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Abstract—Fluidized bed techniques are employed in coal com-
bustion power plants, because they allow for the use of low-quality
fuel and result in low pollutant emissions. The most important dy-
namical difference between fluidized beds and normal combustion
chambers, is that the former are characterized by a significant
loading of carbon, usually absent in conventional plants. Fluidized
beds are remarkably difficult to model, since the process is charac-
terized by a series of complex thermal and mechanical interactions.
In this paper, a nonlinear lumped parameter model of a bubbling
fluidized bed is presented, which captures the leading dynamics of
the process. Furthermore, it is shown that this model can be suc-
cessfully used to estimate the total carbon load based on an easily
accessible plant variable, namely the bed temperature. Estimating
the carbon load is of interest for the control of the plant.

Index Terms—Kalman filtering, modeling, nonlinear systems,
power generation, state estimation.

I. INTRODUCTION

T HE fluidization technique is often used in processes
where a nonhomogeneous reaction takes place, because

of the wide contact surface between solid and gas. Known since
the 1920's, fluidized bed technology was applied mostly in the
chemical and petroleum industry. Only since the 1970's has it
made an appearance in the power plant realm. Compared to a
conventional power plant equipped with pollutant abatement
systems (DENOX, DESOX), a fluidized bed combustor (FBC)
has the advantages of simple operation and the capability
of using low quality fuel, such as nonpulverized coal, mine
residues and waste. Furthermore, the lower operating tem-
perature of an FBC (approximately 850C), leads to lower
emissions of NO and an improvement in the desulphurization
process (the limestone present in the fluidized bed reacts with
SO2 to produce gypsum).

In conventional combustion chambers, the pulverized coal
takes less than a second to burn out. However in an FBC, the
burning time of a coal particle is remarkably higher, due pri-
marily to the reduced temperature and larger dimension of the
particles. In addition, the interactions between coal particles,
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bed air bubble dynamics, and heat transfer to the steam gen-
erator are not straightforward to describe.

Therefore the modeling of an FBC requires the solution of
nontrivial aspects. Usually when a spatial description of the
thermodynamic state is needed, a finite element model is uti-
lized. There also exist a large number of applications, including
plant supervision and combustion control, where the estimation
of global variables such as the average bed temperature or the
fuel inventory (the carbon mass present in the bed), is preferred.
In this case, a simplified model, based on a limited number of
states, appears to be more appropriate.

When measures of some characteristic variables are available,
the performance of such a simplified model can be improved by
introducing suitable filtering techniques. This would entail inte-
grating information given by physical laws with those obtained
from measurements on the real plant. This approach is particu-
larly necessary in an FBC, since the full set of state variables is
not known empirically.

Direct, real-time measurement of thechar loading, i.e., the
coal mass after the release of its volatile matter and water
content, can be carried out only by resorting to expensive and
weakly reliable techniques, e.g., the steady-state withdrawal
and analysis of a sample of bed content. On the other hand,
an estimate of the char loading is necessary, since it is one of
the key variables in the FBC process, describing the potential
amount of heat available in the bed. For instance, an excessive
rise in bed temperature and even bed smelting may occur if
this variable gets too high. In the opposite case, low levels of
the char content may cause difficulties in controlling the com-
bustion power. Finally, the char loading affects the combustion
efficiency and the emission of NO[1].

The purpose of this paper is to present the results of research
jointly developed by the Centro di Ricerca di Automatica (CRA)
of ENEL S.p.A. (the Italian electricity board) and the Diparti-
mento di Elettronica e Informazione (DEI) of the Politecnico di
Milano. The main objective was to develop a simple nonlinear
model of an FBC, which is able to capture global dynamic ef-
fects of the plant, and integrate it with information available by
temperature measurement. This will ultimately improve the per-
formance of the FBC, and provide a reliable estimation of the
char mass, without direct measurement.

This work mainly refers to a 1MW pilot bubbling FBC plant
located at the ENEL research station in Livorno, put into opera-
tion in 1990. Preliminary reports on the project can be found in
[2] and [3].

The model design ended up being a second order model,
having the char mass and the temperature as state variables. An
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additional state variable can be introduced in the case when bed
load or discharge takes place. Since the model is inherently non-
linear, the problem of state estimation was treated by means of
an extended Kalman filter (EKF) algorithm.

This paper is organized as follows: after a brief presenta-
tion of the structure and operating conditions of the plant (Sec-
tion II), a lumped parameters model of the Livorno FBC is de-
scribed (Section III) (this model is based on the physical de-
scription of the plant, but it is simple enough to be a valid in-
strument for supervision, control, and real-time estimation pur-
poses). Tuning of the model and the results obtained in state
estimation are described in Sections IV and V, respectively, and
some concluding remarks are reported in Section VI.

II. DESCRIPTION OF THEPLANT

An FBC combustor contains a bed of small diameter particles
such as sand. When gas is uniformly injected from the bottom
with a velocity exceeding a threshold value, the minimum flu-
idization speed , the bed level is observed to rise. The mix-
ture between air and solid has a homogeneous physical behavior,
comparable to a liquid. During the injection process, air bubbles
rise from the bottom to the top of the bed. This particular con-
dition is known asbubbling fluidization. For more details about
fluidization dynamics, see [4].

FBC’s can be schematically represented by Fig. 1. Air is pres-
surized, preheated, and injected into the bed through a distrib-
utor, which is designed to produce a uniform air flow. The in-
jected air passes through the bed, comprised of sand, limestone
(CaCO3) and fuel (usually coal), which takes part in the chem-
ical reactions of combustion. Thermal power is absorbed by bed
heat exchangers and wall pipes. The residuals of combustion are
exhaust gases blown out through the chimney. The desulphur-
ization reaction between limestone and SO2 produces CaSO4
(discharged out the bottom of the combustor), and CO2. The
pilot FBC plant in Livorno is about 7 m high and has a circular
section of approximately 1 m2. It usually operates at 850C, a
temperature that has been optimized to obtain maximum effi-
ciency in desulphurization. The feed coal flow rate is around
110 kg/h and air is injected at 1250 kg/h.

Note that the temperature of 850C is typical as an operating
point for FBC plants, whereas the coal flow and the air flow
rate may cover wide ranges depending on the size, the generated
power and the purpose of the specific combustor. Nevertheless,
there is a strict relation between coal and air flow rates, to ensure
clean and efficient combustion.

There are four main subprocesses which the coal particles
undergo in FBC plants. When the particles are introduced into
the combustor, they immediately dry up due to high temper-
ature, so that their water content is completely released. This
subprocess is called desiccation. The pressure of gases such
as carbon dioxide, hydrogen, and methane present in the par-
ticles rise sharply, causing the particles to break into fragments
and the gases (volatile matter) to devolatilize. At the temper-
ature of 850C and in the presence of oxygen, the carbon oxi-
dizes to produce primarily carbon dioxide and small amounts of
carbon monoxide. This is the combustion subprocess. The abra-
sion sub-process is due to the attrition which occurs between

Fig. 1. The FBC combustor.

sand and coal. This leads to a decreased diameter of the coal
particles, and to the production of particles of very small diam-
eter (thefines) which partially burn in the bed. Finally, the coal
particles react with the oxidiser in the combustion process.

A thorough model based on a physical description of the plant
was developed by ENEL-CRA in [5]. It is a nonlinear model
with distributed parameters, based on a finite element approach.
The model can describe the operating condition of the com-
bustor with high precision, and has been used for simulation
purposes. The bed and the upper combustor (thefreeboard) are
subdivided into cells, characterized by nonuniform properties.
This is mainly due to the complex geometry of the in-bed pipes
changing the heat absorption in different zones. Heat absorp-
tion is modeled by also dividing the walls and in-bed pipes into
cells. This model has been validated in Livorno by ENEL S.p.A.
through direct plant measurements, carried out at different op-
erating configurations, both static and dynamic [5]. In the pro-
ceeding section, this model will be referred to as thesimulator.

III. T HE MODEL

The first objective is the development of a simple, lumped pa-
rameters model of the phenomena taking place in FBC plants.
Although the simplified model is based on the same physical
principles and governing law as the simulator, the design of the
former comes from a completely different perspective. The re-
sult from giving a description of the heat generation in terms
of global variables leads to the formulation of a uniformity hy-
pothesis, while in the simulator the precise description of local
phenomena is an issue.

As a result, it is assumed that the coal particles have a uniform
diameter, and that desiccation and devolatilization dynamics are
neglected. The coal and bed temperatures, uniform throughout
the bed, are assumed to evolve with the same dynamics, since
the char thermal capacity is negligible with respect to those of
solids. Finally, the relationship between the bed-water exchange
surface and bed height is assumed to be linear, neglecting the
geometry of the in-bed pipes.

The model structure is modular, as shown in Fig. 2; (the
coal flow rate) (the air flow rate), (the input air temper-
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Fig. 2. The model structure.

ature), (the wall pipes temperature), (the in-bed heat
exchanger temperature), (the input solid flow rate) and
(the output solid flow rate) are input variables, while(the char
mass), (the average solid temperature) and(the solid mass)
are state variables. Each module of Fig. 2 is examined in turn in
order to develop an adequate model.

A. Fluid-Dynamics

A simplified description of the complex fluid-dynamics of the
plant can be achieved by the two phase theory [6], according to
which the bed is composed of:

1) a bubble phase (without solids). Denotingas the super-
ficial speed of the inlet air, and the air mass flow rate
through the bubble phase, the basic relationship among
these quantities is

(1)

which has the same structure as standard two-phase
theory except for the introduction of the correction
coefficient [7]. In (1), is the cross section of the
bed and is the air density. The superficial velocityis
determined as follows:

2) an emulsion phase (containing the solids) in which the air
mass flow rate is given by

The superficial gas velocity at minimum fluidization
and the corresponding bed voidage are related by the
Ergun equation [8], whereas an empirical correlation by
Thonglimp [9] is used to obtain .

B. The Char Mass Conservation Equation

Upon heating, coal releases its water content and then decom-
poses to produce char and volatile matter. These phenomena are
characterized by a very short-time scale in comparison with the
char combustion dynamics, so they can be described by alge-
braic equations. Precisely, the mass flow rate of volatiles,,
is determined as a fraction, , of the feed coal flow rate, :

The char flow rate, , is the balance between the coal,
volatiles, and evaporating water flow rate

where is the fraction of evaporating water contained in the
feed coal. The analysis of coal composition allows the determi-
nation of and .

The combustion of char is a heterogeneous reaction between
carbon and oxygen and involves the surface of the char particles
only. The diameter of the char particles decreases progressively
with a shrinking velocity, dependent on combustion and attrition
with adjacent solid particles. The global char mass conservation
equation is given by

(2)

where is the mass flow rate of char consumed by attrition,
and is the mass flow rate of burning char.

The abrasion flow rate is roughly proportional, through
a determined constant , to the excess of inlet air velocity
with respect to , and to the particles total surface [10]. By
defining as the average abrasion diameter, one can intro-
duce

(3)

Burning takes place at the surface of each particle due to oxygen
diffusion from the bulk of the emulsion phase. Under the spher-
ical assumption, the surface is given by

where is the conventional average burning diameter, and
is the char density. The burning flow rate mainly depends on

the size of the coal particle, the amount of char available in the
bed, and the oxygen concentration in the emulsion phase,
averaged along the vertical extension of the bed. This yields

(4)

where is the fraction of unburned residues. The parameters

and

are the so called reaction rate [11] and mass transfer coeffi-
cients [12], which, respectively, account for limitations in com-
bustion due to chemical kinetics and oxygen transport speed in
the neighborhood of the coal particle. Here, is the activa-
tion energy for the coal burning reaction,is a constant, and
is the oxygen diffusion coefficient in the immediate surround-
ings of the coal particle. Note that the average diameterin
(4) may not coincide with diameter of (3). This is due to
the diversity of the surfaces involved in the related physical phe-
nomena. In fact, combustion takes place not only on the external
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surface of the char particle, but also in some small cavities in-
side the particle, so that theequivalentsurfaces of the char par-
ticle related to combustion and attrition may differ. Typically

.

C. Fines Combustion

The fines combustion rate in the bed is controlled by the avail-
ability of oxygen in the emulsion phase and by the so calledper-
colation velocityof fines along the bed [5]. Since the fines com-
bustion phenomenon is extremely complex, some simplification
is required to develop a tractable model. We have assumed that
only a fraction, , of the fines mass flow rate, , produced in
the bed is actually burned:

where is given by the empirical correlation

The coefficient will be estimated based on the reference
model of the plant.

D. The Energy Conservation Equation

The energy balance takes the following form:

(5)

where is the char heat capacity and the solid heat
capacity.

The input power is the sum of the heat per unit time released
by the burning char , the burning fines and burning
volatile gases , while the output power is absorbed by the
bed , wall heat exchangers, and transported by air
flowing through the bed . In (5), some terms have been
neglected. Namely, the power output associated to discharged
solids, since in normal operation and are very small,
and the power output needed for to heat the feed coal is a small
fraction of the total heat.

The thermal power released by char combustion,, is ex-
pressed as

where is the char burning rate, according to (4) and is
the combustion heat.

The energy rate released by volatile matter combustion is pro-
portional to the mass flow of volatiles, where is the heat of
combustion of volatiles

The combustion of fines (whose combustion heat is is rep-
resented by , which is given by

The term is the power delivered to heat the air mass flow
from the inlet temperature (enthalpy to the bed temperature

(air enthalpy at atmospheric pressure, , is computable from
appropriate tables).

Finally, is the thermal power transferred to the cooling
surfaces

and are the exchange surfaces of walls and pipes, de-
pendent on the bed height; and are the heat transfer co-
efficients

where and are heat radiation and convection coeffi-
cients related to walls (subscript), horizontal (subscript hor)
and vertical (subscript ver) pipes. is the heat transfer coef-
ficient of the refractory material protecting the wall pipes. All
these coefficients are functions of the state variables and plant
characteristics, omitted here for brevity. Moreover,and
are two empirical coefficient, taking into account uncertainties
that the model cannot interpret, such as nonuniformities in bed
heat absorption.

E. The Oxygen Concentration

In the proposed model for char combustion the char reac-
tion rate is determined by the average oxygen concentration in
the emulsion phase, where all heterogeneous reactions are as-
sumed to occur. Oxygen concentration varies vertically in both
the emulsion and bubble phase due to the reactions that take
place along the air flow through the bed. Furthermore, oxygen
is transferred from the bubble to the emulsion phase, with a mass
transfer coefficient given by a suitable empirical law [13]. De-
noting and as the oxygen concentration in the emul-
sion and bubble phases respectively, and, and as some
given coefficients, the oxygen mass concentration equations in
the emulsion and in the bubble phase are

(6)
The storage terms containing the time derivatives in this equa-
tion will henceforth be neglected. This is because the associated
transient phenomena are very fast compared to others described
in the model. Terms containing partial derivatives with respect
to the vertical coordinate are transport terms. The quantity

is the oxygen mass transfer
between the two phases; represents the oxygen con-
sumption rate due to char combustion, whereasrepresents
the oxygen consumption rate due to volatiles and fines combus-
tion.

Equations (6) have been integrated with the boundary condi-
tion that at , the oxygen concentration in the bed (both
emulsion and bubble phase), is equal to the oxygen concentra-
tion in the inlet air. Averaging the oxygen concentration yielded
by the numerical solution of system (6) along the emulsion
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phase, we can obtain the mean oxygen concentration in the
emulsion phase, , used in the model.

F. The Bed Mass Conservation Equation

Ignoring the consumption of limestone in the desulphuriza-
tion reaction, we find that the total mass of sand and limestone
present in the bed depends on the inlet and outlet solid mass
flow rates, according to the following equation:

(7)

G. The Model of the Plant

In conclusion, the equations governing the system dynamic
behavior are the char mass conservation equation (2), the bed
energy conservation equation (5) and the bed mass conservation
equation (7)

(2)

(5)

(7)

Thus, the model of the plant is a third-order nonlinear dynamic
system with (char mass), (bed temperature) and (bed
solid mass) as state variables, (feed coal mass flow rate),
(air mass flow rate), and (inlet and outlet solid mass flow
rates) as input variables and(bed temperature) as the output
variable. The model can be further simplified by making refer-
ence to those operating conditions where the input and output
solid flow rate coincide , so that (7) can be dropped.

IV. PARAMETER SELECTION AND MODEL VALIDATION

The model equations contain a large number of parameters
whose precise values are unknowna priori. These parameters
are the average burning and abrasion diameters, and ,
the constant , present in the modeling of the fines burning
mass flow rate and finally and , parameters appearing in
the description of wall and bed heat exchange rates. Tuning of
these parameters was carried out in order to match the steady-
state behavior of the simplified model to that of the simulator.
A typical steady-state condition (referred to as), with input
values are shown in Table I, was considered.

The conditions of were chosen according to realistic op-
erating conditions of the Livorno plant. The tuning process first
required a sensitivity analysis of the system to the parameters,
followed by several steady-state simulations on the simplified
model, searching for the parameter set which minimized the rel-
ative error between model and simulator. Specifically, tuning
was performed using considerations that some parameters have
a stronger influence on particular variables. For instance,
and influence power output. Their values were determined
so that the modeled and were close to the simulated
ones. In the same way, and are strictly related to
power input. can be tuned in order to reduce the error be-

TABLE I
STEADY–STATE CONDITION

S1

TABLE II
PARAMETERS VALUE

TABLE III
MATCHING BETWEEN MODEL AND SIMULATOR AT S1

tween modeled and simulated char mass. Of course, these links
between parameters and system variables are not independent
of each other, and these considerations can only be viewed as
guidelines for the tuning process.

The selected set of tuned parameters is given in Table II, while
in Table III a comparison among the steady-state values of the
variables at is displayed.

We can observe that the model correctly describes the be-
havior of the plant, at least at . With the goal of validating
the model with the chosen set of parameters, several tests in dif-
ferent steady and transient conditions were performed, as indi-
cated in the following steps.

1) Starting with , the model was tested by matching state
variable transients of the simulator and the model when a
5% or 10% step was imposed to the input variablesor

. These tests showed that in a neighborhood of the
condition, the dynamic behavior of the simplified model
and simulator are quite similar [See Figs. 3(a) and 3(b)].

2) Two further steady-state conditions, namedand ,
were considered (Table IV). and were obtained by
modifying , and from the values in . The
model behavior was tested in the neighborhoods of the
additional operating points.
The comparison between the simulator and the model
tuned for was now performed. The disagreement is
now not negligible, about 5% for the char mass and for
the bed temperature, as shown in Table V.

This was confirmed by transient tests starting from the new
conditions (see Fig. 4). From the previous discussion, it follows
that the model is sensitive to the specific operating condition;
as such, it should be tuned accordingly. A set of values for the
parameters is needed for each steady-state condition. There is
clearly a link between the parameters and steady-state condi-
tions.
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Fig. 3(a). Negative step of 10% ofw starting fromS1.

Fig. 3(b). Positive step of 10% ofw starting fromS1.

To achieve good matching between the simplified model
and the simulator, it was therefore necessary to tune the model

TABLE IV
STEADY STATE CONDITION S2 andS3

TABLE V
MATCHING BETWEEN MODEL AND SIMULATOR AT S2

Fig. 4. Negative step of 10% ofw , starting fromS2.

around and . In Table VI we report the parameter values
relating to the tuned model in and .

Note that the state variables are sensitive to small variations of
and . The results obtained from a sensitivity analysis

of the model in the neighborhood of show, for instance, that
a 10% increase of leads to an excess of more than 8% of
the char mass. It is clear that an extremely precise tuning of the
model is required around each operating point.

The need to tune the model over a range of operating condi-
tions could be avoided by determining the parameter values as
functions of the system state. However, due to the large number
of parameters appearing in the model equations, this seems to
be a remarkably complex task. Despite these conclusions, the
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TABLE VI
PARAMETERS VALUES

simplified model presented in this paper can correctly describe
the main dynamics of an FBC with two or three simple lumped
parameters equations, and is more tractable than the simulator
model.

V. IMPROVING THE STATE ESTIMATION

In order to improve the estimation of state variables and over-
coming the problem of retuning the model according to oper-
ating condition modifications, a natural strategy would be to in-
tegrate the information provided by the model with data from
available experimental measurements. Extended Kalman filter
techniques (for a description of EKF see, e.g., [14]) are em-
ployed when state estimation of nonlinear systems is required;
in particular, we will show how the use of an EKF applied to
the simplified model for leads to fair state estimations, even
under different operating conditions.

We assume that the plant operates with a constant mass of
solids, so that the model considered is second order. The objec-
tive of the filter is to estimate the state variable, starting with
the real time measurement of the temperature.

The state, output, and input variables are given by

To apply EKF concepts, the plant model described by (2) and
(5) is modified to incorporate disturbance terms as follows:

The disturbance vector summarizes all
random effects as well as the mismatch of the simplified model
from reality. Its intensity matrix will be denoted by .

Analogously, the output equation

is modified to

with the white noise, , having variance , accounting for
measurement errors.

For application of the EKF, a linearized model of the plant is
required. The dynamic and output matrices of such a linearized
model, as defined in [14], are obtained by numerically calcu-
lating the derivatives of (2) and (5). This method is preferred
over analytically evaluating the derivative, mainly for its flex-
ibility. In fact, if the model is to be corrected or modified, the
adoption of a numerical method avoids analytical recalculation
of the derivatives. Finally, since the filter design requires the
solution of a Riccati equation based on the linearized model to-
gether with and , starting from some initial condition—say

, these last three matrices must be properly assigned. This
is the most delicate phase in the design of the estimation algo-
rithm.

describes the intensity of the measurement error from the
temperature transducer: a largerimplies less confidence in
the measurements. By considering experimental data obtained
from tests at the Livorno plant, the value of was taken.
The initial value of the estimation error variance,, affects the
convergence speed, and therefore can be seen as a reliability
index of thea priori estimated initial state. The intensity ma-
trix is the only parameter whose tuning attempts to optimize
the steady-state estimation, sincedepends on the instrument
precision and uniquely affects the convergence speed of the
algorithm. The relative weights betweenand play an im-
portant role in the filter tuning process [15]. If theentries are
higher than , the filter will have confidence in the measure-
ment set; in the opposite case, the measurements are not con-
sidered to be reliable data.

The procedure for the selection of in the case of the char
mass estimation problem is based on the possibility of attaining
direct or indirect information on the real value assumed by the
state variable. In general, the rationale is to chooseso that,
at any time , the error between the estimated char mass and
the true value is minimized. If we assume that the true value of
the char mass is available in steady-state conditions, an
appropriate measure of the performance of the EKF is given by
the cost function

where is the estimated char mass in theth steady-state con-
dition for a given . can then be selected over a feasible range
to minimize .

Unfortunately, this method was not directly applicable, since
the few char mass experimental measurements carried out by
ENEL, using expensive sampling withdrawal techniques, had
very low reliability and were affected by non systematic errors.
Measurement unreliability is due to the nonuniform char distri-
bution. The extracted 1–kg bed sample may have a measured
char density different from the mean value. For these reasons,
in the tuning of matrix , we resorted to the simulator in place
of the real plant.

By denoting with the value of the char mass as in the
th steady-state condition provided by the simulator, the cost

function becomes
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TABLE VII
OPTIMUM VALUE FOR J ’

In Table VII, ' is evaluated and minimized considering five
steady-state conditions around, with a grid of nine values of

, assumed to be diagonal. The chosen steady-states were
and those obtained by a 10% increase or decrease in the amount
of air and coal flow rate, respectively.

The chosen value of corresponding to the minimum' was

The estimation algorithm was tested in steady-state and tran-
sient conditions, repeating the tests presented in Section IV with
the EKF tuned as previously shown. The real measurement of
the temperature was replaced with the simulator output variable.
An artificial Gaussian white noise of variancewas added in
order to account for measurement disturbances. In these tests
the value

was selected. The choice of small values for theentries is a
consequence of the fact that the simulations are carried out with
an initial filtered state close to the simulated one. It has been
observed that larger values lead to a slower convergence speed,
even if filtered and simulated initial states are different.

1) Starting from , new transients were calculated
when a 5% or 10% step of the inputs was imposed.
Figs. 5(a) –5(b) show the matching between simulator,
model, and EKF for a specific transient. When the model
is well tuned about a steady condition, one can observe
that the filter and model have similar behavior in the char
mass estimate. In this case, the information carried by
measurements is almost useless.

2) In the case, the model tuned to poorly fits the sim-
ulator data (see Section IV). In contrast, application of
the filter leads to an improvement in the mass estimation.
From Fig. 6, one can see that the estimate, starting from
the condition, is closer to the simulator value.

Several different transient tests starting from the op-
erating point with step inputs of or were performed.
They all showed that the Kalman filter-based algorithm with

tuned as described above, allows one to obtain an adequate
estimate of the char mass. A set of these simulations is reported
in Figs. 7(a), 7(b), and 7(c), where one can observe the
improvement in char mass estimation provided by the EKF.
By evaluating the differences between the final and the initial
steady-state related to each step response, the percent EKF
estimation error is always less than the open-loop model.
Surprisingly good results are shown in Figs. 7(a) and 7(b),
where the error is reduced from 30–40% to 1–5%. In Fig. 7(c)
the estimation error drops from 36% to 27%, but if the absolute

Fig. 5(a). Negative step of 10% ofw starting fromS1.

Fig. 5(b). Positive step of 10% ofw starting fromS1.

Fig. 6. S2: convergence of the estimate to the simulated char mass.

value is considered, the char mass estimation error is just few
kilograms.

VI. CONCLUDING REMARKS

In this paper, the main features of a simplified model of a
FBC plant are presented. This is a lumped parameter third-order
model, and contains five uncertain parameters that must be
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(a)

(b)

(c)

Fig. 7. (a) Positive step of 10% ofw starting fromS2. (b) Negative step of
10% ofw starting fromS2. (c) Positive step of 10% ofw starting fromS2.

tuned. The design of such a model arises from the need to
capture the main process dynamics, in order to support super-
vision and control strategies in the combustion chamber, and to
provide an estimate of important unknown state variables, such
as the char mass.

In general, it has been shown that the simplified model has
good performance only in the neighborhood of the steady-state
condition where the parameters have been tuned. A significant
improvement of the state estimation is achieved by utilizing
EKF techniques employing temperature measurements.

To apply the estimation algorithm, one must select the ma-
trices and . Guidelines to design a suitable, based on
simulations, have been provided. Furthermore, the application
of the algorithm allows one to avoid tuning the model parame-
ters every time there is a change in the plant operating point.

We can argue that this method, developed for the Livorno
plant, can be applied in similar FBC plants, after having retuned
the main parameters of the model and the EKF to obtain good
performance.
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