. On
the other hand, an upper bound for the P-dimension can be determined by appealing to some recent and
very powerful results developed in [15,16]. The results of [15,16] have been applied to cost criteria arising
in connection with stabilization problems and H∞ control problems in [31].

In Section 7, as an application example, we present a randomized algorithm for cautious LQG adaptive
control. There, among other things, we shall compute the P-dimension for this speci0c control problem.

6. Self-tuning properties

In this section, we study the tuning properties of Algorithm 1 in the ideal case when the model class is
suKciently rich to include the system description.
At each time t, Algorithm 1 selects controller K(�t ; z−1), where �t minimizes the average of J (#; �) over the

set of model parameters #1; : : : ; #M (�;�) extracted from 
 according to Pt . Suppose that Pt becomes sharply
peaked around #◦ at a suKciently fast rate so that #1; : : : ; #M (�;�) get arbitrarily close to the true parameter
#◦ as t → ∞. Then, under appropriate regularity conditions on the control cost J (·; ·), K(�t ; z−1) is expected
to self-tune according to De0nition 3 in Section 2.
Here, we determine suKcient conditions for the self-tuning result to be valid in Situation 1 of Section 4, that

is in the case when the true system is described by (7) where {nt} is a white Gaussian noise with zero mean
and variance �2. From Section 4 we know that the a posteriori distribution Pt is Gaussian, say G(#̂t ; Vt).
Also, in [5] it is shown that, for all #◦ apart from a set N with zero Lebesgue measure, #̂t → #◦ with
probability 1, provided that Vt → 0 with probability 1. Yet, in order to prove tuning properties, some extra
care to convergence rate issues must be paid in the present context that do not enter the game in adaptive
control schemes based on the certainty equivalence principle.
We start by proving a proposition which states that the random extractions #i stay close to #◦ for t large

when Vt → 0 at a certain rate. Throughout we assume that #◦ �∈ N.

Proposition 1. Suppose that ‖Vt‖ = O(1=t!) with probability 1 for some !¿ 0. Fix "¿ 0. Then, with
probability 1, there exists Qt such that, for any t¿ Qt, the M (�; �) model parameters #1; : : : ; #M (�;�) extracted
at step 2 of Algorithm 1 according to distribution Pt ∼ G(#̂t ; Vt) belong to the (n + m)-ball B(#◦; ") of
center #◦ and radius ".

Proof. We start by observing that assumption ‖Vt‖= O(1=t!) with probability 1 entails that function t!‖Vt‖
is pathwise bounded with probability 1. Thus, for any 0xed $¿ 0, one can determine a positive constant k
such that

Pr
{
sup
t
t!‖Vt‖¿k

}
6 $: (8)

On the other hand, condition #̂t → #◦ with probability 1 implies the existence of an instant point t1 such that

Pr
{
sup
t¿t1

‖#̂t − #◦‖¿"=2
}
6 $: (9)

We shall now compute the probability of the event in which at least one of the parameters #1; #2; : : : ; #M (�;�)

extracted at point 2 of Algorithm 1 at the generic instant t¿ t1 is outside the ball B(#◦; "), conditioned to
event A := {supt t!‖Vt‖6 k}∩ {supt¿t1 ‖#̂t −#◦‖6 "=2}. Then, the thesis will be drawn by using this result
in conjunction with estimates (8) and (9).
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Let Bt := {#1 �∈ B(#◦; ") or : : : or #M (�;�) �∈ B(#◦; ") at time t}.
Fix a matrix V ∈R(n+m)×(n+m) and a vector #∈Rn+m such that ‖#− #◦‖6 "=2. We have

Pr{Bt |#̂t = #; Vt = V}
6M (�; �) Pr{#1 �∈ B(#◦; ") at time t|#̂t = #; Vt = V}
=M (�; �) Pr{‖#1 − #◦‖¿" at time t|#̂t = #; Vt = V}
6M (�; �) Pr{‖#1 − #̂t‖¿"=2 at time t|#̂t = #; Vt = V}: (10)

Probability Pr{‖#1 − #̂t‖¿"=2 at time t|#̂t = #; Vt = V} can be easily estimated by observing that parameter
#1 is extracted at random from a Gaussian probability distribution with mean #̂t and variance Vt . Letting �2i ,
i = 1; 2; : : : ; n+ m be the eigenvalues of matrix V , we have:

Pr{‖#1 − #̂t‖¿"=2 at time t|#̂t = #; Vt = V}

=
∫
‖z‖¿"=2

n+m∏
i=1

1
(2')1=2�i

exp
(
− z2i
2�2i

)
dz

6
∫
z: ∃i∈{i=1;:::; n+m} s:t: |zi|¿"={2(n+m)1=2}

n+m∏
i=1

1
(2')1=2�i

exp
(
− z2i
2�2i

)
dz

6
n+m∑
i=1

∫
|wi|¿"={[8(n+m)]1=2�i}

1
(2')1=2

exp(−w2
i )2

1=2 dwi (letting wi = zi=(21=2�i))

6
n+m∑
i=1

2
∫
w2
i ¿"2={8(n+m)�2i }

2(n+ m)1=2�i
(2')1=2"

exp(−w2
i ) dw

2
i

=
n+m∑
i=1

4(n+ m)1=2�i
(2')1=2"

exp
(
− "2

8(n+ m)�2i

)
: (11)

Plugging (11) into (10), we 0nally obtain

Pr{Bt |#̂t = #; Vt = V}6M (�; �)
n+m∑
i=1

4(n+ m)1=2�i
(2')1=2"

exp
(
− "2

8(n+ m)�2i

)
: (12)

We are now in a position to bound the probability of event Bt given A. Since in set A we have ‖Vt‖6
k=t!—and, thereby, all eigenvalues of matrix Vt are bounded by k=t!—from (12) we can conclude that∑

t¿t1 Pr{Bt |A}¡∞. The thesis can now be easily proven by using this result along with (8) and (9).
Since

∑∞
t=0 Pr(Bt∩A)6

∑∞
t=0 Pr(Bt |A)6 t1+

∑
t¿t1 Pr(Bt |A)¡∞, by Borel-Cantelly lemma, [10], we have

(i.o.=in0nitely often) Pr(Bt ∩ A i:o:) = 0. On the other hand, by (8) and (9), Pr(A)¿ 1− 2$ and so, owing
to the arbitrariness of $, Pr(Bt i:o:) = 0. This proves that with probability 1 one can determine a Qt such that
all model parameters #1; : : : ; #M (�;�) selected at point 2 of Algorithm 1 are in the ball B(#◦; "), ∀t¿ Qt.

In the following theorem we show that if J (·; �) is continuous in #◦, uniformly in �, then the controller se-
lected by Algorithm 1 self-tunes when Pt shrinks around #◦ at the rate described in Proposition 1. The uniform
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continuity property is somehow restrictive and is assumed here for convenience. Other less restrictive—though
more complicated to formulate—regularity conditions could also be given.

Theorem 1. Suppose that J (·; �) is continuous in #◦, uniformly in �∈�. If ‖Vt‖=O(1=t!) with probability
1 for some !¿ 0, then the controller computed in Algorithm 1 self-tunes according to De:nition 3 in
Section 2.

Proof. Set �◦ := argmin�∈� J (#
◦; �) (we assume for simplicity it exists).

Due to the uniform continuity assumption of J (·; �) in #◦, for any 0xed +¿ 0, there exists "¿ 0 such that

|J (#; �)− J (#◦; �)|6 +; ∀#∈B(#◦; "); ∀�∈�: (13)

By Proposition 1, we know that with probability 1 we can 0nd a time Qt such that the model parameters
#1; : : : ; #M (�;�) extracted at point 2 of Algorithm 1 satisfy #j ∈B(#◦; "), j=1; : : : ; M (�; �), for all t¿ Qt. Then,
the following holds for t¿ Qt. First, Eq. (13) computed in �= �◦ implies that

J (#j; �◦)6 J (#◦; �◦) + +; j = 1; : : : ; M (�; �): (14)

From the de0nition of �t and Eq. (14), it then follows that there exists at least a j such that J (#j; �t)6
J (#◦; �◦) + +. Since (13) with � = �t entails that J (#◦; �t)6 J (#j; �t) + +, we can conclude that J (#◦; �t)6
J (#◦; �◦) + 2+. Thus lim supt→∞ J (#◦; �t)6 J (#◦; �◦) + 2+. Due to the arbitrariness of +, it follows that
limt→∞ J (#◦; �t) = J (#◦; �◦).

It is important to note that, in adaptive control applications, there is in general no guarantee that the input
signal is suKciently exciting in such a way that it probes the system and reduces uncertainty. In particular, in
our context, the cautious control law of Algorithm 1 can fail to ensure the desired convergence rate of ‖Vt‖
to zero. In [8, Theorem 6.2] this issue is addressed in the context of certainty equivalence control, and it is
shown that, under a certain growth assumption on the input sequence {ut}, the required rate can be obtained
by adding to the control variable ut an asymptotically vanishing dither noise. This approach can be used in
our context as well. Details are omitted and the interested reader is referred to [7,23] for more discussion.

7. Application example: LQG control

Consider the LQG control problem where a system of the form (7) has to be controlled so as to minimize
the cost function

J ′ = lim sup
N→∞

1
N

N−1∑
t=0

[y2
t + ru2t ]; r ¿ 0: (15)

In the sequel, we shall refer to some basic facts on LQG control that are reviewed in the appendix.
Suppose that the a priori distribution P is Gaussian, i.e., P ∼ G( Q#; QV ). Then, from the discussion in Section

4 we know that the Gaussian distribution Pt can be computed by a Kalman 0lter initialized with Q# and QV .
The feasible controller set is described by equation C(�; z−1)ut=D(�; z−1)yt , with C(�; z−1)=1−∑m−1

i=1 ciz−i

and D(�; z−1) =
∑n−1

i=0 diz
−i, where the parameter � is de0ned as � := [d0; : : : ; dn−1; c1; : : : ; cm−1] and takes

values in �=Rq, with q := n+m− 1. Note that such a set includes the optimal LQG controller for the true
system.
The LQG performance J ′(#; �) achieved for model (7) with parameter # controlled by the controller with

parameter � is obtained by solving a Lyapunov equation in the case when the closed-loop system is stable.
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In order to apply the cautious control approach, we rescale J ′(#; �) as follows

J (#; �) =
�J ′(#; �)

1 + �J ′(#; �)
;

where � is a real positive number. When the controller destabilizes the model, we set J equal to its maximal
value (J (#; �) = 1). Thus,

J (#; �) =




�J ′(#; �)
1 + �J ′(#; �)

if controller � stabilizes model #;

1 otherwise:

(16)

As for the Pollard-dimension of the family of functions J (·; �) parameterized by �∈Rq, the following result
is proven in the appendix.

Theorem 2.

P-dimension({J (·; �); �∈Rq})6
{

2 log2(16e) if q= 1;

2q log2(16eq(2q+ 1)) otherwise:

We next compare the performance achieved when applying the standard certainty equivalence and the
cautious adaptive controllers in a simple numerical example. This is in order to point out the e/ectiveness of
the proposed cautious approach and to get insight into such a control strategy.

7.1. A simulation example

Consider the model class

yt+1 = a1yt + b1ut + b2ut−1 + nt+1; # := [a1 b1 b2]T ∈R3; (17)

where {nt} is G(0; 1). The true system has parameter #◦=[0:8 1−0:9]T. For the estimation of Pt , we assume
the a priori distribution P ∼ G( Q#; QV ) with Q#= [− 0:4 1:4− 0:1]T and QV = I3.
In (16), we take � = 0:25 and the control cost coeKcient r is set to 1. Finally, the controller set is

{ut = d0yt + c1ut−1; �= [d0 c1]∈� = R2}.
In Fig. 1, the control system behavior is expressed in terms of the “sample LQG performance index”

(1=t)
∑t−1

i=0 [y2
i + u2i ]. Graph (a) shows that in the certainty equivalence case the input and output variables

assume high values in the transient phase. Such an undesirable phenomenon is due to the fact that the certainty
equivalent controller puts an in0nite trust in the most probable model. In the transient phase, such a model
may be a poor description of the system, which may ultimately result in an excessive control action applied
to the system or even a transiently unstable closed-loop system.
As shown by graph (b), the cautious adaptive controller is able to overcome the above diKculty and it

signi0cantly enhances the transient behavior with respect to the certainty equivalence controller. However, the
control system performance obtained by applying the cautious adaptive controller are strictly suboptimal even
in the long run. The reason why this happens is that the cautious control has no probing features and, in
fact, it tends not to excite the unknown dynamics of the true system. Thus, the controller parameter are not
consistently estimated.
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Fig. 1. Sample LQG performance index: (a) certainty equivalence control; (b) cautious adaptive control (� = � = 0:1).
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Fig. 2. Sample LQG performance index: (a) cautious adaptive control with dither; (b) cautious adaptive control; (c) cautious robust
control. For all control laws, � = � = 0:1.

In order to overcome this diKculty a dither noise can be added to the cautious control input. If the dither
noise is suitably selected, then one can enforce optimality. The adopted control law with dither takes the form

ut = d0yt + c1ut−1 + dithert ;

where {dithert} is a white process, independent of {nt}, such that its distribution at time t is uniform in
[−√

0:3=(t + 1)1=15;
√
0:3=(t + 1)1=15].

The control system behavior obtained by applying the cautious LQG adaptive control algorithm with dither
noise is displayed in Fig. 2. Fig. 2 also shows the cautious LQG adaptive control without dither (same as
(b) in Fig. 1) for easy comparison. The controller with dither outperforms that without dither and is in fact
asymptotically optimal (the sample cost tends to 2.13—the optimal cost—when t → ∞). As an additional
element of comparison, in Fig. 2 the performance achieved by the cautious robust controller—i.e., the controller
designed on the basis of the initial distribution P and maintained 0xed through time—is also represented.
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8. Discussion and open problems: minimizing ÊPt ;M [J (·; �)]

In this section we discuss the issues involved in the minimization of ÊPt ;M [J (·; �)] over the set �.
Typically, � is a continuum set of parameterizations and ÊPt ;M [J (·; �)] is a non-convex function of the

controller parameter �. Consequently, its minimization is a non-trivial task whenever the space in which � is
embedded is high dimensional.
In this section, we discuss two methods for addressing this issue. The key idea in both cases is to focus

attention on a 0nite subset of the controller parameter set and perform an exhaustive search on it.

8.1. Randomized minimization

Introduce a probability distribution Qt on the controller parameter set �. Then, in order to minimize
ÊPt ;M [J (·; �)], we can resort to the following stochastic algorithm, previously introduced in [20,25]:

1. extract at random N independent controller parameters �1; �2; : : : ; �N according to Qt ;
2. choose �t = argmin�∈{�j}Nj=1

ÊPt [J (·; �)].

Clearly, since we are testing just N values of �, we cannot expect that �t is the global minimizer of
ÊPt ;M [J (·; �)] over �. In addition, the quality of the result is random due to the stochastic selection of
parameters �j’s. Nevertheless, the following quantitative statement can be proven showing that �t can be con-
sidered optimal in some probabilistic sense (see [30, Lemma 11.1] for a proof of this result): 0x an arbitrary
real number +¿ 0. Then,

Qt{�: ÊPt ;M [J (·; �)]¡ÊPt ;M [J (·; �t)]}6 + (18)

with probability at least equal to 1− (1− +)N .
Here, the speci0cation “with probability at least equal to 1− (1− +)N ” makes reference to the probability

involved in the random extractions of the �j’s. Note that Eq. (18) does not prevent the existence of �’s
such that ÊPt ;M [J (·; �)]¡ÊPt ;M [J (·; �t)]. It only requires that this happens in an exceptional set in � whose
probability Qt is upper bounded by +. From this, we see that parameter + quanti0es the diKculty of improv-
ing ÊPt ;M [J (·; �)] over ÊPt ;M [J (·; �t)] by resorting to a stochastic selection (based on probability Qt) of the
controller parameter �. On the other hand, a decision maker having at his disposal a perfect deterministic
minimization procedure might be able to gain a large improvement over ÊPt ;M [J (·; �t)]. This is more likely to
happen if the controller parameter space is high dimensional, since in this case the Qt measure of the nearly
optimal controller parameter set is generally small (curse of dimensionality).
In the following points (i) and (ii), we indicate two possible ways to overcome the diKculty posed by the

presence of the exceptional set of measure +.
(i) A wise selection of the probability Qt : A possibility is to select the probability distribution Qt to be

the probability induced on � by Pt through the function # → �◦(#) that maps each # in the parameterization
� that is optimal for the model with parameter #. In mathematical terms, this corresponds to set Qt(A) =
Pt{#: �◦(#)∈A}, ∀A ⊆ � (measurability issues are neglected here). This choice of Qt leads to a selection of
parameters �j’s better suited to the control situation at hand at least in the long run, when Pt becomes more
sharply peaked around the true plant parameter ([7,23]).
(ii) A structured controller: Consider a controller composed by two parts: a nominal controller plus a

detuning 0lter (e.g. a low pass 0lter) with very few (say 1 or 2) parameters. In this setting one can conceive
to determine the controller according to a two-step procedure. The nominal controller is 0rst tuned according
to the certainty equivalence principle; then, the detuning 0lter is selected in a cautious fashion, according to
the average cost approach so as to decrease the crossover frequency of the control system. This way, due to



32 M.C. Campi, M. Prandini / Systems & Control Letters 49 (2003) 21–36

the low dimensionality of �, the problem of tuning the cautious controller parameter is easy to solve. One can
e.g. use the stochastic minimization method where Qt can be simply chosen to be the uniform distribution,
or sweep the entire � set in some deterministic fashion. This approach has been adopted in [4].

8.2. Prede:ned :nite controller covering

The idea here is to reduce the feasible controller set from the very beginning to an appropriately designed
0nite set so as to overcome the diKculties involved in the minimization of ÊPt ;M [J (·; �)], while not degradating
too much the best achievable level of performance. Such an approach is inspired by the literature on switching
adaptive control (see e.g. [14,21,24]), where the need for a 0nite set of candidate controllers has been motivated
from both a practical and a theoretical point of view.
In a switching control scheme, at event-driven time instants, a supervisory control system decides which

one of the candidate controllers in a feasible 0nite set should be placed in feedback with the system so as to
achieve a certain performance level. In particular, in the estimator-based approach to switching control, the
supervisor relies on a model set for the controller selection. Speci0cally, it switches in the loop the candidate
controller that is optimal for the model better resembling the system behavior according to some identi0cation
criterion. The feasible set then has to be designed so that for each model there is a candidate controller
which ensures a certain known performance level when placed in closed-loop with it. Hence, the name “0nite
controller cover” for the feasible controller set.
In our cautious control context, we suggest to consider many controller covers at the same time. The 0rst

controller cover corresponds to controllers with a high robustness level, while penalizing performance. Subse-
quent covers correspond to controllers with progressively increasing performance at the price of a decreasing
level of robustness. All the controllers in these covers are put together in a single large set and the controller
selection within this set is performed by means of an exhaustive search based on our randomized method.
When Pt is spread over the model parameter set 
, the chosen controller will belong to a cover with high
robustness and low performance, while, as Pt becomes more concentrated around the true system parameter,
controllers belonging to covers with lower robustness and higher performance will be automatically preferred.
The main diKculty in adopting this approach is determining the 0nite controller cover. This issue has in

fact been addressed only recently in the literature. In [1], the existence of a 0nite controller cover has been
proven for H∞ control and a compact 
, and a procedure for determining it has been presented. Similar
results have been shown also in [22]. Yet, in many cases a computationally eKcient method to determine a
0nite cover may be diKcult to work out.
Preliminary results along this multi-cover approach are reported in [6].

9. Conclusions

In this paper, we have introduced a general methodology for adaptive control that combines randomized
methods for the minimization of average cost criteria with the updating of the probability distribution repre-
senting the uncertainty on the system description. After introducing the main ideas in a general control setup,
we have concentrated on LQG control. A simulation example has illustrated the eKcacy of the method.
Still, as discussed in the paper, important open issues need to be further investigated. This includes:

• the study of how Pt can be updated and, in particular, how the asymptotic theory of system identi0cation
can be used in this context;

• unmodeled dynamics have not been considered in the updating of Pt . For real applicability of the method,
the presence of unmodeled dynamics has somehow to be taken care of;
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• the combined use of cautious randomized control and switching control represents a way to overcome
existing diKculties of both methods, while preserving their positive features. This study is still at the
outset, though.

These points represent a stimulus for future research.

Appendix A. Optimal LQG control

We next review basic facts on the solution to the optimal LQG control introduced in Section 7. The
interested reader is referred to, e.g., [3,8] for a more comprehensive treatment.
Suppose that n¿ 0 (for n=0, the optimal control law is trivially ut =0, t¿ 0). Set xt := [yt; : : : ; yt−(n−1);

ut−1; : : : ; ut−(m−1)]T. Then, model (7) with parameter # can be given the state space representation:

xt+1 = A(#)xt + B(#)ut + Cnt+1; yt = Hxt; (A.1)

where

A(#) =




a1 : : : an−1 an b2 : : : bm−1 bm

1 0 : : :

. . .
. . .

1 0

0 : : : : : : : : : 0 : : : : : : 0

1 0

. . .
. . .

1 0




; B(#) =




b1

0

...

0

1

0

...

0




; C = HT =




1

0

...

0

0

...

...

0




:

If system (A.1) is stabilizable and detectable, then there exists a unique positive semide0nite solution P(#)
to the discrete time algebraic Riccati equation

P = A(#)T[P − PB(#)(B(#)TPB(#) + r)−1B(#)TP]A(#) + HTH

and the optimal LQG control law is given by ut = �◦(#)xt , where �◦(#) = −(B(#)TP(#)B(#) + r)−1

B(#)TP(#)A(#). Letting �◦(#) = [d◦0 (#); : : : ; d
◦
n−1(#), c

◦
1 (#); : : : ; c

◦
m−1(#)], the optimal LQG control can be

rewritten in the input–output form C(�◦(#); z−1) ut=D(�◦(#); z−1)yt , where C(�◦(#); z−1)=1−∑m−1
i=1 c◦i (#)z

−i

and D(�◦(#); z−1) =
∑n−1

i=0 d
◦
i (#)z

−i.
Let � = [d0; : : : ; dn−1; c1; : : : ; cm−1] and suppose that controller C(�; z−1) ut =D(�; z−1)yt is applied to the

system with parameter #. Under the assumption that A(#)+B(#)� is stable, the LQG control performance of
the closed-loop system where the model with parameter # is controlled by the controller with parameter � is
given by

J ′(#; �) = trace(P(#; �)CCT�2); (A.2)
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where P(#; �) is the solution to the Lyapunov equation

P = (A(#) + B(#)�)TP(A(#) + B(#)�) + r�T�+ HTH: (A.3)

Appendix B. Proof of Theorem 2

Consider the family of functions F = {J (·; �) :
 = Rq+1 → [0; 1]; �∈� = Rq}. Given a function J (·; �)
in F, let g((#; c); �) := H (J (#; �) − c), where c∈ [0; 1] is an additional variable and H (·) is the Heaviside
function (H (x) = 1, if x¿ 0, H (x) = 0, if x¡ 0). Also, let G := {g((·; ·); �) : 
 × [0; 1] → {0; 1}; �∈�}.
Then, by [30, Lemma 10.1] P-dimension(F)= VC-dimension(G) (see e.g. [30, p. 69] for the de0nition of the
VC-dimension). Thus, the original problem of computing P-dimension(F) is reduced to the one of computing
VC-dimension(G). This computation can be carried out by resorting to [30, Corollary 10.2] as explained
next.
Suppose that q¿ 1 (the derivation for the case q=1 is simple, and is not developed in detail). Given any

set S, let IS be the indicator function of S. We prove below that g((#; c); �) can be written as

g((#; c); �) = IS((#; c); �); (B.1)

where S ⊂ Rq+1 × [0; 1]× Rq is a set with a particular structure. Precisely,

S = Boolean formula applied to {Si}2q+1
i=1 ;

where Si, i = 1; : : : ; 2q + 1, are sets given by Si = {8i((#; c); �)¿ 0} with 8i polynomials in � whose largest
degree is v = 4q (a Boolean formula is any set expression containing union, intersection, and complemen-
tation). Before proving (B.1)), we note that the statement of Theorem 2 can be obtained from (B.1) by
applying the bound on the VC-dimension(G) in Corollary 10.2 in [30], which, in our notations, says that
VC-dimension(G)6 2q log2(4ev(2q+ 1)) = 2q log2(16eq(2q+ 1)).

The proof is now completed by showing (B.1).
Observe 0rst that by de0nition (16) of J (#; �) the following equality holds (c stands for complement):

{J (#; �)− c¿ 0}= {A(#) + B(#)� stable}c ∪
(
{A(#) + B(#)� stable} ∩

{
J ′(#; �)¿

c
(1− c)�

})
;

where J ′(#; �) = trace(P(#; �)CCT�2) (see (A.2)). We then need to consider the sets {A(#) + B(#)� stable}
and {trace(P(#; �)CCT�2)¿ c=(1− c)�}.
Let us start with {A(#) + B(#)� stable}.
According to Schur–Cohn criterion, the roots of

f(#;�)(;) = det(;Iq − (A(#) + B(#)�))

= ;q + f1(#; �);q−1 + · · ·+ fq(#; �)

will lie in the open unit circle if and only if the following 2q conditions are satis0ed:

f(#;�)(1)¿ 0;

(−1)qf(#;�)(−1)¿ 0;

det(Xi(#; �) + Yi(#; �))¿ 0; i = 1; 2; : : : ; q− 1;

det(Xi(#; �)− Yi(#; �))¿ 0; i = 1; 2; : : : ; q− 1
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with

Xi :=




1 f1 f2 : : : fi−1

1 f1 : : : fi−2

...

1 f1

1



; Yi :=




fq

fq fq−1

...

fq fq−1 : : : fq−i+2

fq fq−1 fq−2 : : : fq−i+1



;

where Xi, Yi, fi are short for Xi(#; �), Yi(#; �), fi(#; �). Since the degree in � of fi(#; �), i = 1; : : : ; q, is at
most 2, such 2q conditions can be rewritten in the form 8i(#; �)¿ 0, i=1; 2; : : : ; 2q; where the largest degree
of each polynomial 8i(#; �) as a function of � is 2(q− 1).
Therefore {A(#) + B(#)� stable} =⋂2q

i=1 Si, with Si = {8i(#; �)¿ 0} such that degree(8i(#; �))6 2(q − 1),
i = 1; 2; : : : ; 2q.
Consider now the set {trace(P(#; �)CCT�2)¿ c=(1− c)�}.
Matrix P(#; �) is the unique solution to the Lyapunov equation (A.3) which can be reformulated as a system

of linear equations in the components of P by means of the Kronecker product ⊗, [13]. This is explained
next.
Given a h× k matrix V , denote by vec(V ) the hk × 1 column vector vec(V ) = [vT1 vT2 : : : vTk ]

T, where vi
is the ith column of V . Eq. (A.3) can be rewritten as follows:

vec(P) = vec((A(#) + B(#)�)TP(A(#) + B(#)�)) + vec(r�T�+ HTH)

= ((A(#) + B(#)�)T ⊗ (A(#) + B(#)�)T) vec(P) + vec(r�T�+ HTH);

where we have used the property that, given matrices V , W and Z of appropriate dimensions, vec(VWZ) =
(ZT ⊗ V ) vec(W ). From this it follows that

vec(P(#; �))T = vec(r�T�+ HTH)T(Iq2 − (A(#) + B(#)�)⊗ (A(#) + B(#)�))−1:

Notice now that P(#; �)CCT�2 has all entries equal to zero except for the 0rst column due to the fact that
C = [1 0 : : : 0]T. Thus, trace(P(#; �)CCT�2) only extracts the 1,1 entry of P(#; �)CCT�2.

Letting W (#; �) := Iq2 − (A(#) + B(#)�)⊗ (A(#) + B(#)�), the condition trace(P(#; �)CCT�2)¿ c=(1− c)�
can therefore be rewritten as follows:

c det(W (#; �))− (1− c)��2 vec(r�T�+ HTH)T[ac(W (#; �))]16 0;

where [ac(W (#; �))]1 is the 0rst column of the algebraic complement transpose of matrix W (#; �). By using
the de0nition of Kronecker product, one can see that the degree of polynomial det(W (#; �)) as a function of
� is less than or equal to 4q. As for polynomial vec(r�T�+HTH)T[ac(W (#; �))]1, it has the same degree 4q
since all the terms of vector [ac(W (#; �))]1 have at most degree 4q− 2.
Therefore, by setting 82q+1((#; c); �) = c det(W (#; �)) − (1 − c)��2 vec(r�T� + HTH)T[ac(W (#; �))]1, we

have that {trace(P(#; �)CCT�2)¿ c=(1 − c)�} = Sc2q+1 with S2q+1 = {82q+1((#; c); �)¿ 0} and degree(82q+1

((#; c); �)) = 4q.
Then, the sought set S is given by (

⋂2q
i=1 Si)

c ∪ ((
⋂2q
i=1 Si) ∩ Sc2q+1), which concludes the proof.
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