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Abstract

We consider the problem of adaptively controlling a
linear system so as to minimize a long-term average
quadratic cost criterion. It is well known that certainty
equivalent controllers based on standard parameter es-
timators run into an identifiability problem which leads
to a strictly suboptimal performance. In this contribu-
tion, a cost-bkwed parameter estimator is introduced
to overcome this difficulty. The corresponding adap-
tive scheme is proven to be stable and optimal when
the unknown system parameter lies in an infinite, yet
compact, parameter set.

1 Introduction

Consider a linear system
Zt+l = A“z~ + Bout + w~+l (1)

where zt G Rn is the state, ut 6 Rm the control vari-
able and { wt} is a noise process assumed to be inde-
pendent and identically distributed with a N(O, I) dis-
tribution. The state xt is observed, and based on this,
the goal is to choose the input ut in such a way as to
minimize the long-term average quadratic cost crite-
rion,

(Q and T are symmetric matrices with Q ~ O and
T> O).

The system matrices A“ and B“ are, however, un-
known. Thus we have in our hands an adaptive control
problem. All we know is that (A”, B“ ) belong to a cer-
tain compact set El aa precisely stated in the following
assumptions:
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(A.i) There is a known compact set El such that
(A”, B“) E Interior (e).

(A.ii) (A, B) is reachable and (A, Q+) is observable,
for all (A, l?) c ~.

It is well known that certainty equivalent adaptive
control can suffer from an identifiability problem; see
Borkar and Varaiya [3], Becker, Kumar and Wei [1],
Lin, Kumar and Seidman [12], and other references.
In particular, for the case where @ is a finite set, it is
shown in Kumar [5] that a certainty equivalent adap
tive controller using least squares parameter estimates
can converge with positive probability to a wrong pa-
rameter estimate, which then leads to a strictly non-
optimal value of the long-term average cost criterion.
For the case of general controlled Markov chains, such
a counterexample had earlier been exhibited in Borkar
and Varaiya [3]. For the case of linear ARMAX sys-
has been shown in Becker, Kumar and Wei [1] that the
parameter estimates can converge with positive proba-
bility to false values; however, due to the special prop
erty of the minimum output variance cost criterion, the
resulting certainty equivalent control law is still opti-
mal.

Motivated by this general problem of identifiability in
closed-loop, a new certainty equivalent adaptive con-
troller was proposed in Kumar and Becker [9] for the
class of controlled Markov chains. The novelty of this
adaptive controller was the employment of a “cost bi-
ased maximum likelihood” parameter estimator, rather
than the usual maximum likelihood parameter estima-
tor. This cost biasing modifies the log-likelihood crite-
rion by incorporating an additional term which favors
parameter estimates with smaller optimal costs. Such
a cost biasing was shown to yield an optimal adaptive
controller for controlled Markov chains when the pa-
rameter set @ is finite. This result was extended in Lin
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and Kumar [11]to the case of general e, for controlled
Markov chains with finite state spaces. Another exten-
sion to the case of finite parameter set @, but allowing
for a general state space was provided in Kumar [7].

In the reference most pertinent to this paper, in Ku-
mar [6] it was shown that the cost-biased maximum
likelihood based certainty equivalent controller yielded
an optimal cost for linear systems with quadratic costs,
sa in (1) and (2), provided that the set ~ is finite.

The case of infinite parameter set Q introduces several
difficulties, and the problem has till now remained un-
solved. It is the purpose of the present paper to estab-
lish the optimality of the coat biased maximum like-
lihood parameter estimator together with a certainty
equivalent controller, for linear quadratic Gaussian sys-
tems, as in (1) and (2), for the more general case of a
compact parameter uncertainty set @, as in (A.i) and
(A.ii).

In the next section we specify the details of the cost
biased least squarea parameter estimator, and the cer-
tainty equivalent adaptive control law, In the subse-
quent section, we provide the main result, and a state-
ment of the intermediate results through which it is
established. The final section provides some conclud-
ing remarks and suggestions for future research.

2 The Adaptive Control Scheme

Given a pair of matrices (A, B) c ~, let J(A, B) denote
the optimal long term average cost (2) for the system
with Zt+l = Az*+Bu~ +w~+l, where {w~} is i.i.d. with
IV(O, 1) distribution. For such a system, the optimal
control law is
w = K(A, B)zt,

where

K(A, B) = – [BTP(A, B)B + T’J-’BTP(A, B)A,

with P(A, B) the unique positive semidefinite solution
of the Riccati equation,

P = ATPA – ATPB(BTPB + T)-lBTPA + Q.

In an adaptive control problem, the “true” matrices
(AO, B“) are not known and therefore we follow a cer-
tainty equivlent methodology by replacing them by an
estimate. The heart of our adaptive scheme lies in
the cost-biased least squares parameter estimator de-
scribed below.

We choose a deterministic time sequence {p~} such that
pt + +m and pt = o(logt) as t + +co.
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The cost-~as~ least squares parameter estimates se-
quence {(At, Bt) } is give by

(arfA~fi&:t1z6-Az”-’-Bu112112
(2,,E,) = +pt J(A, B)} for t even (3)

L~t_l,~t-l) fort odd.

(when there is more than one minimizer above, any of
them can be chosen).

The distinguishing feature of the criterion (3) is the
term p~J[A, B), which introduces a mild bias in favor
of parameters (A, B) with lower optimal costs. The
biasing is “mild” because pt = o(log t). On the other
hand it is non-negligible because p~ + +oo. Without
this term one would just have the usual least squares
parameter estimator, with its attendant difficulty in
identifying systems in closed-loop.

The control action is determined according to the cer-
tainty equivalent methodology as

ut = K(lt, Et)zt.

The intuitive rationale for the cost biasing in the leaat
squares criterion is as follows. Suppose that one sim-
ply employs a straightforward least squares parameter
estimator. Then, genericallyy, it ~an b< shown that the
parameter estimator sequence (A~s, B~s ) converges to

a limiting random variable (~~s, ~~s), see Kumar [8].
Such a li~itin~estimate results in a limiting controller
ut = K(A~s, B:s)z~. It is natural to expect that the
lesst squares estimator will identify, at a minimum, the
closed-loop behavior of the system. Thus, one expects
that the behavior of the true system (AO, B“) with the

loop closed by K(i@, ~~s) will be the same ss the

closed-loop imagined system:

E&s).

This implies that the cost of running t~e tr~e sys-
tem (AO, B“ ) with the feedback gain K(ALS, B&s) is
t~e same as the cost of running the im~gined system
(A$$, s~s ) with the feedback K (A&s, B&s). The lat-
ter ia,-however, the optimal configuration for the sys-
tem (A~s, ~~s), while the former is not necessarily an
optimal configuration for the system (A”, BO). Thus
one has

J(AO, BO),

that is, the least squares estimator has a natural ten-
dency to return estimates with larger optimal cost
than the optimal cost associated with the true system.
This motivates the idea of somehow introducing a bias
into the parameter estimator so that it favors param-
eters (A, B) with smaller values of J(A, B). Thus one



conceives of adding a term such as pt J(A, B) to the
aquared error. However, one needs to choose pt with
care. One does not want to destroy the ability of the
least squares estimator to identify closed loop dynam-
ics. This is achieved by choosing pt = o(logt). On the
other hand, one definitely does want the pt J(A, B) to
assert itself, and this is achieved by choosing pt + +cm.

Hence we arrive at the cost-biased least squares param-
eter estimator (3).

The analysis of this scheme is however quite intricate.
Due to space limitations, details are omitted in this pa-
per. In the next section we will indicate some of the
principal intermediary steps through which the opti-
mality of this scheme is established.

Before turning to the analysis it should be noted that
the parameter estimation sequence defined in (3) is not
of a recursive nature. However, one can conceive of
other similarly motivated modifications to recursively
specified schemes, whose goal still is to mildly favor
parameter estimates with lower optimal costs; this is a
topic for future research.

3 The Main Results

Let (~~s, ~~s) denote the usual least square parame-
ter estimates.

Defining v: := [z:, u:], the subspace

{

co

~:= ZER”+m:ZT E V8V:2! < +00
1

(4)
S=l

is called the unexcited subspace and its orthogonal com-
plement E is the ezcited subspace, see Bittanti, Bolzern

and Campi [2].

Given (A, B), let (A, B)E and (A, B)~ denote the ma-
tric& in R~ X(~+m) formed by projecting the rows of

(A, B) onto E and E, respectively.

By employing the Bayesian embedding procedure, see
Kumar [8], it can be shown that there exists a random
limit (~~s, fi~s ) such that,

lim (Z:s, @s) = (I:s, B&s) as.,
t-+.x

for all (AO, B“) c ~, except for a Lebesgue null set in
e.

Henceforth, we will assume that (AO, B“ ) does not lie
in the Lebesgue null set.

Furthermore, by employing the properties of the exci-
tation subspace, it can be shown, see Campi [4], that
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. .
the true system is identified up to its unexcited
ponents,

(X:5,E:S)E = (AO, B“),g as.

This last equation reverds that the asymptotic

com-

error
of the least squares estimate is confined to the un-
excited subspace. Taking into account that the total
amount of information in this subapace is finite (see
definition (4)), it is possible to show that the biasing
term pt J(A, B) will eventually succeed in pushing the
estimate away from the set where the value of the op
timal cost is higher than the optimal cost for the true
system.

Theorem 1

limsup J(&, Et) s J(AO, B“) as.
t+m

Next one turns to showing that the biasing sequence
does not damage the valuable ability of the least
squares parameter estimator to identify at least the
closed loop dynamics of the control system. This is
done by showing that for all J >0,

8=1

where 1(A) is the indicator function of a set A, and

B6:= {(A, B) E e: [lx’+ BOK(A, B)

–A – BK(A, B)[I > J} .

In the proof of equation (5), the fact that the param~
ter estimate is kept constant at each odd time instant
is used. Suppo~e t~at at a~certa~n odd time instant s
the estimate (A,, B.) = (A,-l, B,-l) does not fall in
the set B~. Then,
Ilz,+l - Azs - Bu.llz

= ([A”+ B°K(~._I, ~e_I)]

-[A+ BK(~,_,, ~,-I)])z, + W,+I112

is su~h t~t [AO + BOK(~,_l,~,_l)] – [A +

BK(A,_l, B,- 1)] is away fmm ze~ for any (A, B) in
a suitable neighborhood of (A. _ 1, B,_ 1). This diacrep
ancy is emphasized by ZS since it is drive~ by t~e noise
w, which i: inde~endent of [AO + B°K(A,_l, B._ 1)] –

[A+ BK(A~-1, B,-l)]. A careful use of th~ a~ument
leads to the conclusion that the estimate (A,, B,) can-
not visit too often the set f%, as stated in equation
(5).

As a consequence of result (5) and Theorem 1, it follows

that the adaptive gain K(2,, ~.) is nearly optimal ex-
cept for the exceptional time instants (self-tuning prop
erty).

. I



A way out of this dilemma is to employ a more fine
Theorem 2

g (ii(1 K ~.,~,) –K(A”,130) >6) = O(pt)
#=0

as., for all d >0.

The intuitive rationale in the proof of this theorem is
simple. Equation (5) asserts that closed-loop identificw
tion holds with the exception of very rare time instants.
This in turn implies that the cost obtained by running
the true system with the estimated feedback gain is
close to the optimal cost for the estimated system. On
the other hand, by Theorem 1 the latter is less than
or equal to the optimal cost for the true system in the
long run. The only way to reconcile these two facts is
to conclude that the estimated gain leads to a feedback
loop whose cost is close to the optimal cost. The con-
clusion of Theorem 2 is finally drawn by observing that
the optimal gain matrix for the true system is unique.

The closed-loop system is time-varying but, in view of
Theorem 2, it is destabilized very rarely. From this,
one can establish the stability of the system.

Theorem 3

t-1
limsup~ ~ (IIz,IIP + Ilu,llp) < +CO as.,

t+oa S=o

for all p.

The last result we want to discuss is the optimality of
the proposed scheme.

The dynamic programming equation for the long-term
average cost control problem at hand, see Kumar and
Varaiya [10], allows one to write,
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By Theorem 1, the first term in the right-hand-side
is less than or equal to the optimal cost J(A”, B“) as
t ~ co, while the second term disappears by standard
martingale convergence results. Then, to prove opti-
mality one has only to show that the last two terms in
the right-hand-side converge to zero. The convergence
of the l@ bAutone term is proven by showing that ma-
trix P(A,, Z?s) is nearly invariant, with rare exceptions
in time and by making use of the stability established
in Theorem 3. As for the last term, its convergence
follows from the closed-loop identification result (5).

This leads to the following theorem

Theorem 4

t-1
lim sup ~ ~(z~Qz~ + u~Tu,) = J(A”, B“) as.

t+cu ~=o

Hence the cost biased adaptive control scheme over-
comes the closed-loop identifiability problem, and is
indeed self-optimizing.

4 Concluding Remarks

A fundamental difficulty in many minimum variance
type adaptive control schemes is the problem of han-
dling non-minimum phase systems, due to the lack of
any weighting of the input energy. This can be alle-
viated by considering a full quadratic cost criterion.
Then, however, one runs into the fundamental obstacle
to adaptive control posed by the inability of identifying
a system when it operates in closed-loop.
grained scheme which carefully exploits properties of
the set to which the least squares parameter estimates
converge, namely that their optimal cost must neces-
sarily be larger than the optimal cost. Such a scheme
is presented and analyzed in this paper.

Unfortunately, there are two drawbacks. First, the
scheme presented is nonrecursive. However, we feel
that this can perhaps be removed by employing a mod-
ification to a recursive scheme, using the biasing idea
suggested here. The second drawback is that we have
only addressed systems where the full state is observed.
This needs to be removed.

Both the above problems suggest useful research op
portunities.
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