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Abstract

The identi�cation of time varying parameters requires
that a certain level of information is present in the data
through time. Only in this case it is in fact possible to
track the parameter variability and form a reliable esti-
mate. This consideration has led to the introduction in
the literature of a variety of persistence of excitation no-
tions ranging from the deterministic ones (in the '80's)
to more sophisticated stochastic de�nitions proposed in
the last decade.

This paper presents an overview of the existing stochas-
tic excitation notions and discusses important issues
like their necessity for tracking and their applicability
in di�erent contexts. It appears that the present state
of the art is not completely satisfying in terms of com-
pleteness and generality of the available results.
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1 Introduction

In the identi�cation of systems subject to time variabil-

ity, it is crucial that the data collected from the system
convey continual information on the parameters to be
estimated. As a matter of fact, only in this case the
identi�cation algorithm can rely on fresh information
in forming a reliable estimate of the current value
of the system parameters. This concept has been
formalized in the system identi�cation literature under
the name of persistence of excitation, see [1], [2] for
classical references.

The condition can take a variety of forms. Letting �t
be the observation vector, a prototype characterization
takes the form
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for some h, where �min denotes the minimum eigen-
value, Fkh is the so-called �-algebra of the past, that
is the �-algebra generated by all system processes up
to time kh, and k1, k2 are two positive constants.
Roughly, this condition requires that, whatever the
past evolution of the system might have been, the
information carried by data over the next h time points
spans the entire parameter space with a �nite nonzero
probability.

Condition (1) goes back to the early '90's. In a form
that is slightly di�erent from but equivalent to (1) it
was stated in [3], whereas in the above form it can be
found in [4]. Henceforth, such a characterization has
been used in many di�erent papers.

In particular, in [3] the convergence and stability of a
Kalman �lter based algorithm are studied under (1) and
in [5] it is proven that a forgetting factor least squares
identi�cation algorithm provides bounded estimates if
condition (1) is met with and the forgetting factor is
large enough. Another contribution using such notion
of persistence of excitation is [6], where an expression
for the asymptotic estimation error for a forgetting fac-
tor least squares algorithm is worked out.

Many more contributions prove results on system iden-
ti�cation properties under conditions related to (1).
Among others, we quote [7, 8, 9, 10, 11, 12, 13, 14].

In this paper, we critically review the problem of se-
curing excitation in time-varying system identi�cation.
Our purpose is twofold:

i) providing an overview of the di�erent approaches that
have been adopted in the literature;
ii) focusing on open problems in this context.

2 A conditional persistence of excitation
condition

The persistence of excitation condition introduced in
[3] takes the form:
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for some � > 0, and is easily seen to be equivalent to
(1).

In the case where f�tg is a �-mixing process, condition
(2) can be seen to be equivalent to the much simpler
condition
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which can be veri�ed in a relatively easy way in many
situations. The proof of the equivalence between (2)
and (3) can be deduced by inspecting the proof of The-
orem 2.3 in [15] or as a simple elaboration of the argu-
ments in [11].

One interesting fact is that, in a �-mixing context, con-
dition (3) is, in a well-de�ned sense, see [15], also a
necessary condition for guaranteeing tracking proper-
ties of the LMS identi�cation algorithm, as well as for
RLS with forgetting factor. Since such a condition is
also su�cient for tracking, it appears to be the right
condition in this context. The related discussions may
be found in [15] for LMS and in [12] for RLS with for-
getting factor. For signals f�tg which are more general
than �-mixing processes, it was also shown that the
above condition is both necessary and su�cient for the
stability of the standard LMS in the paper [16].

While the �-mixing condition includes a number of im-
portant stochastic processes, such asM -dependent pro-
cesses or signal generated by �lters fed by bounded
white noise, it is also true that a process generated by
a dynamical system is not �-mixing in general.

3 Assessing condition (2)

In Section 1, a number of papers providing results which
hold true under the persistence of excitation condition
(2) have been referenced. Clearly, in order to apply
these results, one has �rst to verify that the persistence
of excitation condition is satis�ed in the setting under
study.

It is advisable to distinguish two situations. In the case
of systems without autoregressive parts, it turns out
that condition (2) can be easily related to the proper-
ties of the inputs to the system. In this way, explicit
assumptions can be derived for the persistence of exci-
tation condition to hold. For example, in [6] condition
(2) has been discussed in connection with Hammerstein
models and linear combiners. On the other hand, as-
sessing (2) is a di�cult task when the system contains
an autoregressive component and we mainly focus on
this case in the present paper.

To be speci�c, let us consider the time-varying state
variable system described by the equation

�t+1 = At�t + wt+1: (4)



In (4), wt is a remote unmeasurable noise signal that
plays the role of a latent variable in the generation of
�t.

A typical example of system (4) is the time-varying
scalar autoregressive model

yt+1 = �Tt �t + vt+1; (5)

where

�t = [yt; yt�1; : : : ; yt�p+1];

�t = [a1(t); : : : ; ap(t)]:

In this case, by letting
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system (4) is immediately recovered. Clearly, (4) can
accommodate many other speci�c situations than the
autoregressive system (5).

In [17], the problem of securing the persistence of ex-
citation condition (2) for system (4) has been studied
in a stationary context. There, it is shown that if wt

is i.i.d, the regressors are bounded, and the system is
deterministically stable according to the following as-
sumption

lim sup
t!1

��tkAtAt�1 � � �A0k = 0; almost surely;

for some � > 1, then the persistence of excitation con-
dition is satis�ed, provided that

E[�i�
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The latter condition is satis�ed e.g. in the case of the
autoregressive system (5).

The restrictive condition of this result is that the system
is required to be deterministically stable, a condition
which is not satis�ed in many cases. Extending this
result to milder stability conditions of stochastic type

such as the one proposed in [18] and reported in [17] as
Assumption 2' is in general impossible. This is shown
by a counterexample provided in [17].

In conclusion, the persistence of excitation condition
(2) appears to be too sti� for systems with an autore-
gressive part in general.

4 A generalized excitation condition

As pointed out above, the persistence of excitation con-
dition (2) cannot be veri�ed by signals generated from
autoregressive stochastic models in general. One way
of relaxing the excitation condition has been presented
in [15], where the key idea is to replace the constant
lower bound � by a time-varying random process sat-
isfying certain \excitation" properties. To be precise,
the generalized excitation condition introduced in [15]
is as follows:

Generalized Excitation Condition:

There exists an integer h > 0 such that f�kg 2 S0(�)
for some � 2 (0; 1), where

�k
�
= �min

8<
:E

2
4 (k+1)hX
i=kh+1

�i�
�
i

1 + k�ik
2 jFkh

3
5
9=
; ;

and

S0(�)
�
= f a = fak; k � 0gj ak 2 [0; 1];

E�k
j=i+1(1� aj) �M�k�i;

8k � i � 0; for some M > 0g:

It is quite obvious that the excitation condition (2) is
a special case of the above generalized excitation con-
dition, because for any constant � 2 (0; 1), we have
f�g 2 S0(�) with � = 1��. Furthermore, it was shown
in Section 4 of [15] that the above generalized exci-
tation condition is a uni�ed stability condition for all
the three standard tracking algorithms, i.e. Kalman �l-
tering algorithm, least-mean-squares algorithm and the
forgetting factor RLS algorithm. Tracking error bounds
of these three algorithms have also been established un-
der the same condition there.

Now, a natural question is: can we verify the general-
ized excitation condition for a nontrivial class of time-
varying autoregressive processes? To give a concrete
answer, let us consider again the autoregressive process
(5) and assume that fvtg is a zero mean independent
sequence that is independent of �0 and satis�es
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It goes without saying that the random coe�cient pro-
cess f�tg determines whether or not the regressor pro-
cess f�tg satis�es the generalized excitation condition.

The following two examples were provided and analyzed
in [15].

Example 1.

Let fAtg in (6) be an independent random sequence
which is independent of fvtg. If there exists � 2 (0; 1)
such that

sup
k

Ek�
(k+1)p�1
i=kp Aik

4 < �

and

sup
k

EkAkk
q <1;

where q
�
= maxf4; 2(p + 1)g, then the regressor f�tg

generated by the autoregressive model satis�es the gen-
eralized excitation condition.

Next, we present an example where the random coe�-
cient vector f�tg is not an independent sequence.

Example 2.

Let �t be decomposed as

�t = � + et;

where � corresponds to a stable AR(p) model, and et is
a random vector process which is generated by a stable
ARMA model:

et+F1et�1+� � �+Ft�qet�q = wt+G1wt�1+� � �+Grwt�r;

where fwtg is a Gaussian white noise sequence which
is independent of fvtg with small variance. Then f�tg
generated by (5) satis�es the generalized excitation con-
dition.

Of course, the generalized excitation condition can also
include many other interesting cases which cannot be
veri�ed by the excitation condition (1).

5 Discussion

Apparently, the overview of the persistence of excita-
tion literature described in the previous sections does
not provide a complete answer to a number of ques-
tions that can be posed in this context. And, indeed,
the existing literature is not complete and many prob-
lems remain open at the present stage of knowledge.
The purpose of this section is to better focus on such
problems.

As we have seen, condition (2) is in some well-de�ned
sense a su�cient as well as necessary condition for
tracking properties for LMS and RLS with forgetting
factor in the case of �-mixing processes. On the other
hand, �-mixing is not general enough for many appli-
cations (in particular, in relation to autoregressive sys-
tems). The obvious question then is:

i) how far is (2) from being necessary in other, more
general, contexts?

All identi�cation settings that have been discussed in
previous sections and for which a persistence of excita-
tion condition has been proven require a stability as-
sumption of some sort on the true system. These con-
ditions entail that the observation vector �t remains
bounded in some sense.

ii) is it necessary to impose a stability-like condition in
order to prove (2)?

An intuitive reasoning would suggest that if the sys-
tem to be identi�ed is unstable, than more information
is available and, consequently, its parameters should be
better estimated by an optimal algorithm. On the other
hand, apart from the Kalman �lter algorithm in a spe-
ci�c Gaussian context, for all other algorithms no claim
of optimality is possible.

Technically speaking, in the unstable case the term
k�ik

2 appearing at the denominator of (2) (and also of
the generalized excitation condition) grows unbounded.
In order to prove the excitation condition, also the nu-
merator has to grow unbounded, and this requires that
�t becomes large in all the directions of the parameter
space. If the observation vector is large in certain di-
rections only, then the excitation condition cannot be
expected to be satis�ed.

No doubt one can conceive unstable systems with an au-
toregressive part such that the observation vector grows
unbounded in certain directions only, so that the exci-
tation condition is violated. Now, is it true that the
identi�cation algorithms have no tracking capabilities
in theses cases? The LMS algorithm is not direction
selective. This means that if the observation vector is
large, then it looses responsiveness in all directions in
the parameter space and may become unable to track



variations in the parameters. This same rationale does
not apply however to other algorithms, in particular the
Kalman �lter. For this algorithm, even the generalized
excitation condition may be too demanding in order to
guarantee tracking properties.

iii) is it possible to conceive di�erent persistence of ex-
citation conditions for the Kalman �lter algorithm that
allow to treat unstable systems?

Much work in the literature on time varying system
identi�cation has been devoted to establish stability re-
sults and the boundedness of the tracking error.

iv) is it possible to work out approximate (though tight)
expressions relating the variance of the tracking error
to the excitation level?

A quantitative bound of the tracking error is provided
in [6] under general conditions. In particular, no weak
dependence conditions on the regressors are required.
While this result is of great theoretical interest because
it explicitely shows the dependence of the tracking error
on fundamental estimation variables (such as the mem-
ory length of the algorithm, the parameter variability
and the noise variance), admittedly the provided bound
is not tight.

In [14], the problem of quantifying the tracking error
has been studied under some weak dependence con-
ditions on the regressors. There, it is shown that
the tracking error variance is approximated by means
of the solution to a deterministic equation (where
certain stochastic variables are replaced by their ex-
pected value). This result provides quantitative reli-
able bounds in the case when the regressor dependence
vanishes fast enough.
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