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Abstract

In this paper, we consider the %nite sample properties of least-squares system identi%cation, and derive non-asymptotic con%dence
ellipsoids for the estimate. The shape of the con%dence ellipsoids is similar to the shape of the ellipsoids derived using asymptotic theory,
but unlike asymptotic theory, they are valid for a %nite number of data points. The probability that the estimate belongs to a certain
ellipsoid has a natural dependence on the volume of the ellipsoid, the data generating mechanism, the model order and the number of
data points available. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we consider the properties of least-squares
system identi%cation when only a %nite number of
data points are available. The asymptotic properties of
least-squares identi%cation are well understood, see e.g.
Ljung (1999) or S;oderstr;om and Stoica (1989), but it is
only recently that results addressing the %nite sample prop-
erties have started appearing, e.g. Weyer, Williamson, and
Mareels (1999), Weyer and Campi (1999), Campi and
Weyer (2002), and Weyer (2000).
In applications such as evaluation of model uncertainty it

is common to use the asymptotic con%dence regions for the
parameter estimate, even when only a %nite number of data
points are available. In this paper, we derive non-asymptotic
con%dence ellipsoids for the least-squares estimate. It is
shown that the con%dence ellipsoids depend in a natural way
on factors such as the model and system order, the pole lo-
cations and the number of data points available.
The main tool we make use of is exponential inequali-

ties in order to bound di=erences between expected values
and empirical values. Earlier, using di=erent techniques,
Spall (1995) has considered uncertainty bounds for general
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M -estimators for a %nite number of data points. His results
are, however, diDcult to use in the situation we consider
here.
It should also be mentioned that %nite sample properties

have been studied in the deterministic set membership and
worst case identi%cation settings. In this context, the identi%-
cation algorithms deliver all models which are in agreement
with the observed data, so that %nite-sample results are au-
tomatically included in the identi%cation result. Di=erently
from these settings, the present paper concentrates on the
standard least-squares identi%cation method in a stochastic
framework.
The paper is organised as follows. In the next section

we introduce the identi%cation setting. In Section 3 we %rst
bound the di=erence between the expected and empirical
values of the matrix and vector which make up the normal
equation (Theorem 1), and then we use this result to de-
rive the non-asymptotic con%dence ellipsoids (Theorem 2).
Technical results are given in the appendices.

2. Identi�cation setting

2.1. The data generation mechanism

We assume that the observed data are generated by a
linear system

y(t) = G0(q−1)u(t) + H0(q−1)e(t); (1)
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where the input signal u(t) is stochastic and generated by

u(t) = V0(q−1)w(t); (2)

whereG0(q−1); H0(q−1) and V0(q−1) are transfer functions
in the backward shift operator q−1, i.e. q−1y(t) = y(t − 1);
however, for the sake of readability, we omit throughout the
dependence on q−1. w(t) and e(t) are sequences of indepen-
dent Gaussian random variables, independent of each other,
with zero mean and variance �2w and �2e , respectively. The
assumptions on u(t) and e(t) are not crucial. For example,
the Gaussian assumption is only used to establish Cramer’s
condition (B.1) in one of the technical lemmas, and the re-
sults can easily be extended to other types of independent
noise sequences, and we can also allow for a deterministic
input signal.
We assume that G0; H0 and V0 can be written as

G0 =
B0

A0
; H0 =

C0

D0
; V0 =

R0

S0
;

where

A0 = 1 + a01q−1 + · · ·+ a0n0q
−n0 ;

B0 = b01q−1 + · · ·+ b0n0q
−n0 ;

C0 = 1 + c01q−1 + · · ·+ c0n0q
−n0 ;

D0 = 1 + d01q−1 + · · ·+ d0n0q
−n0 ;

R0 = 1 + r01q−1 + · · ·+ r0n1q
−n1 ;

S0 = 1 + s01q−1 + · · ·+ s0n1q
−n1 ;

and n0 and n1 are upper bounds on the degrees. Moreover,
we assume that the zeros of A0; C0; D0; R0 and S0 are inside
a circle of a known radius �¡ 1, i.e. we assume stability of
the system with a known margin, and also that the transfer
function between the noise sequence and the output has a
stable inverse with the same stability margin. The zeros of
B0 are assumed to be inside a circle of known radius �, where
� might be larger than 1, i.e. we allow for non-minimum
phase zeros in the transfer function between u(t) and y(t),
and %nally we assume that |b01| is bounded by a known
constant B. For simplicity we assume that B¿ 1.

2.2. Model class

The model class considered is

A(q−1)y(t) = B(q−1)u(t) + v(t); (3)

where v(t) is a disturbance and

A(�) = 1 + a1q−1 + · · ·+ anq−n;

B(�) = b1q−1 + · · ·+ bnq−n:

Eq. (3) can be written in linear regression form y(t; �) =
 T(t)�+ v(t) by introducing

 (t) = [− y(t − 1); : : : ;−y(t − n); u(t − 1); : : : ; u(t − n)]T;

�= [a1; : : : ; an; b1; : : : ; bn]T:

Note that system (1) does not need to belong to the model
class.

2.3. The identi6cation criterion

From a system identi%cation perspective, the most impor-
tant feature of the above model is its associated one step
ahead predictor which is given by ŷ(t; �) =  T(t)�, and the
corresponding prediction error is !(t; �)=y(t)− ŷ(t; �). Ide-
ally, one would like to choose � such that the following
theoretical identi%cation cost:

V (�) = E!2(t; �) (4)

is minimised where E is the expectation operator. The value
of � which minimises (4) is given by

� ∗ = R−1f; (5)

where

R= E (t) T(t); f = E (t)y(t): (6)

Since the data generation mechanism is unknown, one can-
not compute expected value (4) and estimate (5). Instead
the empirical version

VN (�) =
1
N

N∑
t=1

!2(t; �) (7)

is used, and the corresponding estimate is the well-known
least-squares estimate

�̂N = R−1
N fN ; (8)

where

RN =
1
N

N∑
t=1

 (t) T(t); fN =
1
N

N∑
t=1

 (t)y(t): (9)

Clearly, �̂N can only be expected to be close to � ∗ when the
number of data points tends to in%nity, and this is indeed the
case under mild assumptions, see, e.g. Ljung (1999). How-
ever, we never have an in%nite number of data points, and
a question that arises naturally is to quantify the di=erence
between �̂N and � ∗ for a %nite N .
When the system does not belong to the model class, � ∗

represents a model which minimises the expected value of
the squared prediction error. The total prediction error can
then be split in a bias error y(t) − ŷ(t; � ∗) which is due
to the fact that the model class is not rich enough, and a
variance error ŷ(t; � ∗)− ŷ(t; �̂) due to the variability of the
estimate. In the case of undermodelling our results bounds
how far our estimate �̂N is from the best possible � ∗.
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3. The main result

In this section, we present the ellipsoidal con%dence re-
gions for the least-squares estimate. First we bound the prob-
ability that the di=erences RN − R and fN − f exceed a
certain value (Theorem 1), and then we use these results to
bound �̂N − � ∗ (Theorem 2).
It is important to put our results in the right perspective.

We have not made any attempt of optimising the bounds,
and in some places we have made the bounds more con-
servative in order to get relatively simple expressions. The
bounds are therefore looser than they need to be. The signi%-
cance of the bounds is that they illustrate how the con%dence
ellipsoids depend on important variables and they show that
in principle we can derive con%dence ellipsoids for a %nite
number of data points. Certainly, more work is expected in
the direction of deriving tighter bounds and, in our conclu-
sions, we provide some ideas on how to pursue this. At the
present stage of knowledge, we recognise the results of this
paper to be a %rst step in a new—technically very challeng-
ing but of great importance—direction of research in system
identi%cation: characterising the %nite sample properties of
system identi%cation methods.

Theorem 1. Let [RN − R]k; l denote the (k; l) element of
RN −R; and [fN −f]k the kth element of fN −f. Assume
that the data has been generated according to (1) and (2).
Let R and f be as in (6) and RN and fN as in (9). Then

Pr

{
max

k;l∈{1;:::;2n}
|[RN − R]k; l|¡! and

max
k∈{1;:::;2n}

|[fN − f]k |¡!

}
¿ 1− (;

where

(=

{
(1 + (2 + (3 if (1 + (2 + (3¡ 1;

1 otherwise;
(10)

(1 =
2n(n+ 3) exp(−N!2ww=4�2w(4�2w + !ww))
(1− exp(−N!2ww=4�2w(4�2w + !ww)))2

; (11)

(2 =
2n(n+ 1) exp(−N!2ee=4�2e(4�2e + !ee))
(1− exp(−N!2ee=4�2e(4�2e + !ee)))2

; (12)

(3 =
2n(n+ 2) exp(−N!2we=4�w�e(4�w�e + !we))
(1− exp(−N!2we=4�w�e(4�w�e + !we)))2

; (13)

!ww6
!(1− �)2n0+2n1+1

3 · 22n1B2(2(n0 + n1)�+ 3(1− �))

(
�

�+ �

)2n0−2

;

(14)

!ee6
!(1− �)2n0+1

3 · 2n0 (2n0�+ (1− �))
; (15)

!we6
!(1−�)2n0+n1+1

3 · 2n0+n1+1B((2n0+n1)�+2(1−�))
(

�
�+�

)n0−1

:

(16)

Proof. See Appendix A.

The functional dependencies of ( are quite natural. In
particular, ( tends to 1 when the bound on the pole positions
�→ 1, and=or the system and model order n; n0; n1 →∞.
This can be easily understood since under these conditions
there will be a strong correlation between prediction errors
far apart, and the probability that there is a large di=erence
between the expected and empirical value increases. Also,
as expected ( tends to zero as N→∞, but note that for
small values of N and !; ( may be equal to 1, in which case
Theorem 1 does not yield any useful information.
We are now in the position that we can derive

non-asymptotic con%dence ellipsoids for the parameter
estimate.

Theorem 2. Assume that the data has been generated ac-
cording to (1) and (2). Let �̂N = R−1

N fN and � ∗ = R−1f.
If RN − 2n!I is positive de6nite; then

Pr

{
(�̂N − � ∗)T(RN − 2n!I)(�̂N − � ∗)

6
(!
√
2n‖�̂N‖+ !)22n

.min(RN )− 2n!

}
¿ 1− (;

where ( is given in Theorem 1. .min(·) denotes the smallest
eigenvalue; and n is the model order.

The shape of the non-asymptotic con%dence ellipsoids
is similar to those obtained from asymptotic theory under
the assumption that the true system belongs to the model
class. In the asymptotic case, the ellipsoids are given by
(�̂N −� ∗)TR(�̂N −� ∗) where the volumes and probabilities
depends on factors such as the number of data points and the
noise variance. As R is unknown it is in practice replaced
by its sample mean RN . The only di=erence between the
ellipsoids is therefore that we subtract the diagonal matrix
2n!I in the non-asymptotic case. Note, however, that even
though the shape of the ellipsoids is similar, the probabilities
we assign to ellipsoids with the same volume may be quite
di=erent in the asymptotic and %nite sample case. The %nite
sample results are on the conservative side.

Proof. From Theorem 1 it follows that

(RN + R̃)� ∗ = fN + f̃
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with probability at least 1− ( for some R̃ and f̃ satisfying

|[R̃]k; l|6 !; |[f̃]k |6 !; ∀k; l∈{1; : : : ; 2n}:

It follows that

(�̂N − � ∗)TRN (�̂N − � ∗) = (�̂N − � ∗)T(RN �̂N − RN� ∗)

=(�̂N − � ∗)T(fN − fN − f̃ + R̃� ∗)

=− (�̂N − � ∗)TR̃(�̂N − � ∗) + (�̂N − � ∗)T(R̃�̂N − f̃)

and hence

(�̂N − � ∗)T(RN + R̃)(�̂N − � ∗) = (�̂N − � ∗)T(R̃�̂N − f̃):
(17)

Since R̃+ 2n!I is positive de%nite it follows that

(�̂N − � ∗)T(RN + R̃)(�̂N − � ∗)

¿ (�̂N − � ∗)T(RN − 2n!I)(�̂N − � ∗): (18)

Next we observe that

(�̂N − � ∗)T(R̃�̂N − f̃)

6

(
2n∑
i=1

|�̂i − �∗i |
) 2n∑

j=1

|�̂j|!+ !


 :

From Schwarz’s inequality it follows that (
∑2n

j=1 |�̂j|)26
2n‖�̂N‖2. Hence

(�̂N − � ∗)T(R̃�̂N − f̃)

6
2n∑
i=1

|�̂i − �∗i |(!
√
2n‖�̂N‖+ !): (19)

Thus; by combining (17)–(19) it follows that

(�̂N − � ∗)T(RN − 2n!I)(�̂N − � ∗)

6
2n∑
i=1

|�̂i − �∗i |(!
√
2n‖�̂N‖+ !)

6
√
2n‖�̂N − � ∗‖(!

√
2n‖�̂N‖+ !):

This implies that

‖�̂N − � ∗‖6
√
2n(!

√
2n‖�̂N‖+ !)

.min(RN − 2n!I)

and hence

(�̂N − � ∗)T(RN − 2n!I)(�̂N − � ∗)

6
(!
√
2n‖�̂N‖+ !)22n

.min(RN − 2n!I)
:

4. Concluding remarks

In this paper, we have derived non-asymptotic con%dence
ellipsoids for the least-squares estimate. The shape of the
ellipsoids is similar to that obtained using asymptotic theory,
although the probabilities we assign to the ellipsoids can be
quite di=erent. The probability that the estimate belongs to
a certain ellipsoid has a natural dependence on the volume
of the ellipsoid, the data generating mechanism, the model
order and the number of data points available.
Our results are worst case in the sense they are valid

for all plants such that the assumed conditions on the plant
order, pole position, etc. are satis%ed. For this reason, they
cannot be expected to be tight. Currently, we are working
towards re%ning these results so as to incorporate a posteriori
information (provided by data) in model quality assessment.
Though very interesting and promising, this study entails
technical problems that are very challenging and not fully
solved yet.

Appendix A. Proof of Theorem 1

The proof of Theorem 1 is organised as follows. In the
next subsection, we introduce some notation. Then in Sec-
tion A.2 we express the di=erences |[RN −R]k; l| and |[fN −
f]k | in terms of the underlying stochastic processes w(t) and
e(t) (Lemma 3). Then in Section A.3 we bound |[RN−R]k; l|
and |[fN − f]k | assuming that the observed realisations of
w(t) and e(t) satisfy certain inequalities (Lemma A.2). Fi-
nally in Section A.4 we bound the probabilities that the ob-
served realisations of w(t) and e(t) satisfy the inequalities
used bounding |[RN −R]k; l| and |[fN −f]k | (Lemma A.3).
Theorem 1 follows by combining Lemmas A.2 and A.3.

A.1. Notation

Let

G0(q−1)V0(q−1) = g1q−1 + g2q−2 + · · · ;
H0(q−1) = 1 + h1q−1 + h2q−2 + · · · ;
V0(q−1) = 1 + v1q−1 + v2q−2 + · · ·
and let

SwwN (k; l; i; j)

=
1
N

N∑
t=1

w(t − k − i)w(t − l− j)− (k+i−l−j�2w; (A.1)

SeeN (k; l; i; j)

=
1
N

N∑
t=1

e(t − k − i)e(t − l− j)− (k+i−l−j�2e ; (A.2)
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SweN (k; l; i; j) =
1
N

N∑
t=1

w(t − k − i)e(t − l− j); (A.3)

SewN (k; l; i; j) =
1
N

N∑
t=1

e(t − k − i)w(t − l− j); (A.4)

where (k+i−l−j = 1 if k + i = l+ j and 0 otherwise.

A.2. Expressions for the elements in RN −R and fN −f

The elements of RN − R and fN − f are of the form

SyyN (k; l) =
1
N

N∑
t=1

y(t − k)y(t − l)− Ey(t − k)y(t − l);

k = 0; : : : ; n; l= 1; : : : ; n;

SyuN (k; l) =
1
N

N∑
t=1

y(t − k)u(t − l)− Ey(t − k)u(t − l);

k = 0; : : : ; n; l= 1; : : : ; n;

SuuN (k; l) =
1
N

N∑
t=1

u(t − k)u(t − l)− Eu(t − k)u(t − l);

k = 1; : : : ; n; l= 1; : : : ; n:

The following lemma provides bounds on the absolute
values of these elements

Lemma A.1.

|SyyN (k; l)|6
∞∑
i=1

∞∑
j=1

|gi| · |gj| · |SwwN (k; l; i; j)|

+
∞∑
i=0

∞∑
j=0

|hi| · |hj| · |SeeN (k; l; i; j)|

+
∞∑
i=1

∞∑
j=0

|gi| · |hj| · |SweN (k; l; i; j)|

+
∞∑
i=0

∞∑
j=1

|hi| · |gj| · |SewN (k; l; i; j)|; (A.5)

|SyuN (k; l)|6
∞∑
i=1

∞∑
j=0

|gi| · |vj| · |SwwN (k; l; i; j)|

+
∞∑
i=0

∞∑
j=0

|hi| · |vj| · |SewN (k; l; i; j)|; (A.6)

|SuuN (k; l)|6
∞∑
i=0

∞∑
j=0

|vi| · |vj| · |SwwN (k; l; i; j)| (A.7)

with

|gi|6 2n1B
(
1 +

�
�

)n0−1 i · · · (i + n0 + n1 − 2)
(n0 + n1 − 1)!

�i−1; (A.8)

|hi|6 2n0
(i + 1) · · · (i + n0 − 1)

(n0 − 1)!
�i; (A.9)

|vi|6 2n1
(i + 1) · · · (i + n1 − 1)

(n1 − 1)!
�i: (A.10)

Proof. Using (1) and (2) we %nd that

SyyN (k; l)

=
1
N

N∑
t=1

y(t − k)y(t − l)− Ey(t − k)y(t − l)

=
1
N

N∑
t=1

(G0V0w(t − k) + H0e(t − k))(G0V0w(t − l)

+H0e(t − l))− E(G0V0w(t − k) + H0e(t − k))

(G0V0w(t − l) + H0e(t − l))

=
1
N

N∑
t=1

∞∑
i=1

∞∑
j=1

gigj[w(t − k − i)w(t − l− j)

− (k+i−l−j�2w]

+
1
N

N∑
t=1

∞∑
i=0

∞∑
j=0

hihj[e(t − k − i)e(t − l− j)

− (k+i−l−j�2e ]

+
1
N

N∑
t=1

∞∑
i=1

∞∑
j=0

gihjw(t − k − i)e(t − l− j)

+
1
N

N∑
t=1

∞∑
i=0

∞∑
j=1

higje(t − k − i)w(t − l− j)

(A.11)

and (A.5) follows by changing the order of summation; tak-
ing absolute values and using (A.1)–(A.4).
The bounds on SyuN (k; l) and SuuN (k; l) follow similarly.

The bounds on |gi|; |hi| and |vi| are given by Corollary C.2
in Appendix C.

A.3. Bound on RN − R and fN − f

Lemma A.2. Assume that ∀i¿ 0; ∀j¿ 0; ∀k ∈{0; : : : ; n};
∀l∈{1; : : : ; n}

SwwN (k; l; i; j)6 !ww(i + j + 1); (A.12)
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SeeN (k; l; i; j)6 !ee(i + j + 1); (A.13)

SweN (k; l; i; j)6 !we(i + j + 1); (A.14)

SewN (k; l; i; j)6 !we(i + j + 1); (A.15)

where !ww; !ee and !we are given by (14)–(16). Then

max
k;l∈{1;:::;2n}

|[RN − R]k; l|¡! and

max
k∈{1;:::;2n}

|[fN − f]k |¡!:

Proof. First we consider the elements of RN −R and fN −
f of the form SyyN (k; l). We bound the four terms of the
right-hand side of (A.5) separately. For the %rst term we get

∞∑
i=1

∞∑
j=1

|gi| · |gj| · |SeeN (k; l; i; j)|6 22n1B2
(
1 +

�
�

)2n0−2

∞∑
i=0

∞∑
j=0

i · · · (i + n0 + n1 − 2)
(n0 + n1 − 1)!

�i−1

j · · · (j + n0 + n1 − 2)
(n0 + n1 − 1)!

� j−1!ww(i + j + 1): (A.16)

Introducing the variables ĩ = i − 1 and j̃ = j − 1 the last
expression can be written as

22n1B2
(
1 +

�
�

)2n0−2

!ww


 ∞∑

ĩ=0

ĩ · · · (ĩ + n0 + n1 − 1)
(n0 + n1 − 1)!

�ĩ

∞∑
j̃=0

(j̃ + 1) · · · (j̃ + n0 + n1 − 1)
(n0 + n1 − 1)!

� j̃

+
∞∑
ĩ=0

(ĩ + 1) · · · (ĩ + n0 + n1 − 1)
(n0 + n1 − 1)!

�ĩ

∞∑
j̃=0

j̃ · · · (j̃ + n0 + n1 − 1)
(n0 + n1 − 1)!

� j̃

+3
∞∑
ĩ=0

(ĩ + 1) · · · (ĩ + n0 + n1 − 1)
(n0 + n1 − 1)!

�ĩ

∞∑
j̃=0

(j̃ + 1) · · · (j̃ + n0 + n1 − 1)
(n0 + n1 − 1)!

� j̃




6 22n1B2
(
1 +

�
�

)2n0−2

2(n0 + n1)�+ 3(1− �)
(1− �)2n0+2n1+1 !ww

where we have used

∞∑
k=0

(k + 1) · · · (k + n− 1)
(n− 1)!

�k =
1

(1− �)n

and

∞∑
k=0

k(k + 1) · · · (k + n− 1)
(n− 1)!

�k =
n�

(1− �)n+1 :

For the second term we get

∞∑
i=0

∞∑
j=0

|hi| · |hj| · |SeeN (k; l; i; j)|

6 22n0
∞∑
i=0

∞∑
j=0

(i + 1) · · · (i + n0 − 1)
(n0 − 1)!

�k

(j + 1) · · · (j + n0 − 1)
(n0 − 1)!

�l!ee(i + j + 1)

6 22n0
2n0�+ (1− �)
(1− �)2n0+1 !ee:

The bounds for the third and fourth term are identical and
we get

∞∑
i=1

∞∑
j=0

|gi| · |hj| · |SweN (k; l; i; j)|

6 2n0+n1B
(
1 +

�
�

)n0−1

∞∑
i=1

∞∑
j=0

i · · · (i + n0 + n1 − 2)
(n0 + n1 − 1)!

�i−1

(j + 1) · · · (j + n0 − 1)
(n0 − 1)!

� j!we(i + j + 1)

6 2n0+n1
(
1 +

�
�

)n0−1

B
(2n0 + n1)�+ 2(1− �)

(1− �)2n0+n1+1 !we:

Summing the above expressions and taking into account the
bounds on !ww; !ee and !we given by (14)–(16) we %nd that

|SyyN (k; l)|¡!; k = 0; : : : ; n; l= 1; : : : ; n:

Next we turn our attention to the elements of the form
SyuN (k; l). Bounding the two terms on the right-hand side of
(A.6) separately we get

∞∑
i=1

∞∑
j=0

|gi| · |vj| · |SwwN (k; l; i; j)|

6 22n1B
(
1 +

�
�

)n0−1 ∞∑
i=1

∞∑
j=0

i · · · (i + n0 + n1 − 2)
(n0 + n1 − 1)!
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�i−1 (j + 1) · · · (j + n1 − 1)
(n1 − 1)!

� j!ww(i + j + 1)

6 22n1B
(
1 +

�
�

)n0−1 (n0 + 2n1)�+ 2(1− �)
(1− �)n0+2n1+1 !ww

and
∞∑
i=1

∞∑
j=0

|hi| · |vj| · |SewN (k; l; i; j)|

6 2n0+n1
∞∑
i=1

∞∑
j=0

(i + 1) · · · (i + n0 − 1)
(n0 − 1)!

�i
(j + 1) · · · (j + n1 − 1)

(n1 − 1)!

� j!we(i + j + 1)

6 2n0+n1
(n0 + n1)�+ (1− �)

(1− �)n0+n1+1 !we:

Using the bounds on !ww and !we noting that B¿ 1 by
assumption; we %nd that

|SyuN (k; l)|¡!; k = 0; : : : ; n; l= 1; : : : ; n:

Finally we consider the elements of the form SuuN (k; l). From
(A.7) we have
∞∑
i=0

∞∑
j=0

|vi| · |vj| · |SwwN (k; l; i; j)|

6 22n1
∞∑
i=1

∞∑
j=0

(i + 1) · · · (i + n1 − 1)
(n1 − 1)!

�i

(j + 1) · · · (j + n1 − 1)
(n1 − 1)!

� j!ww(i + j + 1)

6 22n1
2n1�+ (1− �)
(1− �)2n1+1 !ww:

Using the bound !ww we %nd that

|SuuN (k; l)|¡!; k = 1; : : : ; n; l= 1; : : : ; n

and the proof is completed. Note that |SuuN (k; l)| and
|SyuN (k; l)| will usually be much smaller than ! since !we and
!ww are chosen to make |SyyN (k; l)|¡!.

A.4. Bounds on probabilities

In this section, we calculate lower bounds for the proba-
bilities that

SwwN (k; l; i; j)6 !ww(i + j + 1); (A.17)

SeeN (k; l; i; j)6 !ee(i + j + 1); (A.18)

SweN (k; l; i; j)6 !we(i + j + 1); (A.19)

SewN (k; l; i; j)6 !we(i + j + 1) (A.20)

uniformly ∀i¿ 0; ∀j¿ 0; ∀k ∈{0; : : : ; n}; ∀l∈{1; : : : ; n}.

Lemma A.3. Let S0 = {0; : : : ; n} and S1 = {1; : : : ; n}
Pr{|SwwN (k; l; i; j)|6 !ww(i + j + 1) ∀k ∈ S0;

∀l∈ S1 ∀i; j¿ 0}¿ 1− (1; (A.21)

Pr{|SeeN (k; l; i; j)|6 !ee(i + j + 1) ∀k; l∈ S1
∀i; j¿ 0}¿ 1− (2; (A.22)

Pr{|SweN (k; l; i; j)|6 !we(i + j + 1) ∀k ∈ S0;
∀l∈ S1 ∀i; j¿ 0; |SewN (k; l; i; j)|6 !we(i + j + 1)

∀k ∈ S0; ∀l∈ S1 ∀i; j¿ 0}¿ 1− (3; (A.23)

where

(1 =
2n(n+ 3) exp(−N!2ww=4�2w(4�2w + !ww))
(1− exp(−N!2ww=4�2w(4�2w + !ww)))2

;

(2 =
2n(n+ 1) exp(−N!2ee=4�2e(4�2e + !ee))
(1− exp(−N!2ee=4�2e(4�2e + !ee)))2

;

(3 =
2n(n+ 2) exp(−N!2we=4�w�e(4�w�e + !we))
(1− exp(−N!2we=4�w�e(4�w�e + !we)))2

:

Proof. First we compute the probability that |SwwN (k; l; i; j)|
6 !ww(i + j + 1) for all i¿ 0 and j¿ 0 for %xed k and l.
Inequalities (B.2) and (B.3) bound this probability for %xed;
k; l; i and j. To get a uniform bound in i and j we sum
over i¿ 0 and j¿ 0; and we %nd that uniform probability
is at least 1− ( where

( =
∞∑
i=0

∞∑
j=0

4 exp
(
− N!2ww(i + j + 1)2

4�2w(4�2w + !ww(i + j + 1))

)

=
∞∑
m=0

(m+ 1)4 exp
(
− N!2ww(m+ 1)2

4�2w(4�2w + !ww(m+ 1))

)

6 4
∞∑
m=0

(m+ 1)e−2(m+1);

where

2=
N!2ww

4�2w(4�2w + !ww)
:

Using
∑∞

m=0 (m+c1)am+c2 =(ac2 =(1−a)2)(1+(c1−1)(1−
a)) it follows that

Pr {|SwwN (k; l; i; j)|6 !ww(i + j + 1) ∀i¿ 0; ∀j¿ 0}

¿ 1− 4e−2

(1− e−2)2
:
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As SwwN (k; l; i; j)=SwwN (l; k; i; j) there are only n(n+3)=2 dif-
ferent elements of this type for k ∈{0; : : : ; n}; l∈{1; : : : ; n};
and hence we have that

Pr{|SwwN (k; l; i; j)|6 !ww(i + j + 1) ∀k ∈ S0; ∀l∈ S1;
∀i¿ 0; ∀j¿ 0}

¿ 1− 2n(n+ 3)e−2

(1− e−2)2
= 1− (1: (A.24)

The proof for the bound on the uniform probability of
|SeeN (k; li; j)|6 !ee(i + j + 1) follows in exactly the same
manner. The only di=erence being that we have only
n(n+1)=2 di=erent elements since SeeN (k; l; i; j) do not occur
in the expression for the elements of fN − f.

Next we consider the probability that |SweN (k; l; i; j)|6
!we(i+ j+1) and |SewN (k; l; i; j)|6 !we(i+ j+1). Following
the same approach as above and using (B.4) we %nd that

Pr{|SweN (k; l; i; j)|6 !we(i + j + 1) ∀i¿ 0;∀j¿ 0}

¿ 1− 2e−2

(1− e−2)2
;

where

2=
N!2we

4�w�e(4�w�e + !we)
:

We obtain the same bound for |SewN (k; l; i; j)|. Next we ob-
serve that SweN (k; l; i; j)=SewN (l; k; j; i) and hence there are in
total n2 +2n di=erent elements of this type as k ranges over
0 to n and l ranges over 1 to n.

Appendix B. Exponential inequalities

The main theorem we are going to make use of is the
following one taken from Bosq (1998, Theorem 1.2).

Theorem B.1 (Bernstein’s inequality). Let X1; : : : ; XN be
independent zero mean real-valued random variables
and let SN =

∑N
t=1 Xt . Assume there exists a c¿ 0 such

that

E|Xt |p6 cp−2p!EX 2
t ¡∞; t = 1; : : : ; N; p= 3; 4; : : : :

(B.1)

Then;

Pr{|SN |¿ !}6 2 exp

(
− !2

4
∑N

t=1 EX
2
t + 2c!

)
:

Based on Theorem B.1, we have the following corollary

Corollary B.2. Let w(t) and e(t); t ∈Z be zero mean iid
Gaussian variables independent of each other with variance

�2w and �2e ; respectively. Then

Pr

{
1
N

∣∣∣∣∣
N∑
t=1

e2(t − k)− �2
∣∣∣∣∣¿ !(k; k)

}

6 2 exp
(
− N!2(k; k)
4�2e(2�2e + !(k; k))

)
; (B.2)

Pr

{
1
N

∣∣∣∣∣
N∑
t=1

e(t − k)e(t − l)

∣∣∣∣∣¿ !(k; l)

}

6 4 exp
(
− N!2(k; l)
4�2e(4�2e + !(k; l))

)
; k �= l; (B.3)

Pr

{
1
N

∣∣∣∣∣
N∑
t=1

e(t − k)w(t − l)

∣∣∣∣∣¿ !(k; l)

}

6 2 exp
(
− N!2(k; l)
4�e�w(4�e�w + !(k; l))

)
: (B.4)

Proof. See Campi and Weyer (2002).

Appendix C. Bounds on coe%cients

In this appendix, we %rst present a general result bounding
the magnitude of the coeDcients of certain polynomials in
terms of the locations of the zeros and the order of the poly-
nomials. Then we use this result to bound the magnitude of
the coeDcients of G0(q−1)V0(q−1); H0(q−1) and V0(q−1).

Lemma C.1. Let

M (q−1) = 1 + m1q−1 + · · ·mnmq−nm ;
P(q−1) = 1 + p1q−1 + · · ·pnpq−np

be polynomials with all zeros inside a circle of radius �¡ 1.
Furthermore; let

W (q−1) = w1q−1 + · · ·+ wnwq
−nw

be a polynomial with all zeros inside a circle of radius
� and leading coe<cient bounded by |w1|¡B. Then the
coe<cients of the polynomials

M−1(q−1) = 1 + Sm1q−1 + Sm2q−2 + · · · ; (C.1)

M−1(q−1)P(q−1) = 1 + Sp1q
−1 + Sp2q

−2 + · · · ; (C.2)

M−1(q−1)P(q−1)W (q−1) = Sw1q−1 + Sw2q−2 + · · · (C.3)

are bounded by

| Smk |6 (k + 1) · · · (k + nm − 1)
(nm − 1)!

�k ; (C.4)

| Spk |6 2np
(k + 1) · · · (k + nm − 1)

(nm − 1)!
�k ; (C.5)
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| Swk |6 2npB
(
1 +

�
�

)nw−1 k · · · (k + nm − 2)
(nm − 1)!

�k−1: (C.6)

Proof. See Campi and Weyer (2002).

Combining the bounds in the above Lemma we obtain

Corollary C.2. The coe<cients of

G0V0 = g1q−1 + g2q−2 + · · · ;
H0 = 1 + h1q−1 + h2q−2 + · · · ;
V0 = 1 + v1q−1 + v2q−2 + · · ·
are bounded by

|gk |6 2n1B
(
1 +

�
�

)n0−1 k · · · (k + n0 + n1 − 2)
(n0 + n1 − 1)!

�k−1;

|hk |6 2n0
(k + 1) · · · (k + n0 − 1)

(n0 − 1)!
�k ;

|vk |6 2n1
(k + 1) · · · (k + n1 − 1)

(n1 − 1)!
�k :
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