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Summary. In this chapter, we present the scenario approach, an innovative technol-
ogy for solving convex optimization problems with an infinite number of constraints.
This technology relies on random sampling of constraints, and provides a powerful
means for solving a variety of design problems in systems and control. Specifically,
the virtues of this approach are here illustrated by focusing on optimal control design
in presence of input saturation constraints.

1 Introduction

Many problems in systems and control can be formulated as optimization
problems, often times of convex type, [1, 2]. Convexity is appealing since
‘convex’ - as opposed to ‘non-convex’ - means ‘solvable’ in many cases.

In practical problems, an often-encountered feature is that the environ-
ment is uncertain, i.e. some elements and/or variables are not known with
precision. This leads naturally to robust convex optimization. Similarly, de-
sign against uncertain signals and/or disturbances gives rise to optimization
of the robust type.

A robust convex optimization problem is expressed in mathematical terms
as

RCP : min
x∈Rn

g(x) subject to: (1)

fδ(x) ≤ 0, ∀δ ∈ ∆,

where δ is the uncertain parameter, and g(x) and fδ(x) are convex functions in
the n-dimensional optimization variable x for every δ within the uncertainty
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set ∆. An example of formalization of a control problem as RCP is provided
in the next section.

Often times, ∆ is a set containing an infinite number of instances. If e.g.
δ represents the uncertain gain of a plant and this gain is known to take on
value in some interval, ∆ is such an interval. In the example discussed in this
chapter, ∆ is the infinite set of possible disturbances entering a given system.

Problems with a finite number of optimization variables and an infinite
number of constraints are called semi-infinite optimization problems in the
mathematical programming literature. It is well known that these problems
are difficult to solve and they have been proven NP-hard in many cases, [3, 4,
5, 6].

In [7, 8], an innovative technology called ‘scenario approach’ has been in-
troduced to deal with semi-infinite convex programming at a very general
level. The main thrust of this technology is that solvability can be obtained
through random sampling of constraints provided that a probabilistic relax-
ation of the worst-case robust paradigm of (1) is accepted. When dealing with
problems in systems and control, the scenario approach opens up new avenues
for working out solutions in many different contexts.

The scenario approach is presented in this chapter in an easy-to-follow
manner by way of an example in optimal control with input saturation con-
straints.

2 An optimal control problem with constraints

Consider the following control problem: given a linear system affected by a dis-
turbance belonging to some class, design a feedback controller that attenuates
the effect of the disturbance on the system output, while avoiding saturation
of the control action due to actuator limitations.

Although quite standard in practice, this design problem is generally diffi-
cult to solve because of the presence of saturation constraints, and trial-and-
error solutions are often adopted.

In this section, we illustrate a new approach to address this control prob-
lem in a systematic and optimal way. As we shall see, the proposed design
methodology relies on the re-formulation of the problem as a robust convex
optimization program by adopting an appropriate parametrization of the con-
troller. Solvability of this robust convex optimization program is then attained
through the scenario optimization technology.

2.1 Problem formulation

We consider a discrete time linear system with scalar input and scalar output,
u(t) and y(t), governed by the following equation:

y(t) = G(z)u(t) + d(t), (2)
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where G(z) is a stable transfer function and d(t) is an additive disturbance.
Our objective is to determine a feedback control law

u(t) = C(z)y(t) (3)

such that the disturbance d(t) is optimally attenuated for every realization of
d(t) in some set of possible realizations D, and such that the control input
keeps within certain saturation limits. For example, D can be the set of step
functions with specified maximum amplitude or the set of sinusoids with fre-
quency in a certain range. A precise formalization of the optimization problem
is next given.

Consider the finite-horizon 2-norm
∑M

t=1 y(t)2 of the closed-loop system
output. This norm quantifies the effect of the disturbance d(t). For simplicity,
we here consider (2) and (3) initially at rest, namely G(z)u(t) represents an
infinite backwards expansion

∑∞
j=1 gju(t− j) where u(t− j) = 0 for t− j ≤ 0,

and similarly for C(z)y(t).
The goal is to minimize the worst-case disturbance effect

max
d(t)∈D

M∑
t=1

y(t)2, (4)

while maintaining the control input u(t) within a saturation limit ubound:

max
1≤t≤M

|u(t)| ≤ ubound, ∀d(t) ∈ D. (5)

Controller C(z) is expressed in terms of an Internal Model Control (IMC)
parametrization, [9]:

C(z) =
Q(z)

1 + G(z)Q(z)
, (6)

where G(z) is the system transfer function and Q(z) is a free-to-choose transfer
function (see Figure 1).

Expression of C(z) in (6) is totally generic, in that, given a C(z), a Q(z) can
be always found generating that C(z) through expression (6). The advantage
of (6) is that the set of all controllers that closed-loop stabilize G(z) is simply
obtained from (6) by letting Q(z) vary over the set of all stable transfer
functions (see [9] for more details).

With (6) in place, the control input u(t) and the controlled output y(t)
are given by:

u(t) = Q(z)d(t) (7)
y(t) = [G(z)Q(z) + 1]d(t). (8)

The distinctive feature of these expressions is that u(t) and y(t) are affine in
Q(z). Consequently, (4) is a convex cost in Q(z) and (5) are convex constraints.
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Fig. 1. The IMC parameterization.

In the sequel, we refer to the case where Q(z) is selected from a family
of stable transfer functions linearly parameterized in γ := [γ0 γ1 . . . , γk]T ∈
Rk+1, i.e.

Q(z) = γ0β0(z) + γ1β1(z) + γ2β2(z) + · · ·+ γkβk(z), (9)

where βi(z)’s are pre-specified stable transfer functions. Note that linearity in
γ is important because, due to convexity of (4) and (5) in Q(z), it translates
into convexity of the problem in γ.

A common choice for the βi(z)’s functions is to set them equal to pure
‘delays’: βi(z) = z−i, leading to

Q(z) = γ0 + γ1z
−1 + γ2z

−2 + · · ·+ γkz−k.

Another possibility is to let βi(z)’s be Laguerre polynomials, [10, 11].
The control design problem can now be precisely formulated as follows:

min
γ,h∈Rk+2

h subject to: (10)

M∑
t=1

y(t)2 ≤ h, ∀d(t) ∈ D, (11)

max
1≤t≤M

|u(t)| ≤ ubound, ∀d(t) ∈ D. (12)

Due to (11), h represents an upper bound to the output 2-norm
∑M

t=1 y(t)2

for any realization of d(t). Such an upper bound is minimized in (10) under
the additional constraint (12) that u(t) does not exceed the saturation limits.
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2.2 Rewriting problem (10)–(12) in a more explicit form

By (7) and (8) and the parametrization of Q(z) in (9), the input and the
output of the controlled system can be expressed as

u(t) =
(
γoβ0(z) + . . . + γkβk(z)

)
d(t) (13)

y(t) = G(z)
(
γoβ0(z) + . . . + γkβk(z)

)
d(t) + d(t). (14)

Let us define the following vectors containing filtered versions of the distur-
bance d(t):

φ(t) :=




β0(z)d(t)
β1(z)d(t)

...
βk(z)d(t)


 and ψ(t) :=




G(z)β0(z)d(t)
G(z)β1(z)d(t)

...
G(z)βk(z)d(t)


 . (15)

Then, (13) and (14) can be re-written as

u(t) = φ(t)T γ

y(t) = ψ(t)T γ + d(t),

and
∑M

t=1 y(t)2 = γT Aγ + Bγ + C, where

A =
M∑

t=1

ψ(t)ψ(t)T B = 2
M∑

t=1

d(t)ψ(t)T C =
M∑

t=1

d(t)2 (16)

are matrices that depend on d(t) only.
With all these positions, (10)–(12) rewrites as

min
γ,h∈Rk+2

h subject to: (17)

γT Aγ + Bγ + C ≤ h, ∀d(t) ∈ D
− ubound ≤ φ(t)T γ ≤ ubound, ∀t ∈ {1, 2, . . . ,M}, ∀d(t) ∈ D.

Compared with the general form (1), the optimization variable x is here
(γ, h) and has size n = k+2, and the uncertain parameter δ is the disturbance
realization d(t) taking value in the set ∆ = D. Note that, given d(t), quantities
A, B, C, and φ(t) are fixed so that the first constraint in (17) is quadratic,
while the others are linear.

Typically, the set D of disturbance realizations has infinite cardinality.
Hence, problem (17) is a semi-infinite convex optimization problem.

2.3 Randomized solution through the scenario technology

As already pointed out in the introduction, semi-infinite convex optimization
problems like (17) are difficult to solve. The idea of the scenario approach is
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that solvability can be recovered if some relaxation in the concept of solution
is accepted. In the context of our control design problem, this means requiring
that the constraints in (17) are satisfied for all disturbance realizations but a
small fraction of them (chance-constrained approach).

The scenario approach goes as follows. Since we are unable to deal with
the wealth of constraints in (17), we concentrate attention on just a few of
them and extract at random N disturbance realizations d(t) according to
some probability distribution P introduced over D. This probability distribu-
tion should reflect the likelihood of the different disturbance realizations. If no
hint is available on which realization is more likely to occur, then the uniform
distribution can be adopted. Only these extracted instances (‘scenarios’) are
considered in the scenario optimization:

SCENARIO OPTIMIZATION

extract N independent identically distributed realizations d(t)1,
d(t)2, . . . , d(t)N from D according to P . Then, solve the scenario
convex program:

SCPN : min
γ,h∈Rk+2

h subject to: (18)

γT Aiγ + Biγ + Ci ≤ h, i = 1, . . . , N,

− ubound ≤ φ(t)T
i γ ≤ ubound, ∀t ∈ {1, 2, . . . , M},

i = 1, . . . , N,

where Ai, Bi, Ci, and φ(t)i are as in (16) and (15) for d(t) = d(t)i.

Letting (γ∗N , h∗N ) be the solution to SCPN , γ∗N returns the designed con-
troller parameter.

The implementation of the scenario optimization requires that one picks
N realizations of the disturbance and computes Ai, Bi, Ci, and φ(t)i in corre-
spondence of the extracted realizations. Since these quantities are artificially
generated (that is they are not actual measurements coming from the sys-
tem, but, instead, they are computer-generated), the proposed control design
methodology can as well be seen as a simulation-based approach.

SCPN is a standard convex optimization problem with a finite number of
constraints, and therefore easily solvable. On the other hand, it is spontaneous
to ask: what kind of solution is one provided by SCPN? Specifically, what can
we claim regarding the behavior of the designed control system for all other
disturbance realizations, those we have not taken into consideration while
solving the control design problem?

The above question is of the ‘generalization’ type in a learning-theoretic
sense: we want to know whether and to what extent the solution generalizes
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in constraints satisfaction, from seen constraints to unseen ones. Certainly,
any generalization result calls for some structure as no generalization is pos-
sible if no structure linking what has been seen to what has not been seen
is present. The formidable fact in the context of convex optimization is that
- by underlying hidden links - the solution of SCPN always generalizes well,
with no extra assumptions.
We have the following theorem (see Corollary 1 in [8]).

Theorem 1. Select a ‘violation parameter’ ε ∈ (0, 1) and a ‘confidence pa-
rameter’ β ∈ (0, 1). Let n = k + 2.
If

N =
⌈

2
ε

ln
1
β

+ 2n +
2n

ε
ln

2
ε

⌉
(19)

(d·e denotes the smaller integer greater than or equal to the argument), then,
with probability no smaller than 1− β, the solution (γ∗N , h∗N ) to (18) satisfies
all constraints of problem (17) with the exception of those corresponding to a
set of disturbance realizations whose probability is at most ε. ut
Let us read through the statement of this theorem in some detail. If we neglect
the part associated with β, then, the result simply says that, by sampling a
number of disturbance realizations as given by (19), the solution (γ∗N , h∗N )
to (18) violates the constraints corresponding to other realizations with a
probability that does not exceed a user-chosen level ε. This corresponds to
say that – for other, unseen, d(t)’s – constraints (11) and (12) are violated
with a probability at most ε. From (11) we therefore see that the found h∗N
provides an upper bound for the output 2-norm

∑M
t=1 y(t)2 valid for any

realizations of the disturbance with exclusion of at most an ε-probability set,
while (12) guarantees that, with the same probability, the saturation limits
are not exceeded.

As for the probability 1 − β, one should note that (γ∗N , h∗N ) is a random
quantity because it depends on the randomly extracted disturbance realiza-
tions. It may happen that the extracted realizations are not representative
enough (one can even stumble on an extraction as bad as selecting N times
the same realization!). In this case no generalization is certainly expected,
and the portion of unseen realizations violated by (γ∗N , h∗N ) is larger than ε.
Parameter β controls the probability of extracting ‘bad’ realizations, and the
final result that (γ∗N , h∗N ) violates at most an ε-fraction of realizations holds
with probability 1− β.

In theory, β plays an important role and selecting β = 0 yields N = ∞.
For any practical purpose, however, β has very marginal importance since it
appears in (19) under the sign of logarithm: we can select β to be such a small
number as 10−10 or even 10−20, in practice zero, and still N does not grow
significantly.
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3 Numerical example

A simple example illustrates the controller design procedure.
With reference to (2), let

G(z) =
0.2

z − 0.8
,

and let the additive output disturbance be a piecewise constant signal that
varies from time to time, at a low rate, of an amount bounded by some given
constant. Specifically, let the set of admissible realizations D consists of piece-
wise constant signals changing at most once over any time interval of length
50, and taking value in [−1, 1].

As for the IMC parametrization Q(z) in (9), we choose k = 1 and Q(z) =
γ0 + γ1z

−1.
A control design problem (10)–(12) is considered with M = 300, and for

two different values of the saturation limit ubound: 10 and 1. Probability P is
implicitly assigned by the recursive equation

d(t + 1) =
(
1− µ(t)

)
d(t) + µ(t)v(t + 1),

initialized with d(1) = v(1), where µ(t) is a {0, 1}-valued process (µ(t) = 1 at
times where a jump occurs), and v(t) is a sequence of i.i.d. random variables
uniformly distributed in [−1, 1] (v(t) is the new d(t) value). µ(t) is generated
according to

µ(t) = α(t)
50∏

k=1

(
1− µ(t− k)

)
,

initialized with µ(0) = µ(−1) = · · · = µ(−49) = 0, where α(t) is a sequence
of i.i.d. {0, 1}-valued random variables taking value 1 with probability 0.01.
An admissible realization of d(t) in D is reported in Figure 2.

In the scenario approach we let ε = 5 · 10−2 and β = 10−10. Correspond-
ingly, N given by (19) is N = 1370.

From Theorem 1, with probability no smaller than 1−10−10, the obtained
controller achieves the minimum of

∑M
t=1 y(t)2 over all disturbance realiza-

tions, except a fraction of them of size smaller than or equal to 5%. At the
same time, the control input u(t) is guaranteed not to exceed the saturation
limit ubound except for the same fraction of disturbance realizations.

3.1 Simulation results

For ubound = 10, we obtained Q(z) = −4.9931 + 4.0241z−1 and, correspond-
ingly, the transfer function F (z) = 1+Q(z)G(z) between d(t) and y(t) (closed-
loop sensitivity function) was

F (z) = 1 + (−4.993 + 4.024z−1)
0.2

z − 0.8
' 1− z−1.
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Fig. 2. A disturbance realization.
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Fig. 3. Pole-zero plot of F (z) when ubound = 10. The poles are plotted as x’s and
the zeros are plotted as o’s.

The pole-zero plot of F (z) is in Figure 3.
Since y(t) = F (z)d(t) ' d(t)−d(t−1), then, when d(t) has a step variation,

y(t) changes of the same amount and, when the disturbance gets constant, y(t)
is immediately brought back to zero and maintained equal to zero until the
next step variation in d(t) (see Figure 4). The obtained solution that F (z) is
approximately a FIR (Finite Impulse Response) of order 1 with zero DC-gain
is not surprising considering that d(t) varies at a low rate.
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Fig. 4. Disturbance realization and corresponding output of the controlled system
for ubound = 10.

In the controller design just described, the limit ubound = 10 played no
role in that constraints −ubound ≤ φ(t)T

i γ ≤ ubound in problem (18) were
not active at the found solution. As ubound is decreased, the saturation limits
become more stringent and affect the solution.

For ubound = 1, the following scenario solution was found Q(z) = −0.991+
0.011z−1, which corresponds to the sensitivity function:

F (z) = 1 + (−0.991 + 0.011z−1)
0.2

z − 0.8
' z − 0.9960

z − 0.8
.

The pole-zero plot of F (z) is in Figure 5, while Figure 6 represents y(t) ob-
tained through this new controller for the same disturbance realization as in
Figure 4. Note that the time required to bring y(t) back to zero after a distur-
bance jump is now longer than 1 time unit, owing to saturation constraints
on u(t).

The optimal control cost value h∗N is h∗N = 9.4564 for ubound = 10 and
h∗N = 27.4912 for ubound = 1. As expected, the control cost increases as ubound

becomes more stringent.
The numerical example of this section is just one instance of application of

the scenario approach to controller selection. The introduced methodology is
of general applicability to diverse situations with constraints of different type,
presence of reference signals, etc.

4 Conclusions: a final glance over the scenario world

In this chapter, we considered an optimal disturbance rejection problem with
limitations on the control action and showed how it can be effectively ad-
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Fig. 5. Pole-zero plot of F (z) when ubound = 1. The poles are plotted as x’s and
the zeros are plotted as o’s.
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Fig. 6. Disturbance realization and corresponding output of the controlled system
for ubound = 1.

dressed by means of the so-called scenario technology. This approach basically
consists of the following main steps:

- reformulation of the problem as a robust (usually with infinite constraints)
convex optimization problem;

- randomization over constraints and resolution (by means of standard nu-
merical methods) of the so obtained finite optimization problem;
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- evaluation of the constraint satisfaction level of the obtained solution
through Theorem 1.

The applicability of the scenario methodology is certainly not limited to
optimal disturbance rejection problems and, indeed, this same methodology
has been applied to a number of different endeavors in systems and control.

Robust control, for example, is a natural setting for the scenario approach,
since robust control performance requirements can be often translated into
optimization with an infinite number of constraints. The reader is referred
to [12, 13, 8], where the scenario methodology has been applied to robust
stabilization, LPV (Linear Parameter Varying) control, and robust pole as-
signment.

Another setting in which the scenario approach proved powerful is the
identification of interval predictor models (i.e. models returning a prediction
interval instead of a single prediction value), [14, 15]. Here, constraints are
given by observed data and optimization is performed to shrink the interval
model as tightly as possible around data.

Finally, the scenario approach is currently being applied to system identi-
fication through an innovative min-max perspective.
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