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Learning dynamical systems in a stationary environment
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Abstract

We consider the problem of learning the input–output relation of a dynamical system from noisy data. Our method rests on
the use of a smooth simultaneous estimator which generalizes the standard empirical estimator. In a stationary environment,
our algorithm is shown to select a model which exhibits the Probably Approximately Correct (PAC) property under very
mild conditions.
This contribution should be thought of as a �rst attempt to extend concepts developed in learning theory to the �eld of

system identi�cation where, due to the presence of the system dynamics, the typical i.i.d. assumption on the data made in
learning theory is not satis�ed. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Learning theory, as it has developed over the past
15 years, has been by and large focused on mathe-
matical objects of static structure. For example, in the
problem treated by Valiant [14] the goal is to learn
a binary valued function c(x) de�ned on an arbitrary
set X , given data which are labeled sample points of
the form (xt ; c(xt)), where the xt’s are drawn indepen-
dently of one another according to an unknown proba-
bility distribution P on X . The framework of learning
binary valued functions has been thoroughly investi-
gated at least in the two extreme cases in which P
is either a �xed known probability (called �xed dis-
tribution learning) or it can be any probability on X
(called distribution free learning).
Extensions to more general learning settings started

to appear in the late 1980s, e.g., [1–5,7,9,10]. In par-
ticular, in [7] Haussler introduced a learning frame-
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work where each datum consists of a point xt and an
outcome yt belonging to an arbitrary space Y called
the outcome space. These data are generated according
to an unknown distribution on X ×Y . The statistical
uctuation of y for a given x describes the noise and,
possibly, extraneous variables a�ecting the data gen-
eration mechanism. This point of view is also adopted
in the present contribution.
A common feature of all the above referenced pa-

pers is that the points xt are drawn independently of
one another. This rules out the possibility of any mem-
ory and thus dynamics in the data generation mecha-
nism, and therefore the ability to model the problem of
learning dynamic systems, i.e., system identi�cation,
within this framework.
In the learning literature, much work has been de-

voted to the establishment of conditions under which
the so-called empirical estimator estimates simulta-
neously over the considered hypothesis class. This
property, however, is not necessary for learnability,
since one may use estimators other than the empirical
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estimator. In [4,5], among other contributions,
Buescher and Kumar introduce a new canonical esti-
mator and show that it works even in cases in which
the empirical estimator does not.
In this paper our main goal is to study the problem

of identifying dynamical systems in the context of a
learning theoretical framework. We do so by extend-
ing some of the results of [4,5] from an i.i.d. setting
to a stationary environment. Allowing for a stationary
setting is important in that it allows one to venture be-
yond the memoryless case and to enter the world of dy-
namical systems. Our contribution should be thought
of as an attempt to bridge the existing gap between
learning theory and the theory of identi�cation of dy-
namical systems. For other approaches to addressing
dependency we refer the reader to [1,3].

2. Problem description

Consider a single-input–single-output system with
input ut∈U and output yt∈Y , where U and Y are
totally bounded subsets of R.
We assume that yt is conditionally independent

of u∞
t+1; y

t−1
−∞ and y∞

t+1 given ut
−∞ (throughout,

us
r := (ur; ur+1; : : : ; us) and ys

r := (yr; yr+1; : : : ; ys)).
This condition serves two purposes. First, it ensures
that the system is causal. Second, it also implies that
all the correlation in the y process is generated by the
input process u.
We assume that the system is in a stationary en-

vironment, i.e. that the joint process (ut ; yt) is strict-
sense stationary. Moreover, for convenience, we also
assume that it is ergodic (i.e., its invariant �-algebra
is trivial).
Then, we see that the system is completely de-

scribed by the (unknown) time-invariant conditional
distribution of yt given ut

−∞, henceforth referred to
as Py=u.
Alternatively, letting s(ut

−∞) :=
∫
Y yPy=u(dy; u

t
−∞),

the system can also be supposed to be in the form yt=
s(ut

−∞)+dt , where dt :=yt−s(ut
−∞) is conditionally

white given the past, i.e., E[dt=ut
−∞; yt−1

−∞] = 0. The
stochastic process dt can be regarded as an additive
disturbance a�ecting the output yt .
Once the probability distribution of {ut}+∞t=−∞ has

been speci�ed, Py=u completely de�nes a probability
measure P in the space U∞×Y∞ of doubly in�-
nite sequences (u+∞−∞; y+∞−∞). We assume that P is un-
known but it belongs to some prespeci�ed set P.

The learning problem considered here is to deter-
mine a suitable q-dimensional approximation of the
function s, where q is an integer that will be regarded
as prede�ned and �xed throughout. The approxima-
tion function h is selected from a hypothesis setH of
functions from Uq to Y .
Given an estimate (or model) h, one can measure

its accuracy by the error criterion given below.

De�nition 1 (Error between P and h). The error be-
tween P and h is de�ned as

err(P; h) := lim
t→∞

1
t − q+ 1

t∑
i=q

(yi − h(ui
i−q+1))

2

=EP[(yt − h(ut
t−q+1))

2]:

Note that the last equality in De�nition 1 is a con-
sequence of the ergodicity assumption.
Clearly, err(P; h) is the expected error we make by

using model h to predict yt ; hence it is sometimes
referred to as the generalization error.

De�nition 2 (Optimal error). The optimal error is
the minimum error over h∈H,

opt(P;H) := inf
h∈H

err(P; h):

Suppose that at time t data (u1; y1); : : : ; (ut; yt) have
been collected. From this data, one wishes to construct
an estimate h. This is done by an algorithm, which is
an indexed family of maps at : (U ×Y )t →H; where
t is the index.
Our goal is to construct an algorithm which ap-

proaches the optimal error asymptotically as follows:

De�nition 3 (Nonuniformly learning algorithm). An
estimator at is said to learn (possibly) nonuniformly
over (P;H) if for all ”¿0,

lim
t→∞ P{err(P; at(ut

1; y
t
1))− opt(P;H)¿�}

=0; ∀P∈P:

The reason for the usage of the quali�er “nonuni-
form” is that, as compared to other notions of learn-
ability, in De�nition 3 the convergence is not required
to take place uniformly in P∈P.
Such an algorithm may or may not exist, and so we

introduce the following de�nition.

De�nition 4 (Nonuniform learnability). (P;H) is
(nonuniformly) learnable if there exists an algorithm
at which learns nonuniformly.
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Remark 1. In the de�nition of err(P; h), the second
equality follows from the assumption that process
(ut ; yt) is ergodic. In the nonergodic case, we would
instead have

err(P; h) := lim
t→∞

1
t − q+ 1

t∑
i=q

(yi − h(ui
i−q+1))

2

= EP[(yt − h(ut
t−q+1))

2=J];

whereJ is the invariant �-algebra of process (ut; yt).
As a consequence, err(P; h) is itself a random variable.
When (ut; yt) is not ergodic, one should be par-

ticularly careful in the de�nition of optimal error for
the reason explained below. Since an algorithm se-
lects an hypothesis on the basis of the realization at
hand, in the nonergodic case, it is natural to com-
pare in De�nition 3 the quantity err(P; at(ut

1; y
t
1)) with

the optimal error obtained by minimizing err(P; h),
when h is a random element measurable with respect
to the invariant �-algebra J. Correspondingly, the
optimal value in De�nition 2 should be de�ned as
opt(P;H) = inf err(P; h), where inf is taken over the
set of J-measurable elements h∈H.
The optimal error obtained by allowing h to be ran-

dom is in general strictly lower than minimizing over
deterministic hypotheses. A simple example su�ces
to make this point clear. Suppose that U = Y = {0; 1}
and that yt=ut; ∀t. Moreover, assume that with prob-
ability 0.5 the input sequence is 0; 0; 0; : : : and, with
probability 0.5, it is 1; 1; 1; : : : : Finally, let q=1 and
consider H= set of constant functions from U to Y
(clearly, H has only two elements, h0≡ 0, h1≡ 1).
Clearly, if h is constrained to be deterministic, select-
ing h0 results in a nonzero error when ut=1; 1; : : : and,
similarly, selecting h1 leads to a nonzero error when
ut = 0; 0; : : : : On the other hand, if h is allowed to be
stochastic, we can take h0 in the invariant set where
yt = ut = 0; ∀t and h1 in its complement. The corre-
sponding error is obviously zero.
In connection with the discussion above, we also

note that, given a certain dynamical system, it is pos-
sible that a certain hypothesis class is too restricted
when the system operates in an ergodic environment
and yet it can be rich enough to describe one by
one the input–output relations corresponding to dif-
ferent invariant sets in a nonergodic environment.
Therefore, we see that learning in a nonergodic
framework may be easier than learning in an ergodic
setting.
In the present contribution, our attention is focused

on the ergodic setting only for notational convenience,

no particular di�culty being involved in the extension
of our results to the nonergodic case.

The above learnability de�nition is amenable to
the following obvious interpretation. Set f(ut

t−q+1) :=
EP[yt=ut

t−q+1] and de�ne �t :=yt − f(ut
t−q+1). Then,

the system can be written as yt = f(ut
t−q+1) + �t .

If f∈H, learnability implies the existence of an al-
gorithm at such that the L2-norm of the di�erence be-
tween at(ut

1; y
t
1) and f tends to zero in probability.

Precisely, for all ”¿0,

P{EP[(at(ut
1; y

t
1)− f)2]¿”}→ 0; t→∞:

When f =∈H, at(ut
1; y

t
1) provides an approximation of

f whose L2-error tends in probability to the best one
in the classH.
A key point for the design of a successful learn-

ing algorithm is the possibility of estimating certain
expected values from data sequences. In a stationary
environment, this calls for some mixing condition on
the involved processes.

Assumption 1. For any positive bounded function
� :Uq × Y →R, it holds that

P

{∣∣∣∣∣ 1
t − n− q+ 1

t∑
i=n+q

(�(ui
i−q+1; yi)

−EP[�(ut
t−q+1; yt)])

∣∣∣∣¿”=un
−∞; yn

−∞

}

6�(”; t − n); ∀P∈P; (1)

where �(· ; ·) is a real function such that �(”; t−n)→ 0,
as (t − n)→∞.

Remark 2. Some condition on the tail of the proba-
bility distribution of process �(ui

i−q+1; yi) is needed
to cope with large deviation problems. The constraint
assumed in Assumption 1 that � is deterministi-
cally bounded is particularly strong, but it is met
in our context. Clearly, even though not explicitly
indicated, function � will depend on the bound on
function �:

Remark 3. Suitable expressions for �(”; t − n) in
Assumption 1 can be derived under standard  -mixing
conditions (see e.g. [8]).
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We recall that the  -coe�cient of two �-algebras
F1 and F2 is de�ned as

 (F1;F2)

:= sup
A∈F1 ; B∈F2 ; P(A)6=0; P(B)6=0

∣∣∣∣ P(A∩B)
P(A)P(B)

− 1
∣∣∣∣

and that a process �t is  -mixing if
∑∞

n=0  n¡∞,
where  n := supt  (�(�

t
−∞), �(�

∞
t+n)) (�(�

j
i ) is the

�-algebra generated by �i; �i+1; : : : ; �j). The sum∑∞
n=0  n is called the  -dependence index of pro-

cess �t .
Now, suppose that process (ut; yt) is  -mixing

and that c is an upper bound for the corre-
sponding  -dependence index, ∀P∈P. Letting
�t := �(ut

t−q+1; yt) − EP[�(ut
t−q+1; yt)] we want to

show that with �=upper bound for �,

P

{∣∣∣∣∣ 1
t − n− q+ 1

t∑
i=n+q

�i

∣∣∣∣∣¿”

/
un
−∞; yn

−∞

}

6
2�2(c + q− 1)

”2(t − n− q+ 1)
; (2)

that is,

�(”; t − n) = 2�2(c + q− 1)=”2(t − n− q+ 1)

in this case. To prove Eq. (2), recall �rst that [12], if �1
and �2 are two summable random variables measur-
able with respect to F1 and F2 respectively, it holds
that

|EP[�1�2]− EP[�1]EP[�2]|
6 (F1;F2)EP[|�1|]EP[|�2|]: (3)

Consider any set A∈�(un
−∞; yn

−∞) and apply result
(3) with �1 = IA�i and �2 = �j where i and j are such
that i¿n+ q, j¿i + q− 1. Then,
EP[IA�i�j]6  j−q+1−iEP[|IA�i|]EP[|�j|]

6  j−q+1−i�2P(A):

From this, one immediately obtains the estimate

EP[�i�j=�(un
−∞; yn

−∞)]6 j−q+1−i�2:

We now use this estimate to bound the conditional
variance of

∑t
i=n+q �i=(t − n− q+ 1) as follows:

EP



(

1
t − n− q+ 1

t∑
i=n+q

�i

)2/
�(un

−∞; yn
−∞)




6
2

(t − n− q+ 1)2

×
∑

{i; j :n+q6i; j6t; j¿i}
EP[�i�j=�(un

−∞; yn
−∞)]

6
2

(t − n− q+ 1)2

×



∑
{i; j :n+q6i; j6t; j¿i+q−1}

 j−q+1−i�2

+
∑

{i; j : n+q6i; j6t; i6j¡i+q−1}
�2




6
2�2(c + q− 1)
t − n− q+ 1

:

Expression (2) now easily follows by using
Chebyshev’s inequality.
Tighter expressions for the rate of convergence of

�(”; t − n) could also be obtained by resorting to in-
equalities of the Hoe�ding type.

3. Learning by simultaneous estimation

A very natural and common, even though particu-
lar, way of learning a hypothesis consists in �rst esti-
mating the error associated with each hypothesis h in
H, and then secondly selecting the hypothesis with
the minimal estimated error. For the �rst step, a widely
used error estimate is the so-called empirical error es-
timate which is given by

eemp(ut
1; y

t
1; h) :=

1
t − q+ 1

t∑
i=q

(yi − h(ui
i−q+1))

2

(see, e.g. [7]). If the empirical error estimate gets close
to err(P; h) simultaneously overH (that is uniformly
over all h inH) as t→∞, then the second step in the
above procedure leads to selecting a hypothesis whose
generalization error is in fact small. This approach has
stimulated a vast literature on the uniform convergence
of empirical estimates of the error (e.g., [6,7,11,13]),
whose origins are in the pioneering work of Vapnik
and Chervonenkis [15,16].
The present contribution generalizes the above pro-

cedure in two respects.
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(1) We allow any smooth simultaneous estimator for
the error, rather than insisting on using just the
empirical error estimate.

Roughly, a simultaneous error estimator is smooth
if it provides similar error estimates for hypothe-
ses which almost agree on the sample input at hand
(h(ui

i−q+1)' h′(ui
i−q+1); i = q; q + 1; : : : ; t). (This is

made precise in De�nition 6 below.) This smoothness
condition is very natural indeed and rules out only
pathological situations. It turns out that the empirical
error estimator is, in fact, smooth (and, therefore,
simultaneous error estimability through the empirical
error estimator implies the existence of a smooth si-
multaneous error estimator, and thus implies smooth
simultaneous error estimability of the model), but
there are many cases in which a smooth simultaneous
error estimator exists and yet the empirical estimator
fails to simultaneously estimate (see Remark 4 below
for an example).
We introduce a learning scheme which works when-

ever smooth simultaneous estimation is possible. The
basic idea is as follows. First, a suitable �nite empir-
ical cover forH, i.e., a cover based on the empirical
distance

�ut
1
(h; h′) :=

1
t − q+ 1

t∑
i=q

∣∣h(ui
i−q+1)− h′(ui

i−q+1)
∣∣

is constructed. Its main feature is that its size (i.e.,
the number of elements in the cover) is tailored to the
characteristics of the involved processes and to the
number of available data points, so that a simultane-
ously accurate estimate of the generalization error of
all the cover elements is possible. A key point is that,
by employing a smooth simultaneous error estimator,
the estimated generalization error of a cover element
is a good example of the true generalization error
of all the hypotheses in a neighborhood of the cover
element (even though it can be a bad example of
their empirical error!). The estimated hypothesis is
then selected by minimizing the estimated error over
the empirical cover. (This will be detailed further
below.)
(2) Learning is performed over a nested family of

hypothesis classes.
We consider the case in whichH has the substructure
H =

⋃
k H

k ; Hk ⊆Hk+1, and we try to learn over
H by learning as time goes on over progressively in-
creasing classesHk . Using such nested classes helps
avoid over�tting problems by preventing the selec-
tion of hypotheses that agree too well with the noisy

data. A crucial technical point is that the empirical
cover for H is constructed in such a way that it al-
ways contains empirical covers for Hk ; ∀k, formed
solely by elements of Hk . In this way, the true gen-
eralization error of each hypothesis inHk is close to
the empirical error of an element of the cover if each
pair (P;Hk) is smoothly simultaneously estimable.
Ultimately, this permits us to prove learnability under
the mild condition that each single pair (P;Hk) is
smoothly simultaneously estimable.

We now de�ne precisely the notions of simultane-
ous nonuniform error estimation and smoothness.

De�nition 5 (Simultaneous nonuniform error estima-
bility). (P;H) is simultaneously (nonuniformly) er-
ror estimable if there exists an error estimator {et}
(i.e., an indexed family of maps from (U ×Y )t ×H
to R) such that for all ”¿0,

lim
t→∞P

{
sup
h∈H

|err(P; h)− et(ut
1; y

t
1; h)|¿”

}

=0; ∀P∈P:

In De�nition 5 and throughout where ∀P∈P fol-
lows a statement of convergence, it is intended that
the convergence rate may depend upon P∈P.

De�nition 6 (Smooth estimators). The error estima-
tor et is smooth if ∀#¿0, ∃�t(#)¿0 (�t(#) may de-
pend on P∈P) such that

lim
t→∞P

{
sup

h; h′∈H s:t: �ut
1
(h; h′)¡�t(#)

|et(ut
1; y

t
1; h)

−et(ut
1; y

t
1; h

′)|¿#
}
= 0; ∀P∈P:

Remark 4. It is easily seen that the empirical error
estimator is smooth. On the other hand, smooth si-
multaneous error estimability is more general than in-
sisting that the empirical error estimator be simulta-
neously good, as shown by the following simple, and
somehow pathological, example.
Let U = [0; 1] and Y = {0; 1}. Pairs (ut; yt) are

drawn independently and such that ut is uniformly
distributed in [0; 1] and yt = 1; ∀ut . Finally, take
H as the collection of all the indicator functions IA,
where A is a �nite subset of [0; 1]. Given any data
sample (ut

1; y
t
1) there always exists an hypothesis
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�h∈H that agrees with data, that is eemp(ut
1; y

t
1; �h)= 0.

On the other hand, err(P; h) = 1; ∀h. Therefore,
P{suph∈H |err(P; h)−eemp(ut

1; y
t
1; h)|¿”}=1, when-

ever ”¡1, and the empirical estimator fails to si-
multaneously estimate the error well for all h in H.
On the other hand, et(ut

1; y
t
1; h) = 1, ∀(ut

1; y
t
1), ∀h, is

clearly a smooth simultaneous error estimator in the
present situation.

Our goal is to construct an algorithm able to learn
(P;H) whenever a smooth simultaneous error esti-
mator exists for each pair (P;Hk); k=1; 2; : : :. With
this objective in mind, we start by introducing the no-
tion of an empirical cover.
Given an input sample un

1, the associated empirical
distance �un

1
is a pseudo-metric onH. A setHn; u ⊂H

is an empirical ”-cover based on un
1 if, for each h∈H,

there exists �h∈Hn; u such that �un
1
(h; �h)¡”. Associ-

ated with an empirical ”-cover, there is a mapping
mn;u :H→Hn; u such that �un

1
(h; mn; u(h))¡”, ∀h∈H.

Consider now the situation in whichH is given as the
union of nested classes: H =

⋃
k H

k ; Hk ⊆Hk+1.
In this case, an important concept is that of simple
empirical ”-cover: an empirical ”-cover is simple if
the associated mapping mn;u is such that mn;u(h)∈Hk ,
for any h∈Hk ; ∀k. Roughly, “simple” in this context
means that mn;u(h) is not allowed to be too complex
with respect to h. This will play a crucial role in our
learning procedure.
We now show that a simple empirical ”-cover for

H of �nite cardinality always exists. The proof (bor-
rowed from [5]) is constructive and, therefore, pro-
vides a way to build such a cover. Note �rst that,
Y ⊂R being totally bounded, for each ”¿0 there ex-
ists an ”=2-cover Y”=2 of Y of �nite cardinality N (”=2).
There are N (”=2)n−q+1 possible mappings Mj from
i∈{q; q+1; : : : ; n} to cover elements (Mj(i)∈Y”=2, i=
q; q+1; : : : ; n). The simple empirical ”-cover forH is
recursively constructed as follows. Initially, letC0=0.
For j = 1 to N (”=2)n−q+1, check whether there exist
hypotheses h∈H such that

|h(ui
i−q+1)−Mj(i)|¡”=2; i∈{q; q+ 1; : : : ; n}: (4)

If any, pick an hypothesis hj satisfying Eq. (4) which
is as simple as possible (hj∈Hj and there exists no
h∈Hr ; r¡j; such that Eq. (4) is satis�ed) and set
Cj = Cj−1 ∪{hj}. It is easy to verify that, for each
h∈Hk , there exists an element h′∈CN (”=2)n−q+1 ∩Hk

such that �un
1
(h; h′)¡”. Set Hn; u :=CN (”=2)n−q+1 and

mn;u(h) = h′.

The learning algorithm
Fix three sequences of real numbers �n ↓ 0; �n ↓ 0;

�n ↓ 0.
At time t do the following:
Let n be the largest integer such that

N
(

�n
2(n− q+ 1)

)n−q+1

�(�n; t − n)¡�n:

Construct a simple empirical (�n=(n−q+1))-cover
Hn; u based on the pseudo-metric �un

1
with cardinality

less than or equal to N (�n=2(n − q + 1))n−q+1 and
denote by mn;u the corresponding mapping fromH to
Hn; u.
Select �at(ut

1; y
t
1) = arg minh∈Hn; u

eemp(ut
n+1; y

t
n+1; h).

The following theorem highlights the e�ectiveness
of the proposed algorithm.

Theorem 1. If (P;Hk) is smoothly simultaneously
nonuniformly error estimable for every k, then
(P;H) is nonuniformly learnable through algo-
rithm �at .

Remark 5. Theorem 1 only guarantees that algorithm
�at nonuniformly learns (P;H). On the other hand, the
assumption that pairs (P;Hk) are smoothly simulta-
neously error estimable is very mild indeed. As a mat-
ter of fact, it is not hard to �nd examples in whichH
is a complex class (even with in�nite VC-dimension)
and yet a nested familyHk exists such that (P;Hk)
are smoothly simultaneously nonuniformly error es-
timable.
We also note that, by a slight modi�cation of the

proof of Theorem 1, it is possible to show that uni-
form (i.e. with convergence taking place uniformly
in P in De�nition 4) learnability holds for (P;H)
provided that (P;H) is itself smoothly simultane-
ously uniformly (i.e. with convergence uniform in P in
De�nitions 5 and 6) error estimable. Details of this
extension are left to the reader.

Proof. Considering that a random hypothesis h∈Hn; u

depends on data up to time n, we have

P{|eemp(ut
n+1; y

t
n+1; h)− err(P; h)|¿�n}

=EP

[
P

{∣∣∣∣∣ 1
t − n− q+1

t∑
i=n+q

((yi−h(ui
i−q+1))

2
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−EP[(yt − h(ut
t−q+1))

2])

∣∣∣∣∣¿�n=un
−∞; yn

−∞

}]

6�(�n; t − n); ∀h∈Hn; u; ∀P∈P;

where the last inequality follows from Assumption 1.
Since

|Hn; u|6N
(

�n
2(n− q+ 1)

)n−q+1

;

this equation immediately gives

P
{
max
h∈Hn; u

|eemp(ut
n+1; y

t
n+1; h)− err(P; h)|¿�n

}
¡�n; ∀P∈P: (5)

Next, we show that err(P; h) is close to err(P; h′) with
probability approaching 1 as t→∞ when h and h′

range overHk and are close to each other with respect
to the empirical distance, namely, for all ”¿0,

lim
t↑∞; �↓0

P


 sup

h; h′∈Hk s:t: �ut
1
(h; h′)¡ �

t−q+1

|err(P; h)

− err(P; h′)|¿”

}
= 0; ∀P∈P; ∀k: (6)

(One should note that, condition �ut
1
(h; h′)¡�=(t −

q+ 1) being equivalent to
∑t

i=q |h(ui
i−q+1) −

h′(ui
i−q+1)|¡�, this limit will be the same, no matter

how t ↑ ∞ and � ↓ 0.)
To prove Eq. (6), note �rst that, (P;Hk) being

smoothly simultaneously error estimable, there ex-
ists an error estimator et such that the following two
conditions:

(1) P
{
sup

h∈Hk

|err(P; h)− et(ut
1; y

t
1; h)|¿

”
3

}
6

�
2
;

(2) P
{

sup
h; h′∈Hk s:t: �ut

1
(h;h′)¡�t(”=3)

|et(ut
1; y

t
1; h)

−et(ut
1; y

t
1; h

′)|¿”
3

}
6

�
2
:

hold true simultaneously for arbitrary �¿0 and ”¿0
and for t greater than a suitable �t (�; ”; P).
On the other hand, by the expansion

|err(P; h)− err(P; h′)|
6 |err(P; h)− et(ut

1; y
t
1; h)|

+ |et(ut
1; y

t
1; h)− et(ut

1; y
t
1; h

′)|
+ |et(ut

1; y
t
1; h

′)− err(P; h′)|;

it is easily seen that the set {suph;h′∈Hk s:t:�ut
1
(h;h′)¡�t(”=3)

|err(P; h)− err(P; h′)|¿”} is included in{
sup

h∈Hk

|err(P; h)− et(ut
1; y

t
1; h)|¿

”
3

}

∪

 sup

h; h′∈Hk s:t: �ut
1
(h; h′)¡�t(”=3)

|et(ut
1; y

t
1; h)

−et(ut
1; y

t
1; h

′)|¿”
3

}
:

Thus, from (1) and (2), the conclusion can be drawn
that

P


 sup

h; h′∈Hk s:t: �ut
1
(h; h′)¡�t(”=3)

|err(P; h)

− err(P; h′)|¿”

}
6�; for t¿�t (�; ”; P):

Setting � = (t − q + 1) �t(”=3), result (6) readily
follows.
The thesis will now be proven by the joint use of

Eqs. (5) and (6).
Fix ”¿0. Select �h∈H such that err(P; �h)6

opt(P;H) + ” and let �k =min{k : �h∈Hk}. Consider
the expansion

err(P; �at(ut
1; y

t
1))− opt(P;H)

= err(P; �at(ut
1; y

t
1))− eemp(ut

n+1; y
t
n+1; �at(ut

1; y
t
1))

+ eemp(ut
n+1; y

t
n+1; �at(ut

1; y
t
1))

− eemp(ut
n+1; y

t
n+1;mn;u(�h))

+ eemp(ut
n+1; y

t
n+1;mn;u(�h))− err(P;mn; u(�h))

+ err(P;mn; u(�h))− err(P; �h)
+ err(P; �h)− opt(P;H):

The probability that the �rst term is greater than �n

tends to zero as t→∞ (see Eq. (5)). The second
term is less than or equal to zero by the very de�-
nition of algorithm �at , whereas the third term can be
bounded similarly to the �rst one. As for the fourth
term, note that both �h and mn;u(�h) belong to Hk

and they are at most �n=(n − q + 1) apart with re-
spect to the empirical distance �un

1
. Therefore, Eq.

(6) implies that the probability that the fourth term
is greater than ” approaches zero as t→∞. Finally,
the last term is no greater than ” by construction. In
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conclusion, P{err(P; �at(ut
1; y

t
1))− opt(P;H)¿2�n +

2”} approaches zero as t→∞ for any ”. This com-
pletes the proof.

4. Concluding remarks

Even though the �elds of system identi�cation and
learning theory have many points in common, so far
there have been only sporadic contacts between them.
The reason for this can probably be found in the di�er-
ent technical assumptions adopted in these two �elds.
In this paper, we have proposed a method to learn

dynamical relations in a stationary framework. This
study is a �rst attempt to bridge the existing gap
between learning theory and system identi�cation.
An important aspect completely neglected in the
present contribution is the computational e�ort re-
quired by the learning techniques.
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