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Abstract

In self-tuning control problems, the parameter estimate
can exhibit undesirable behaviors due to the possible
lack of information in some directions of the parameter
space. In this contribution, a penalized technique able
to enforce certain desired properties to the estimates is
introduced. Its usefulness in an adaptive control con-
text is also discussed.

1 The identification algorithm

Consider the discrete time S1S0 system governed by
the equation

/i(o”; q-’) ~, = B(e”; q-1) U,-.j + n,, d~l (1)

where

A(OO;q-’) = 1 – ~a~q-i
i=l

and

B(e”; q-’) = ~b:q-’
i=o

are polynomials in the unit-delay operator q-1 and
OO=[a~a~...a~b~b~... b: ]T is the system parame-
ter vector.

Signal n, is a stochastic disturbance precisely described
in the following

Assumption 1 {n,} is i.i.d. and normally distributed
with E[n,] = O and E[n~] = a’ >0. •1

Moreover, we assume that system (1) is controllable
according to
Assumption 2 q“A(OO;q-’) and qa-d13(00; q-’) are
coprime, where s = max(n, m + d). ❑

By letting p, = [y, . . . y,_(~_,) u,_~+, . . .u,-(~+.-,) ]T

be the observation vector, system (1) can be given the

form y, = q~_lOO+ n, and the standard cost for the

least squares (LS) algorithm can be written as

.=1

the minimizer of which will be denoted by e~s.

0-7803-3590-2196$5.00 @ 1996 IEEE 62

..—.—.
dentification Techniques

i$ and M. Prandini~

- Politecnico di Milano

32, 20133 Milano, Italy

.polimi.it

ne - University degli Studi di Brescia

3 Brescia, Italy

g. ing.unibs.it

The main properties of the least squares estimate rel-
evant for adaptive control systems analysis can be put
sharply into focus thanks to the notion of excitation
subspace.

Definition 1 (excitation subspace, [1])

The subspace ~ = {x E R“’m+l/3L < co :

XT Z~.l P.–1w;–1 x ~ L, V N} iS termed ?n~c~tation
subspace. Its orthogonal complement ~ = &1 is called
excitation subspace. ❑

Theorem 1 (properties of the LS estimate, [2]-[4])

The estimate e~’ is asymptotically convergent almost

surely. Moreover, denoting by fit and d~~ the com-

ponents of ~~s along the unexcitation and excitation
subspaces respectively, we have:

i) lim e~~ = e~~m (#O; in general) almost surely.
t-+oa

ii) lim .!)~~= i~~~ = d: almost surely. IJ
t+-

In particular, property ii) in Theorem 1 says that the
component of the true parameterization 0° along the
excitation directions is asymptotically consistently es-
timated (partial consistency). Clearly, this is exactly
what is needed for control purposes, since, in view of
the very definition of excitation subspace, e; is the only
component of 6° excited by data in the long run.

On the other hand, it is often the case that one wishes
to enforce in the estimate some additional constraints
so as to satisfy specific requirements besides the partial
consistency property. A pair of significant instances are

given below.

●

●

,

—

In adaptive control, a suitable control law can often
be found only under the constraint that the esti-
mated model is controllable (i.e. it does not present
pole-zero cancellations). Therefore, it is desirable to
avoid those parameterizations which correspond to
uncontrollable models.

In practice, the parameters to be estimated have
often a physical interpretation. In such a case, one
may desire to incorporate in the estimation algo-

—-—— ———-——.—.. . ..-.T.-.
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rithm possible a-priori knowledge on their real value.

In this paper, we propose a penalized identificdion
technique with a twofold objective:
● enforcing specific constraints on the feasible range

for the parameter estimates;

. preserving the partial consistency property of the
standard least squares algorithm.

With this objective in mind, we introduce the following
algorithm. Consider a penalty function P(O) satisfying
the conditions:

i) P(6) ~ O, V8 E R“+’”+’ and P(6) = co, V(3 outside
the feasible range;

ii) P(O) continuos in the feasible range.

Next, define the penalized least squares cost function

D,(e) := u(e)+ P(e). (2)

The parameter est~ate obtained by minimizing (2)

will be denoted by f3,.

Penalized techniques are well known in the field of op-
eration research (see e.g. [5]). The result of Theorem 2
below makes the use of penalized techniques very at-
tractive in the area of adaptive control (due to space
limitations we omit all the proofs).

Theorem 2 (properties of the estimates)

~, belongs to a closed set strictly contained in the fea-
sible range for any t. ~Moreover, partial consistency
holds, i.e. denoting by f3~,, the component of O, along
the excitation subspace, lim ~~,, = e: almost surely. ❑

t+.w

2 Self-tuning control

In the literature many control techniques have been
proposed which exhibit stabilizing properties when ap-
plied to invariant plants. Among them, well-known
methods ensure stability subject only to the assump-
tion that the system is controllable (e.g. infinite-
horizon LQ control [6], pole-placement [7], receding-
horizon control [8]). When applying these techniques
in an adaptive fashion, according to the certainty equiv-
alence principle, one regards the estimated model as if
it were the actual plant. Therefore, lack of controlla-
bility of such a model leads to a paralysis in the control
selection (see e.g. [4] and [9]).

This suggests the implementation of adaptive con-

trol schemes with identification based on penalized LS
rather than using standard LS. Since one of the major
issue is to guarantee controllabilityy in the asymptoti-
cally identified model, a wise choice of the penalty term
P(O) in (2) is

‘(e)=&e)l + “(o)’
(3)

where S@v(6) is the Sylvester resultant of polynomials
q“A(@; q-’) and q’-’ll(d; q-’) (see e.g. [10]). It is in-
troduced so as to avoid parameterizations which corre-
spond to uncontrollable (or nearly uncontrollable) sys-
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tems. As for PI(0), its role is to take into account pos-
sible additional constraints on the parameterization.
As Theorem 2 states, the cost function (2) with penalty
(3) still guarantees the partial consistency property.
Thanks to this, one can prove the following results.

Theorem 3 (L2 -stability)
Consider system (1) adaptively regulated in a certainty
equivalent fashion by means of any control technique
able to stabilize a known controllable plant. If the esti-
mate of the true parameter 0° is obtained through algo-
rithm (2) with P((3) given by (3) such that P(OO) < co,
then the adaptively controlled system is L’-stable:

. N
❑

Theorem 4 (optimality)
Under the same assumptions as in Theorem 3, the
adaptively controlled system achieves asymptotic op-
timality in the sense that its behavior in the long run
tends to that of the estimated control system. •1
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