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Abstract

Reportedly, standard identi�cation algorithms do not guarantee

the controllability of the estimated system. In this paper, a penal-

ized least squares (PLS) identi�cation criterion is proposed to over-

come this di�culty. The criterion is shown to provide estimated sys-

tems which exhibit an uniform controllability property through time.

Moreover, the Lai and Wei upper bound for the least squares estima-

tion error ([1], Theorem 1) is still valid for PLS. This ensures a safe

use of the proposed method in adaptive control applications. The

e�ectiveness of the method is illustrated by a general adaptive stabil-

ity result valid for PLS-based certainty-equivalent adaptive control

schemes.
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1 Introduction

A classical technical trap encountered in the subject of adaptive control

of nonminimum phase systems is the possible occurrence of pole-zero can-

cellations in the estimated model transfer function (see e.g. [2]-[9]). As

a matter of fact, standard identi�cation methods do not guarantee that

the controllability property of the original system (i.e. the coprimeness of

numerator and denominator in the system transfer function) is preserved

when the signals generated by the control system fail to provide su�cient

excitation, as it is often the case under closed-loop operating conditions. In

turn, the lack of controllability in the estimated system leads to a paralysis

in the adaptive control law selection.

�Received April 30, 1997; received in �nal form November 7, 1997. Summary ap-

peared in Volume 8, Number 4, 1998.
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Basically, two di�erent approaches have been proposed in the litera-

ture to cope with the controllability problem. One consists in modifying

the identi�cation algorithm in order to force the parameter estimates to

tend to a preassigned convex region to which the true parameter belongs

and such that all the models in that region are controllable ([7] and [8]).

Unfortunately, the required a-priori knowledge on the system parameter

represents a restrictive assumption and it con�nes the use of this approach

to the cases in which the parameter uncertainty is highly structured. The

second approach ([2]-[6]) secures the estimated model controllability by

redressing the parameter estimate before using it to compute the control

law. Precisely, an extra term is added to the least squares estimate which

depends on the least squares covariance matrix in such a way that the

closed-loop identi�cation properties of the least squares algorithm (i.e. the

ability of identifying the system dynamics excited in closed-loop) are pre-

served while securing the uniform controllability of the identi�ed system.

In this approach, no a-priori knowledge on the region to which the true

parameter belongs is assumed. The explicit method for the estimate modi-

�cation given in [3], however, involves a computational e�ort which highly

increases with the order of the system.

In the present paper, we propose a solution to the long-standing pole-

zero cancellation issue based on an appropriate modi�cation of the standard

least squares identi�cation index, which does not require any assumption on

the true parameter value. The new index suitably incorporates a penaliza-

tion term for the parameterizations which correspond to uncontrollable|or

nearly uncontrollable|models.

The major point is that the minimization of the new identi�cation in-

dex cannot be accompanied by the obnoxious side e�ect of controllability

violation, since uniform controllability is guaranteed. Even more so, the

closed-loop properties of the least squares algorithm stated in [1], Theo-

rem 1, are preserved. This is of crucial importance in adaptive control

applications for proving stability and optimality results (see e.g. [10], [11]

and [12]).

The dark side of the coin is that the minimization issue is not as straight-

forward as it is in the least squares algorithm and one has to resort to some

iterative optimization procedure. This can be a problem since this mini-

mization has to be performed on-line and it may be therefore subject to

strict time limitations. Designing fast (and, possibly, approximate) mini-

mization procedures is a challenging problem, open to further research.
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2 The Penalized Least Squares Identi�cation Method

2.1 The system

We consider a discrete time stochastic SISO system governed by the equa-

tion

A(#�; q�1) yt = B(#�; q�1)ut�d + nt; d � 1 (1)

where

A(#�; q�1) = 1�

nX
i=1

a�i q
�i

and

B(#�; q�1) =

mX
i=0

b�i+dq
�i

are polynomials in the unit-delay operator q�1 and

#� = [ a�1 a
�

2 : : : a
�

n b
�

d b
�

1+d : : : b
�

m+d ]
T

is the system parameter vector.

The process noise fntg is subject to

Assumption 1 fnt;Ftg is a martingale di�erence sequence with respect

to an increasing sequence of �-�elds fFtg and sup
t

E[jnt+1j
�=Ft] < 1,

almost surely for some � > 2. 2

The system is assumed to satisfy the following

Assumption 2 Polynomials qsA(#�; q�1) and qs�dB(#�; q�1) are coprime,
where s = maxfn;m+ dg, 2

which is known as `controllability property' (see e.g. [3] and [6]).

Letting

't = [ yt : : : yt�(n�1) ut�(d�1) : : : ut�(m+d�1) ]
T (2)

be the observation vector, system (1) can be given the usual regression-like

form

yt = 'Tt�1#
� + nt; (3)

to which we shall refer throughout the paper.
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2.2 The standard least squares performance index

With reference to the plant representation (3), the least squares (LS) cost

function is given by

Vt(#) =

tX
s=0

(ys � 'Ts�1#)
2 (4)

and its minimizer #̂LSt is the least squares estimate. It is well known that

this estimate is consistent under some excitation condition. Consistency of

LS has been studied in a huge number of papers. One of the most general

results is supplied by Lai and Wei theorem ([1], Theorem 1). This result is

stated below for future use.

Theorem 1 (properties of #̂LSt )

Suppose that the control law is causal (i.e. ut is Ft-measurable). Then,

(#� � #̂LSt )T
tX

s=0

's�1'
T
s�1(#

� � #̂LSt ) = O(log �max(

tX
s=0

's�1'
T
s�1)) a.s.;

(5)

which entails

k#� � #̂LSt k2 = O

 
log�max(

Pt

s=0 's�1'
T
s�1)

�min(
Pt

s=0 's�1'
T
s�1)

!
a.s.:

In particular, this implies that under the conditions

i) �min(

tX
s=0

's�1'
T
s�1)!1 a.s.,

ii) log�max(

tX
s=0

's�1'
T
s�1) = o(�min(

tX
s=0

's�1'
T
s�1)) a.s.,

the least squares estimate is consistent. 2

On the other hand, it is also well known ([2]-[9]) that the least squares

estimated model is not necessarily controllable. Moreover, the norm of the

estimate may not be bounded ([13]).

In the following section, we introduce a new performance index whose

minimizer preserves the properties of #̂LSt stated in Theorem 1, but, in

contrast with #̂LSt , it results in a controllable model without requiring any

particular excitation condition.

2.3 The penalized least squares performance index

For a given parameterization # = [ a1 a2 : : : an bd b1+d : : : bm+d ]
T , a stan-

dard measure of controllability of the model A(#; q�1) yt = B(#; q�1)ut�d
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is expressed by the absolute value of the Sylvester resultant associated with

qsA(#; q�1) and qs�dB(#; q�1) given by the determinant of the Sylvester

matrix ([14]):

Sylv(#) =

2
666666666666664

1

�a1 1

�a2 �a1
. . .

... �a2
. . . 1

�as
... �a1

�as �a2
. . .

...

�as| {z }
s

bd

b1+d
. . .

...
. . . bd

bs b1+d
. . .

...

bs

3
77777777777775

| {z }
s

;

where ai = 0 for any i > n and bi = 0 for any i > m + d. As it is

well known, see e.g. [15], det(Sylv(#)) is zero if and only if qsA(#; q�1)
and qs�dB(#; q�1) have common factors. We exploit such a controllability

measure in order to modify the least squares performance index so as to

penalize uncontrollable or nearly uncontrollable models.

Speci�cally, we introduce a penalized performance index of the form

Dt(#) = Vt(#) + �tP (#); (6)

where

P (#) =
1

jdet(Sylv(#))j

is the penalization term and Vt(#) is the standard LS index given in equa-

tion (4). In the performance index (6) a major role is played by the scalar

function �t in front of the penalization term. In principle, this function

should grow rapidly enough such that the penalization term P (#) asserts
itself. On the other hand, the penalization term �tP (#) should be mild

enough to avoid destroying the valuable properties of the least squares

performance index stated in Theorem 1. The heart of the penalized least

squares method lies on a suitable selection of �t in such a way that the

two contrasting objectives described above are met simultaneously. This

makes the use of penalized techniques{which are well known in the �eld

of operation research for the solution of constrained optimization problems

(see e.g. [16])|attractive in the area of adaptive control. On the other

hand, it should be noted that the penalized performance index (6) has,

in general, multiple local minima. Therefore, Dt(#) should be minimized

by a global optimization algorithm (see e.g. [17], [18] and [19]). One can

for instance resort to the multistart technique. In this method, a certain
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number of points # are �rst selected (usually by means of a random proce-

dure). Then, a standard local search method (such as a conjugate gradient

method or a quasi-Newton method) initialized at the di�erent points # is

run. The output of this procedure is a bunch of local minima. Among

these, one �nally select the minimum corresponding to the lower value for

the function. Alternatively, one can resort to randomized algorithms such

as simulated annealing, which seem to be more e�cient than the multistart

approach in the case of large dimension problems.

Denote by #̂t the minimizer of the performance index Dt(#):

#̂t := arg min
#2Rn+m+1

Dt(#) (7)

(if Dt(#) has more than one absolute minimum, any tie-breaking rule can

be used).

Theorem 2 (properties of #̂t)
Assume that ut is Ft-measurable and select

�t := log�max(

tX
s=0

's�1'
T
s�1): (8)

Then

i) the degree of coprimeness of polynomials

qsA(#̂t; q
�1)

and

qs�dB(#̂t; q
�1)

is a.s. bounded from below: jdet(Sylv(#̂t))j � c, 8t, where c > 0 is a

suitable random constant;

ii) (#� � #̂t)
T

tX
s=0

's�1'
T
s�1(#

� � #̂t) = O(log �max(

tX
s=0

's�1'
T
s�1)) a.s..

Proof: Observe �rst that equation

tX
s=0

's�1ys = [

tX
s=0

's�1'
T
s�1 ]#̂

LS

t (9)

is easily derived from the de�nition #̂LSt = arg min
#2Rn+m+1

tX
s=0

(ys � 'Ts�1#)
2.

Being #̂t = arg min
#2Rn+m+1

Dt(#), we then have
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Dt(#̂t)� Vt(#̂
LS

t ) � Dt(#)� Vt(#̂
LS

t )

=
Pt

s=0(ys � 'Ts�1#)
2 + �tP (#)�

Pt

s=0(ys � 'Ts�1#̂
LS

t )2

= #T
Pt

s=0 's�1'
T
s�1#� 2#T

Pt

s=0 's�1ys + �tP (#)

�(#̂LSt )T
Pt

s=0 's�1'
T
s�1#̂

LS

t + 2(#̂LSt )T
Pt

s=0 's�1ys;

for all # 2 Rn+m+1 and time instant t.
Substituting in this last expression equation (9), we obtain

Dt(#̂t)� Vt(#̂
LS

t ) �

#T
tX

s=0

's�1'
T
s�1#� 2#T

tX
s=0

's�1'
T
s�1#̂

LS

t + �tP (#)

�(#̂LSt )T
tX

s=0

's�1'
T
s�1#̂

LS

t + 2(#̂LSt )T
tX

s=0

's�1'
T
s�1#̂

LS

t

= (#� #̂LSt )T
tX

s=0

's�1'
T
s�1 (#� #̂LSt ) + �tP (#); 8# 2 Rn+m+1; 8t:

By choosing # = #�, this inequality can be rewritten as follows

Dt(#̂t)� Vt(#̂
LS

t ) � (#� � #̂LSt )T
tX

s=0

's�1'
T
s�1(#

� � #̂LSt ) + �tP (#
�); 8 t:

Since (#� � #̂LSt )T
Pt

s=0 's�1'
T
s�1(#

� � #̂LSt ) = O(�t) a.s. (see Theorem 1

and de�nition (8)) and P (#�) is �nite (see Assumption 2), we conclude that

Dt(#̂t)� Vt(#̂
LS

t ) = (#̂t � #̂LSt )T
tX

s=0

's�1'
T
s�1(#̂t � #̂LSt ) + �tP (#̂t)

= O(�t) a.s.. (10)

From this, it is easily shown that lim sup
t!1

P (#̂t) < 1, which means that

there exists a (random) constant k > 0 such that P (#̂t) =
1���det(Sylv(#̂t))��� �

k; 8t. By setting c =
1

k
; point i) is thereby proven.

As for point ii), consider the inequality

(#� � #̂t)
T

tX
s=0

's�1'
T
s�1(#

� � #̂t)
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� 2

(
(#� � #̂LSt )T

tX
s=0

's�1'
T
s�1(#

� � #̂LSt )

+ (#̂LSt � #̂t)
T

tX
s=0

's�1'
T
s�1(#̂

LS

t � #̂t)

)
:

Since both the terms in the right-hand-side are a.s. O(�t) (see equations

(5) and (10)), we get (#� � #̂t)
T

tX
s=0

's�1'
T
s�1(#

� � #̂t) = O(�t) a.s., that

is point ii). 2

Theorem 2 suggests that the function �t must be adaptively selected

in the light of the value taken by the observation vectors f'sgs=0;1;:::;t�1
and therefore is time varying. The fact that �t is adaptively selected is

not surprising. In fact, the least squares part Vt(#) of the performance

index Dt(#) depends on the observation vectors generated by the system.

On the other hand, the penalization part �tP (#) must be well-scaled with

respect to Vt(#) such that the minimizer of Dt(#) still preserves some good
properties of the minimizer of Vt(#) and, at the same time, �tP (#) is not
negligible with respect to Vt(#). From this, we see that �t being dependent
of the observation vectors is quite a natural result.

In adaptive control applications, in addition to controllability, it is

sometimes useful to secure that the estimate cannot escape to in�nity. As

a matter of fact, this property is not ful�lled by the standard least squares

algorithm (see e.g. [13]). In the penalized least squares algorithm, the

boundedness of the estimate can be forced by adding an extra term which

penalizes parameterizations with large norm. This leads to considering the

performance index

�Dt(#) = Vt(#) + �tfP (#) + #TQ#g; (Q = QT > 0): (11)

Theorem 3 Under the same assumptions as in Theorem 2 the minimizer

�#t of �Dt(#) in equation (11) satis�es conditions i) and ii) in Theorem 2

and, in addition, keeps bounded:

iii) �#t is a.s. bounded: k�#tk � k, 8t, where k < 1 is a suitable random

constant.

2

The proof of Theorem 3 is entirely similar to the one of Theorem 2 and

therefore omitted.
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3 Adaptive Stabilization

In this section, the e�ectiveness of the proposed penalized least squares

method is shown by the derivation of a general adaptive stabilization result.

We start by observing that, when a plant is known and controllable,

many di�erent and well-established control methods can be used for its sta-

bilization. Among them, we mention pole-placement ([15]), in�nite horizon

LQ control ([20]), and receding horizon control ([21]), which are all control

techniques suitable for possibly nonminimum phase systems. The regula-

tion law stemming from each one of these control methods takes the form

ut = S(#; q�1) yt +R(#; q�1)ut;

where polynomials S(#; q�1) =

�X
i=0

si(#)q
�i and R(#; q�1) =


X
i=1

ri(#) q
�i

assume di�erent expressions depending on the particular control method

at hand. For all control strategies the coe�cients fsig
�
i=0 and frig



i=1 are

continuous functions of # in the region where # corresponds to a controllable
model (see the references [15]-[21]).

In adaptive control the system parameter vector #� is not known. Then,
it is standard to resort to the so-called certainty-equivalence principle ([22])

which amounts to combine an identi�cation algorithm and a control tech-

nique by simply tuning the control law to the estimated system. The main

goal of the present section is to prove that the certainty-equivalence ap-

proach is successful in stabilizing the unknown system whenever a control

method able to stabilize a possibly nonminimum phase controllable system

is coupled with the penalized least squares identi�cation method introduced

in the previous section.

We start with a standard observation in adaptive control concerning the

time variability of the estimated system. Since the parameter estimate is

time-varying and the control law is tuned to such an estimate, an adaptive

control system is always a time-varying system. On the other hand, it

is well known that, in the case of time-varying systems, guaranteeing a

stability property at each time point for the \frozen dynamics" does not

imply that the overall time-varying system has a stable dynamics. This

basic problem can be circumvented by updating the estimate at a slower

rate than the updating of the system variables. Such a strategy, known as

estimate with freezing e�ect, is for instance exploited in [23] and [24].

Following this idea, we de�ne

#t =

�
�#t; if t = ti; i = 0; 1; 2; : : :
#t�1; otherwise,

(12)

where the time instants ftig are obtained by the recursive equation ti+1 =
ti + Ti initialized with t0 = 0 (recall that �#t is the minimizer of �Dt(#)

9
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in equation (11)). The time interval Ti is chosen so as to stabilize the

time-varying estimated system. This is explained next.

Consider the time-varying estimated system�
yt = [1�A(#t; q

�1)] yt +B(#t; q
�1)ut�d

ut = S(#t; q
�1) yt +R(#t; q

�1)ut
: (13)

By letting xt := [yt : : : yt�l+1 ut : : : ut�q+1]
T with l = maxf�; ng, q =

maxf
; d+mg, system (13) can be given the state space representation

xt = F (#t)xt�1;

where

F(#) =

2
66666664

a1 : : : al b1 : : : bq
1

.
.
.

0

s0(#)a1 + s1(#) : : : s0(#)al + sl(#) s0(#)b1 + r1(#) : : : s0(#)bq + rq(#)

1

.
.
.

0

3
77777775
;

(14)

with ai = 0 if i > n, si(#) = 0 if i > �, bi = 0 if i < d or i > d + m,

ri(#) = 0 if i > 
.
Choose now a constant � < 1 (contraction constant). The time interval

Ti is then de�ned as

Ti := inff� 2 Z+ : kF (#ti)
�k � �g (15)

(note that such a Ti exists since #ti = �#ti corresponds to a controllable

system - Theorem 3). In this way, the time-varying system (13) is kept

constant until its dynamics is contracted by a factor �, whence guaranteeing
its stability.

The fact that Ti is selected so as to stabilize the estimated system can

be intuitively motivated as follows. In adaptive control, the true system

is not known. Consequently, in an attempt to stabilize the true system,

one stabilizes the estimated model. This will eventually result in the stabi-

lization of the true system, provided that the estimated model accurately

describes the behavior of the true system, at least in the long run.

In Theorem 4 we prove that the control law tuned to the estimated

parameter with freezing (12) is in fact able to stabilize the unknown true

system. The proof of Theorem 4 is based on the following technical Lemma.

Lemma 1 The autonomous system xt = F (#t)xt�1 is a.s. exponentially

stable, uniformly in time: kxtk � M ��t�t
�

kxt�k, 8 t; t
�
, t� � t, where

M > 0 and 0 < �� < 1 are suitable random constants.

10
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Remark 1 Note that the qualifying feature of the above statement is

that the stability is exponential, uniformly in time, the stability of xt =
F (#t)xt�1 being already secured by the selection of Ti as stated in (15). 2

Proof: We start by proving that, for any given real number p > 0,

T (#) := inff� 2 Z+ : kF (#)�k � �g is uniformly bounded in the compact

set Ap := f# 2 Rn+m+1 : k#k � p�1 and jdet(Sylv(#))j � pg, i.e.

sup
#2Ap

T (#) <1: (16)

Condition

jdet(Sylv(#))j � p (17)

implies that the system yt = 'Tt�1# associated with parameter # is con-

trollable and therefore stabilized by the control law ut = S(#; q�1) yt +
R(#; q�1)ut. From this it follows that the dynamic matrix F (#) of the
time-invariant system

xt = F (#)xt�1 (18)

is exponentially stable.

Denote by f�i(#)gi=1;:::;l+q the eigenvalues of F (#). By the observa-

tion that F (#) is a continuous function of #, # 2 C := f# 2 Rn+m+1 :

qsA(#; q�1) and qs�dB(#; q�1) are coprimeg, we have that

�(#) := max
i2f1;:::;l+qg

j�i(#)j is also a continuous function of #, # 2 C. Be-

ing Ap compact and included in C, the conclusion is drawn that � :=

max
#2Ap

�(#) < 1.

Fix now a real number � 2 (�; 1) and introduce the system

vt =
1

�
F (#) vt�1: (19)

System (19) is exponentially stable 8# 2 Ap, since

�����i(#)�

���� � �

�
< 1;

8 i; 8# 2 Ap. Hence, the solution S(#) to the Lyapunov equation associ-

ated with matrix
1

�
F (#)

1

�
F (#)T S(#)

1

�
F (#)� S(#) = �I

is positive de�nite. Moreover, it is a standard fact that the state vector vt
of system (19) can be bounded in terms of S(#) as follows

kvtk �

s
�max(S(#))

�min(S(#))
k v�tk; t � �t: (20)

11
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Since S(#) is continuous in the closed set Ap (see [25]), we can de�ne

c := max
#2Ap

s
�max(S(#))

�min(S(#))
and rewrite inequality (20) as kvtk � c kv�tk; 8 t �

�t; 8# 2 Ap: Setting v�t = x�t, we �nally get a bound on the state vector xt
of the time-invariant system (18)

kxtk � c �t�
�tkx�tk; t � �t; 8# 2 Ap: (21)

Set �T = inff� 2 Z+ : c�� � �g. Since kx �T+�tk = kF (#)
�T x�tk � �kx�tk,

8# 2 Ap, 8x�t, then kF (#)
�T k = sup

kxk6=0

kF (#)
�T xk

kxk
� �, 8# 2 Ap and

therefore T (#) = inff� 2 Z+ : kF (#)�k � �g satis�es T (#) � �T , 8# 2 Ap.

This �nally implies that

sup
#2Ap

T (#) � �T <1; (22)

that is equation (16).

Let us turn to consider the time-varying system xt = F (#t)xt�1.
From points i) and iii) of Theorem 3, it follows that there exists a

(random) constant �p such that �#t 2 A�p; 8t: Denote by p the value of the

random variable �p on the outcome at hand. Being #t = �#ti ; t 2 [ti; ti+1)
(see (12)) and �#ti 2 Ap; i � 0, from equation (22) it follows that the

updating time interval Ti in (15) is upper bounded:

T := sup
i�0

Ti <1: (23)

The thesis of the lemma is now derived from equations (23) and (21).

Denote by tr the largest integer in the set ftig lower than or equal

to t and by ts the smallest integer in ftig greater than or equal to t�.
By applying equation (21) in the subintervals where #t keeps constant we
obtain

kxtk � c�t�tr+1kxtr�1k

� c�t�tr+1�r�skxts�1k

� c�t�tr+1�r�sc�ts�t
�

�1kxt�k:

By letting �� = maxf�; �
1
T g, in view of equation (23), we �nally obtain

kxtk � c2�t�tr+1(�
1
T )(r�s)T �ts�t

�+1kxt�k

� c2��t�t
�

kxt�k

that is the thesis. 2

On the basis of this Lemma, we can now prove the stability of the

adaptively controlled system.

12
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Theorem 4 (L2-stability) The closed-loop system�
yt = [1�A(#�; q�1)] yt +B(#�; q�1)ut�d + nt
ut = S(#t; q

�1) yt +R(#t; q
�1)ut

is pathwise L2
-stable: lim sup

N!1

1

N

NX
t=1

�
y2t + u2t

�
<1 a.s..

Proof: Fix a time instant point N > 0.

In order to prove the thesis, we refer to Lemma 2 in the Appendix.

According to the notations of this Lemma, we set vt := #� � #t and zt :=
't�1. With such positions, the hypotheses of Lemma 2 are satis�ed, since

f#� � #tg is bounded and constant over [ti; ti + Ti), 8i (see equation (12)

and points i) and iii) in Theorem 3), there exists T := sup
i

Ti (equation

(23) in Lemma 1) and
Pti

t=0('
T
t�1(#

� � #ti))
2 = o(

Pti
t=0 k't�1k

2) + O(1)
(from point ii) in Theorem 3). Then, we have

1

N

NX
t=0; t62BN

e2t =
1

N
o(

NX
t=0

k't�1k
2 +N); (24)

where et := 'Tt�1(#
� � #t) and BN is the set of instant points depending

on N , whose cardinality is upper bounded by (n+m+1)T for any N (see

Lemma 2 in the Appendix).

Now, observe that the time evolution of the state vector

xt = [yt : : : yt�l+1 ut : : : ut�q+1]
T

is governed by the equation

xt = F �(#t)xt�1 +G(#t)nt

= F (#t)xt�1 +G(#t)[et + nt];

where

F
�
(#) =

2
666666664

a�
1

: : : a�
l

b�
1

: : : b�q
1

.
.
.

0

s0(#)a
�

1
+ s1(#) : : : s0(#)a

�

l
+ sl(#) s0(#)b

�

1
+ r1(#) : : : s0(#)b

�

q + rq(#)

1

.
.
.

0

3
777777775

;

13
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G(#) = [1 0 : : : 0 s0(#) 0 : : : 0]
T and F (#) was de�ned in equation (14).

In the sequel, we see vector xt as generated according to

xt =

�
F (#t)xt�1 +G(#t)[et + nt]; t =2 BN
F �(#t)xt�1 +G(#t)nt; t 2 BN

: (25)

Since there exists a constant p > 0 such that #t belongs to the compact

set Ap = f# 2 Rn+m+1 : k#k � p�1 and jdet(Sylv(#))j � pg (Theorem 3)

and F �(#) and G(#) are continuous function of #, # 2 Ap we then have

that kF �(#t)k � h and kG(#t)k � h, h being a suitable constant. From

this fact and the uniform exponential stability of the autonomous system

xt = F (#t)xt�1 (Lemma 1), it is easy to show that the state vector xt
generated by system (25) can be bounded as follows

kxtk � (hM)jBN j
n
��t�jBN jkx0k+

tX
k=0

��t�k�jBN jjnkj+

tX
k=0;k=2BN

��t�k�jBN jjekj

9=
; ; t � N:

As a consequence, we also have

kxtk
2 � k1

8<
:��2tkx0k+

tX
k=0

��t�kn2k +

tX
k=0;k=2BN

��t�ke2k

9=
; t � N;

k1 being a suitable constant, which is independent of N .

Bearing in mind the de�nition of the observation vector 't, from this

last inequality we get

1

N

NX
t=0

k'tk
2 � k2

8<
: 1

N
kx0k+

1

N

NX
t=0

n2t +
1

N

NX
t=0;t=2BN

e2t

9=
;

where k2 is a suitable constant.
The �rst term in the right-hand-side of this expression vanishes as N

tends to in�nity. As for the second term 1
N

PN

t=0 n
2
t , by exploiting Chow's

theorem (see e.g. [26] - Theorem 2.7 at page 36) and Assumption 1 it can

be easily shown that it is almost surely bounded. Therefore, by using these

estimates and applying inequality (24), we obtain

1

N

NX
t=0

k'tk
2 = O(1) + o(

1

N

NX
t=0

k't�1k
2);

which implies that 1
N

PN

t=0 k'tk
2 remains bounded. Then, the thesis im-

mediately follows. 2

14
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4 Conclusions

In this paper we have introduced a new method for the identi�cation of

discrete time linear systems a�ected by additive white noise. Such a method

can be safely used in the adaptive control context, since it ensures the

controllability of the identi�ed model and, in addition, retains the closed-

loop identi�cation properties of the least squares estimate. As an example

of application, we have proposed a certainty-equivalent adaptive regulation

scheme based on the new parameter estimator, and we have shown that it

ensures stability under general assumptions.

In the present formulation, our identi�cation method is non-recursive.

However, one can conceive a way to recursively minimize the penalized

performance index. This requires further work.

Appendix

Lemma 2 Consider a sequence of l-dimensional vectors fvtg such that the

following assumptions are satis�ed:

i) fvtg is bounded: kvtk � �v, 8t;

ii) fvtg is piecewise constant: vt = vti , t 2 [ti; ti+1), where ti is such

that T := sup
i

(ti+1 � ti) <1.

Given a second l-dimensional vector sequence fztg such that

iii)

tiX
t=0

(zTt vti)
2 = o(

tiX
t=0

kztk
2) +O(1),

it follows that

NX
t=0; t62BN

(zTt vt)
2 = o(

NX
t=0

kztk
2 +N);

where BN is a set of instant points which depends on N , whose cardinality,

however, is upper bounded by T l for any N : jBN j � T l, 8N .

Proof: Fix a real number � > 0 and a time instant N .

Consider the set of instant points in the interval [0; N ] where vt changes:
t0; t1; : : : ; ti(N), where i(N) := maxfi : ti � Ng. In these instant points we

de�ne a set of subspaces fStig
i(N)
i=0 through the following backward recursive

procedure:

for i = i(N) + 1, set Si = ;

15
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for i = i(N); i(N) � 1; : : : ; 0, set (here and throughout the symbol vt;S
stands for the projection of vector vt onto the subspace S)

Sti =

(
Sti+1 ; if kvti;S?ti+1

k � �

Sti+1 � spanfvtig; otherwise:
(26)

For each t 2 [0; N ], with the notation i(t) := maxfi : ti � tg , we have

(zTt vt)
2 � 2 (zT

t;S?
ti(t)

vt;S?
ti(t)

)2 + 2 (zTt;Sti(t)
vt;Sti(t) )

2: (27)

By de�nition (26), the �rst term in the right-hand-side can be upper

bounded as follows

(zT
t;S?

ti(t)

vt;S?
ti(t)

)2 � �2kztk
2 (28)

To handle the second term, we �rst work out a basis in Sti(t) . For this

purpose, consider the subset f�jg
dim(St0 )

j=1 of instant points ftig
i(N)
i=0 such

that subspace Sti enlarges: S�j � Sti , ti > �j . The searched basis is�
v�j
	dim(St0 )

j=dim(St0 )�dim(Sti(t) )+1
.

In view of the boundedness assumption i) and also considering the very

de�nition of subspaces Sti (equation (26)), it is easy to see that vectors

fv�jg are spread in subspace Sti(t) in such a way that the angle between

each two of them tends to zero only when �! 0. Consequently, there exists

a constant c(�), depending on �, but independent of N , such that term

(zTt;Sti(t)
vt;Sti(t) )

2 in the right-hand-side of inequality (27) can be bounded

as follows

(zTt;Sti(t)
vt;Sti(t) )

2 � �v2kzt;Sti(t) k
2

� �v2c(�)

dim(St0 )X
j=dim(St0 )�dim(St

i(t)
)+1

kzt;spanfv�j gk
2:

(29)

By plugging estimates (28) and (29) in equation (27), we obtain

(zTt vt)
2 � 2�2kztk

2 + 2 �v2 c(�)

dim(St0 )X
j=dim(St0 )�dim(Sti(t) )+1

kzt;spanfv�j gk
2:

Summing up these relations from time t = 0 to t = N , we �nally have

NX
t=0

(zTt vt)
2 � 2�2

NX
t=0

kztk
2+

16
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2 �v2 c(�)

NX
t=0

dim(St0 )X
j=dim(St0 )�dim(Sti(t) )+1

kzt;spanfv�j gk
2: (30)

Introduce now the time-varying set of instant points

BN := [
dim(St0 )

j=1 f�j ; �j + 1; : : : ; �j + T � 1g:

Since dim(St0) � l, we obviously have jBN j � T l.
Then,

NX
t=0; t62BN

dim(St0 )X
j=dim(St0 )�dim(Sti(t) )+1

kzt;spanfv�j gk
2

�

dim(St0 )X
j=1

�jX
t=0

kzt;spanfv�j gk
2

�
1

�2

dim(St0 )X
j=1

�jX
t=0

(zTt v�j )
2 �

l

�2
[o(

NX
t=0

kztk
2) +O(1)]; (31)

where the last inequality is a consequence of hypothesis iii) and the fact

that dim(St0) � l, 8N .

By using inequality (30) and inequality (31), we obtain:

NX
t=0; t62BN

(zTt vt)
2 � 2�2

NX
t=0

kztk
2 + 2�v2c(�)

l

�2
[o(

NX
t=0

kztk
2) +O(1)]

� 2�2O(

NX
t=0

kztk
2 +N) + 2�v2c(�)

l

�2
[o(

NX
t=0

kztk
2 +N)];

which �nally implies that

lim sup
N!1

NX
t=0; t62BN

(zTt vt)
2

NX
t=0

kztk
2 +N

� 2�2:

Since � is arbitrarily chosen, the thesis follows. 2
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