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Abstract

In this paper we consider the �nite sample
properties of least squares system identi�ca-
tion, and we derive non-asymptotic con�dence
ellipsoids for the estimate. Unlike asymptotic
theory, the obtained con�dence ellipsoids are
valid for a �nite number of data points. The
probability that the estimate belongs to a cer-
tain ellipsoid has a natural dependence on the
volume of the ellipsoid, the data generating
mechanism, the model order and the number
of data points available.
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1 Introduction

In this paper we consider the properties of
least squares system identi�cation when only a
�nite number of data points are available. The
asymptotic properties of least squares identi-
�cation are well understood, see e.g. Ljung
(1999) or S�oderstr�om and Stoica (1989), but
it is only recently that results addressing the
�nite sample properties have started appear-
ing, e.g. Weyer et al (1999), Weyer and Campi
(1999), Weyer (2000) and Campi and Weyer
(2000).

In applications it is common to use the asymp-
totic con�dence regions for the parameter esti-
mate, even only a �nite number of data points

are available. In this paper we derive non-
asymptotic con�dence ellipsoids for the least
squares estimate. It is shown that the con�-
dence ellipsoids depend in a natural way on
factors such as the model and system order,
the pole locations and the number of data
points available.

The main tool we make use of in order to
derive the con�dence ellipsoids is exponen-
tial inequalities. Earlier, using di�erent tech-
niques, Spall (1995) has considered uncer-
tainty bounds for general M-estimators for a
�nite number of data points. His results are
however di�cult to use in the situation we
consider here.

The paper is organised as follows. In the next
section we introduce the identi�cation setting.
The main result is given in section 3 while
technical results are given in the appendices.
Due to space limitations only partial proofs
are given.

2 Identi�cation setting

2.1 The data generation mechanism

We assume that the observed data are gener-
ated by a linear system

y(t) = G0(q
�1)u(t) +H0(q

�1)e(t) (1)

where the input signal u(t) is stochastic and
generated by

u(t) = V0(q
�1)w(t) (2)



w(t) is a sequence of independent Gaussian
random variables with zero mean and variance
�2w. The noise process e(t) is a sequence of
independent Gaussian random variables with
zero mean and variance �2e . The assumptions
on u(t) and e(t) are not crucial. The results
can easily be extended to deterministic input
signals and other types of iid noise sequences.
G0(q

�1), H0(q
�1) and V0(q

�1) are transfer
functions in the backward shift operator q�1,
i.e q�1y(t) = y(t� 1); however, for the sake of
readability, we omit throughout to explicitly
indicate the dependence on q�1. Moreover,
G0, H0 and V0 can be written as

G0 =
B0

A0
; H0 =

C0

D0
; V0 =

R0

S0

where

A0 = 1 + a01q
�1 + � � �+ a0n0q

�n0

B0 = b01q
�1 + � � �+ b0n0q

�n0

C0 = 1 + c01q
�1 + � � �+ c0n0q

�n0

D0 = 1 + d01q
�1 + � � �+ d0n0q

�n0

R0 = 1 + r01q
�1 + � � �+ r0n1q

�n1

S0 = 1 + s01q
�1 + � � �+ s0n1q

�n1

and n0 and n1 are upper bounds on the de-
grees. Moreover, we assume that the zeros of
A0, C0, D0, R0 and S0 are inside a circle of a
known radius � < 1, i.e. we assume stability
of the system with a known margin, and also
that the transfer function between the noise
sequence and the output has a stable inverse
with the same stability margin. The zeros of
B0 is assumed to be inside a circle of known
radius �, where � might be larger than 1, i.e.
we allow for non-minimum phase zeros in the
transfer function between u(t) and y(t), and
�nally we assume that jb01j is bounded by a
known constant B.

2.2 Model Class

The model class considered is

A(q�1)y(t) = B(q�1)u(t) + v(t) (3)

where v(t) is a disturbance and

A(�) = 1 + a1q
�1 + � � �+ anq

�n

B(�) = b1q
�1 + � � �+ bnq

�n

(3) can be written in linear regression form
y(t; �) = �T (t)� + v(t) by introducing

�(t) = [�y(t� 1); � � � ;�y(t� n);

u(t� 1); : : : ; u(t� n)]T

� = [a1; : : : ; an; b1; : : : ; bn]
T

Notice that the system itself does not need to
belong to the model class.

2.3 The Identi�cation Criterion

From a system identi�cation perspective, the
most important feature of the above model is
its associated predictor which is given by

ŷ(t; �) = �T (t)�

and the corresponding prediction error is

�(t; �) = y(t)� ŷ(t; �) (4)

Ideally, one would like to choose � such that
the following theoretical identi�cation cost

V (�) = E�2(t; �) (5)

is minimised. The value of � which minimises
(5) is given by

�� = R�1f (6)

where

R = E�(t)�T (t); f = E�(t)y(t) (7)

Since the data generation mechanism is un-
known, one cannot compute the expected
value (5) and the estimate (6). Instead the
empirical version

VN (�) =
1

N

NX
t=1

�2(t; �) (8)

is used, and the corresponding estimate is the
well known least squares estimate

�̂N = R�1N fN (9)

where

RN =
1

N

NX
t=1

�(t)�T (t); fN =
1

N

NX
t=1

�(t)y(t)

(10)

Clearly, �̂N can only be expected to be close to
�� when the the number of data points tends
to in�nity, and this is indeed the case un-
der mild assumptions, see e.g. Ljung (1999).
However, we never have an in�nite number of
data points, and a question that arises natu-
rally is to quantify the di�erence between �̂N
and �� for a �nite N .



3 The main result

In this section we present the ellipsoidal con-
�dence regions for the least squares estimate.
First we bound the probability that the di�er-
ences RN�R and fN�f exceed certain values
(Theorem 3.1), and then we use these results

to bound �̂N � �� (Theorem 3.2).

We have not made any attempt of optimis-
ing these bounds, and in some places we have
made the bounds more conservative in order to
get relatively simple expressions. The bounds
are therefore looser than they need to be, but
they illustrate how the con�dence ellipsoids
depend on important variables, and they show
that in principle we can derive con�dence el-
lipsoids for a �nite number of data points.

Theorem 3.1 For any �nite N , � > 0, � > 0
we can explicitly compute values ���T 2 (0; 1]
and ��y 2 (0; 1] such that

Pr

8><
>:jRN �Rj < �

2
64

1
...
1

3
75 [1 � � � 1]

9>=
>; � 1����T

and

Pr

8><
>:jfN � f j < �

2
64

1
...
1

3
75
9>=
>; � 1� ��y

where the inequalities should be understood el-
ement by element.

Partial proof. See appendix A.

���T and ��y are functions of N; �; n; n0, n1, �,
�, B; �w and �e. The functional dependencies
of ���T and ��y are quite natural. In particu-
lar ���T and ��y tends to 1 when the bound on
the pole positions � ! 1, and/or the system
and model order n; n0; n1 ! 1. This can be
easily understood since under these conditions
the prediction errors will have long range de-
pendencies, and the probability that there is a
large di�erence between the expected and em-
pirical value increases. Also, as expected ���T
and ��y tends to zero as N ! 1, but notice
that for small values of N , � and �, ���T and
��y may be equal to 1, in which case the The-
orem does not yield any useful information.

We are now in the position that we can de-
rive non-asymptotic con�dence ellipsoids for
the parameter estimate.

Theorem 3.2 Assume that the data has been
generated according to (1) and (2). Let �̂N =
R�1N fN and �� = R�1f . If RN � 2n�I is pos-
itive de�nite, then

(�̂N � ��)T (RN � 2n�I)(�̂N � ��) �

(�
p
2njj�̂N jj+ �)22n

�min(RN � 2n�I)

with probability at least 1 � ���T � ��y where
���T and ��y are given in Theorem 3.1.
�min(�) denotes the smallest eigenvalue, and
n is the model order.

The shape of the non-asymptotic con�dence
ellipsoids are similar to those obtained from
asymptotic theory under the assumption that
the true system belongs to the model class. In
the asymptotic case the ellipsoids are given by
(�̂N���)TR(�̂N���), but since R is unknown
it is in practice replaced by its sample mean
RN . The only di�erence between the ellipsoids
is therefore that we subtract the diagonal ma-
trix 2n�I in the non-asymptotic case. Note
however, that even though the shape of the
ellipsoids is similar, the probabilities we as-
sign to the individual ellipsoids may be quite
di�erent in the asymptotic and �nite sample
case. The �nite sample results tend to be on
the conservative side.

Proof: From Theorem 3.1 it follows that

(RN + ~R)�� = fN + ~f

with probability at least 1 � ���T � ��y for

some ~R and ~f satisfying

j ~Rj � �

2
64

1
...
1

3
75 [1 � � � 1]; j ~f j � �

2
64

1
...
1

3
75

It follows that

(�̂N � ��)TRN (�̂N � ��) =

(�̂N � ��)T (RN �̂N �RN�
�) =

(�̂N � ��)T (fN � fN � ~f + ~R��) =

�(�̂N � ��)T ~R(�̂N � ��)+

(�̂N � ��)T ( ~R�̂N � ~f)



and hence

(�̂N � ��)T (RN + ~R)(�̂N � ��) =

(�̂N � ��)T ( ~R�̂N � ~f)
(11)

Since ~R + 2n�I is positive de�nite it follows
that

(�̂N � ��)T (RN + ~R)(�̂N � ��) �
(�̂N � ��)T (RN � 2n�I)(�̂N � ��)

(12)

Next we observe that

(�̂N � ��)T ( ~R�̂N � ~f) �P2n
i=1 j�̂i � ��i j

�P2n
j=1 j�̂j j�+ �

�
From H�older's inequality it follows that
(
P2n

j=1 j�̂j j)2 � 2njj�̂jj2. Hence

(�̂N � ��)T ( ~R�̂N � ~f) �P2n
i=1 j�̂i � ��i j(�

p
2njj�̂jj+ �)

(13)

Thus, by combining (12), (11) and (13) it fol-
lows that

(�̂N � ��)T (RN � 2n�I)(�̂N � ��) �P2n
i=1 j�̂i � ��i j(�

p
2njj�̂jj+ �) �p

2njj�̂ � ��jj(�p2njj�̂jj+ �)

This implies that

jj�̂ � ��jj �
p
2n(�

p
2njj�̂jj+ �)

�min(RN � 2n�I)

and hence

(�̂N � ��)T (RN � 2n�I)(�̂N � ��) �

(�
p
2njj�̂N jj+ �)22n

�min(RN � 2n�I)

4 Concluding remarks

In this paper we have derived non-asymptotic
con�dence ellipsoids for the least squares es-
timate. The shape of the ellipsoids is similar
to that obtained using asymptotic theory, al-
though the probabilities we assign to the ellip-
soids can be quite di�erent. The probability
that the estimate belongs to a certain ellip-
soids has a natural dependence on the volume
of the ellipsoid, the data generating mecha-
nism, the model order and the number of data
points available.
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A Bounds on R(N) and f(N)

The elements of R(N) and f(N) are of the

forms 1
N

PN
t=1 y(t � k)y(t � l), 1

N

PN
t=1 y(t �

k)u(t� l) and 1
N

PN
t=1 u(t� k)u(t� l).

Due to space limitations we will only
derive bounds for the di�erence between
1
N

PN
t=1 y(t� k)y(t� l) and Ey(t� k)y(t� l).

The other bounds follow along the same lines.

Theorem A.1 Let

SyyN =
1

N

NX
t=1

y(t�k)y(t� l)�Ey(t�k)y(t� l)

Then

Pr fjSyyN j � �g � 1� �1 � �2 � 2�3



where

�1 = 4
e
�

N�2ww
4�2w(4�2w+�ww)�

1� e
�

N�2ww
4�2w(4�2w+�ww)

�2

�2 = 4
e
�

N�2ee
4�2e(4�

2
e+�ee)�

1� e
�

N�2ee
4�2e(4�

2
e+�ee)

�2

�3 = 2
e�

N�2we
2�w�e(2�w�e+�we)�

1� e�
N�2we

2�w�e(2�w�e+�we)

�2

�ww � �(1��)2n0+2n1+1

3�22n1B2(2(n0+n1)�+3(1��))
��

�
�+�

�2n0�2

�ee � �(1��)2n0+1

3�2n0 (2n0�+(1��))

�we � �(1��)2n0+n1+1

3�2n0+n1+1B((2n0+n1)�+2(1��))
��

�
�+�

�n0�1

Proof. Let

G0V0 = g1q
�1 + g2q

�2 + � � �
H0 = 1 + h1q

�1 + h2q
�2 + � � �

and let

SwwN (i; j) = 1
N

PN
t=1 w(t� k � i)w(t � l � j)

��k+i�l�j�2w

SeeN (i; j) = 1
N

PN
t=1 e(t� k � i)e(t� l � j)

��k+i�l�j�2e

SweN (i; j) = 1
N

PN
t=1 w(t� k � i)e(t� l � j)

SewN (i; j) = 1
N

PN
t=1 e(t� k � i)w(t � l � j)

where �k+i�l�j = 1 if k + i = l + j and 0
otherwise.

Using (1) and (2) we �nd that����� 1N
NX
t=1

y(t� k)y(t� l)�Ey(t� k)y(t� l)

����� �P
1

i=1

P
1

j=1 jgij � jgj j � jSwwN (i; j)j+P
1

i=0

P
1

j=0 jhij � jhj j � jSeeN (i; j)j+P
1

i=1

P
1

j=0 jgij � jhj j � jSewN (i; j)j+P
1

i=0

P
1

j=1 jhij � jgj j � jSweN (i; j)j
(14)

Suppose that jSwwN (i; j)j � �ww(i+ j+1). Us-
ing the bound on the coe�cients from Lemma
B.1 and (19) and (20) we �nd that the �rst
term on the \right hand" side of (14) is
bounded by

P
1

i=1

P
1

j=1 jgij � jgj j � jSwwN (i; j)j �

22n1B2
�
1 + �

�

�2n0�2 2(n0+n1)�+3(1��)
(1��)2n0+2n1+1

�ww

(15)

Similarly, by assuming that jSeeN (i; j)j �
�ee(i+ j + 1) and jSweN (i; j))j � �we(i+ j + 1)
we �nd thatP

1

i=0

P
1

j=0 jhij � jhj j � jSeeN (i; j))j �

2n0 2n0�+(1��)
(1��)2n0+1

�ee

andP
1

i=1

P
1

j=0 jgij � jhj j � jSweN (i; j))j �

2n0+n1
�
1 + �

�

�n0�1
B (2n0+n1)�+2(1��)

(1��)2n0+n1+1
�we

and it follows that

jSyyN j � � (16)

Next we compute the probability that
jSwwN (i; j)j � �ww(i + j + 1) uniformly in i
and j. Using (17) and (18) we �nd that this
probability is at least 1� � where

� =
1X
i=0

1X
j=0

4e
�

N�2ww(i+j+1)2

4�2w(4�2w+�ww(i+j+1))

=

1X
m=0

(m+ 1)4e
�

N�2ww(m+1)2

4�2w(4�2w+�ww(m+1))

� 4

1X
m=0

(m+ 1)e�(m+1)

where

 =
N�2ww

4�2w(4�
2
w + �ww)

Using (21) it follows that

Pr fjSwwN (i; j)j � �ww(i+ j + 1)g � 1� �1

where the probability is uniform in i and j.



Similarly we �nd that

Pr fjSeeN (i; j)j � �ee(i+ j + 1)g � 1� �2

and

Pr fjSewN (i; j)j � �we(i+ j + 1)g � 1� �3

and the Theorem follows.

B Bounds on coe�cients

Lemma B.1 The coe�cients of

G0V0 = g1q
�1 + g2q

�2 + � � �
H0 = 1 + h1q

�1 + h2q
�2 + � � �

are bounded by

jgkj � 2n1B

�
1 +

�

�

�n0�1
�

k � � � (k + n0 + n1 � 2)

(n0 + n1 � 1)!
�k�1

jhkj � 2n0
(k + 1) � � � (k + n0 � 1)

(n0 � 1)!
�k

Proof: See Campi and Weyer (2000).

C Exponential inequalities

The main theorem we are going to make use
of is the following one taken from Bosq (1998)

Theorem C.1 Let X1; : : : ; XN be indepen-
dent zero mean real-valued random variables
and let SN =

PN
t=1Xt. Assume there exists a

c > 0 such that

EjXtjk � ck�2k!EX2
t <1;

i = t; : : : ; N k = 3; 4; : : :

then

PrfjSN j � �g � 2e
�

�2

4
PN
t=1 EX

2
t
+2c�

Corollary C.2 Let w(t) be a zero mean
Gaussian variable with variance �2w. Then

Pr

(����� 1N
NX
t=1

w2(t� k)� �2w

����� � �(k; k)

)
�

2e
�

�2(k;k)N

4�2w(2�2w+�(k;k))

(17)

Pr

(
1

N

�����
NX
t=1

w(t� k)w(t � l)

����� � �(k; l)

)
�

4e
�

N�2(k;l)

4�2w(4�2w+�(k;l)) k 6= l
(18)

(17) follows from Theorem C.1, noting that
Xt = w2(t)��2w satis�es the conditions in the
Theorem with c = 2�2w, EX

2
t = 2�4w.

In order to prove (18) for k 6= l we use Theo-
rem C.1 with Xt = w(t�k)w(t� l). It follows
that EXt = 0, EX2

t = �4w, c = �2w. How-
ever, Xt; t = 1; : : : ; N are not iid, but, we can
group the time indices f1; 2; : : : ; Ng into two
set A1 and A2 such that Xt; t 2 A1 are iid
random variables and Xt; t 2 A2 are iid ran-
dom variables. For simplicity we assume that
N is even and that A1 and A2 contain N=2
time indices each. Then we have

Pr
n

1
N

���PN
t=1 w(t � k)w(t� l)

��� � �(k; l)
o
�

Pr
n

1
N

��P
t2A1

w(t � k)w(t� l)
�� � �(k;l)

2

o
+

Pr
n

1
N

��P
t2A2

w(t � k)w(t� l)
�� � �(k;l)

2

o
=

2Pr
n

1
N

��P
t2A1

w(t� k)w(t � l)
�� � �(k;l)

2

o
�

4e
�

N�2(k;l)

4�2e(4�
2
e+�(k;l))

D Handy formulas

1X
k=0

(k + 1) � � � (k + n� 1)

(n� 1)!
�k =

1

(1� �)n

(19)
1X
k=0

k(k + 1) � � � (k + n� 1)

(n� 1)!
�k =

n�

(1� �)n+1

(20)
1X

m=0

(m+c1)a
m+c2 =

ac2

(1� a)2
(1+(c1�1)(1�a))

(21)


