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Abstract. It is well known that a crucial property for the effective identification of time-varying
systems is that the data carry continual information on the parameters to be estimated. As a matter
of fact, only in this case can the identification algorithm rely on fresh information in forming a
reliable estimate of the current value of these parameters. This concept has been formalized in the
system identification literature under the name of persistence of excitation.

In this paper, the persistence of excitation property is studied for a class of time-varying systems
(that includes the standard autoregressive model as a particular case) and conditions for it to hold
are derived.
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1. Introduction. In the last two decades, a considerable effort has been put
into the comprehension of identification methods for the estimation of time-varying
systems.

A huge stream of research has been devoted to situations that somehow reduce
to the problem of estimating constant unknown parameters. This is, for instance,
the case of the so-called random coefficient autoregressive models; see, e.g., Nicholls
and Quinn (1982), Chow (1983), and Beran and Hall (1992). These models are
characterized by parameters which are randomly fluctuating according to the law
ϑ(t) = ϑ̄ + δ(t), δ(t) being an independent sequence. In this framework the main
concern is the consistent estimation of the mean value ϑ̄. Another kind of time-
varying systems which has attracted interest in recent years are the so-called nearly
nonstationary autoregressive models. In this case, the time-varying parameters are
asymptotically convergent and the corresponding asymptotic invariant model exhibits
singularities on the unit circle. The limiting distribution of the estimation error when
the identification is performed via the standard least squares algorithm is studied,
e.g., in Cox and Llatas (1991); see also Cox (1991).

In the above literature, the fact that the estimated parameters are in fact constant
makes the estimation task simpler than in truly time-varying situations. As a matter
of fact, when the parameters are constant, the same unknowns are estimated through
time and it is expected that a consistent estimate can be formed under the sole
condition that data carry enough information in the long run. On the other hand,
when the goal is that of estimating truly time-varying parameters, one has to somehow
guarantee that a certain amount of information is available over any finite interval of
time. As a matter of fact, only in this way can the identification algorithm rely on
fresh information in forming a reliable estimate of the current value of the parameters.
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This idea is well known in the identification literature under the name of persistence
of excitation.

Letting ϕ(·) be the observation vector, a persistence of excitation condition which
has been widely used in the literature takes the form

pr

(
λmin

{
t+s−1∑
i=t

ϕ(i)ϕ(i)′

1 + ‖ϕ(i)‖2

}
≥ k1

∣∣∣∣∣ σt−1

)
≥ k2 ∀t,(1)

where λmin denotes the minimum eigenvalue and σt is the so-called σ-algebra of the
past, that is, the σ-algebra generated by all system processes up to time t. Roughly,
this condition requires that, whatever the past evolution of the system might have
been, the information carried by data over the next s time points spans the entire
parameter space with a finite nonzero probability.

Condition (1) was first introduced in Guo (1990) in a form that is slightly dif-
ferent from but equivalent to (1), and has henceforth been used in many different
contributions.

Under (1), Guo (1990) proves stability and convergence results for a Kalman
filter based algorithm used in the estimation of time-varying parameters generated
by a random-walk–type equation. In the paper of Bittanti and Campi (1994) it is
proven that a forgetting factor least squares identification algorithm provides bounded
estimates if condition (1) is met and the forgetting factor is chosen to be larger than a
certain threshold. Another contribution using the persistence of excitation condition
(1) is Campi (1994). There, an explicit expression for the asymptotic estimation
error is given for a forgetting factor based least squares algorithm. This bound shows
the dependence of the estimation error on the speed of the time variability of the
parameters and the variance of noise.

There are many more contributions on system identification where significant
properties are proven under conditions related to (1). Among others, we cite Bit-
tanti and Campi (1991a, 1991b); Guo, Ljung, and Priouret (1993); Guo and Ljung
(1995a, 1995b); and Campi (1997). An additional interesting paper is Ravikanth and
Meyn (1999), where a lower bound for the estimation error valid for any identification
algorithm is worked out.

In all of the above-mentioned contributions, condition (1) is taken for granted
or proven only in certain specific situations. In the present paper we address the
problem of verifying that such a condition is in fact satisfied for a class of time-
varying systems which includes, but is not limited to, autoregressive systems. In this
way, all the results proven in these contributions can in fact be applied to this class
of models.

The paper is organized as follows. In section 2 the system class is introduced.
The persistence of excitation condition is then discussed in section 3.

2. The system. Let us consider a time-varying state variable system described
by the equation

ϕ(t) = G(t)ϕ(t− 1) + v(t).(2)

In (2), ϕ(t) ∈ R
n is the so-called observation vector and it is a measurable signal,

and v(t) is a remote unmeasurable noise that plays the role of a latent variable in the
generation of ϕ(t). Throughout the paper, it is assumed that matrices G(t) form a
strictly stationary stochastic process.
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The transition matrix associated with G(t) is defined as

Φ(t, s) := G(s)G(s + 1) · · ·G(t).

A typical example of system (2) is a time-varying scalar autoregressive model of the
form

y(t) = a1(t)y(t− 1) + a2(t)y(t− 2) + · · · + an(t)y(t− n) + d(t).(3)

In this case, by letting

G(t) =




a1(t) a2(t) · · · an(t)

1

. . .

1


 , ϕ(t) =




y(t)

y(t− 1)

...

y(t− n + 1)


 , v(t) =




d(t)

0

...

0


 ,

system (2) is immediately recovered. Clearly, system (2) can accommodate many
other specific situations than the autoregressive system (3).

The following assumptions are made on system (2).
Assumption 1. v(·) is a zero-mean, bounded independently and identically dis-

tributed (i.i.d.) sequence, independent of G(·).
Assumption 2. ∃ρ: ρ−t‖Φ(t, 0)‖ ≤ α ∀t almost surely.
Clearly, Assumption 2 is an exponential stability condition. It is worthwhile

pointing out that there is a milder stability condition that could be considered.
Assumption 2′. ∃ρ: lim supt→∞ ρ−t‖Φ(t, 0)‖ = 0 almost surely.
Assumption 2′ is a stability assumption of stochastic type that requires ‖Φ(t, 0)‖

to go to zero exponentially fast with asymptotic deterministic rate ρ. On the other
hand, Assumption 2 imposes restrictions for any finite t. It is in fact a truly deter-
ministic stability assumption.

It is easy to see that Assumption 2′ is equivalent to

lim sup
t→∞

t−1 log ‖Φ(t, 0)‖ ≤ −γ < 0 almost surely.(4)

This last condition has been discussed (in a continuous-time setting) by Solo (1994).
Among other things, Solo provides conditions on the eigenvalues of the stochastic
matrix G(t) such that (4) holds true.

Finally, notice that, since G(·) is strictly stationary, Assumption 2 is equivalent
to

‖Φ(t, s)‖ ≤ αρt−s ∀t, s almost surely.

3. Main result: Persistence of excitation condition. In this section, the
persistence of excitation condition is discussed and necessary conditions for it to hold
are derived.

For subsequent use, we introduce the σ-algebra generated by the past of v(·) and
the past, present, and future of G(·):

ζt = σ(v(i), i ≤ t; G(·)).

Notice that ϕ(t) is measurable with respect to ζt.
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For the sake of clarity, we point out that the σ-algebra of the past in condition
(1) is given by

σt = σ(v(j), G(j), j ≤ t).

We start by proving the following proposition which is a law of large numbers of
conditional type for system (2).

Proposition 3.1. Under Assumptions 1 and 2,

E



∥∥∥∥∥∥

1

k

t+k−1∑
i=t

(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])
∥∥∥∥∥

2
∣∣∣∣∣∣ ζt

 −→ 0 as k → ∞,

uniformly with respect to both time t and probability outcome.
Proof. The following chain of inequalities holds true:

E



∥∥∥∥∥∥

1

k

t+k−1∑
i=t

(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])
∥∥∥∥∥

2
∣∣∣∣∣∣ ζt



≤ 1

k2
n

∥∥∥∥∥∥E

t+k−1∑

i,j=t

(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])

× (ϕ(j)ϕ(j)′ − E[ϕ(j)ϕ(j)′ | ζt])
∣∣∣∣∣∣ ζt


∥∥∥∥∥∥

(since, for any stochastic matrix M ≥ 0 of dimension n, E[‖M‖] ≤ n‖E[M ]‖)

≤ 1

k2
n

t+k−1∑
i,j=t

‖E[(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])

× (ϕ(j)ϕ(j)′ − E[ϕ(j)ϕ(j)′ | ζt]) | ζt]‖

≤ 1

k2
2n

t+k−1∑
i,j=t
j≥i

‖E[(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])

× (E[ϕ(j)ϕ(j)′ | ζi] − E[ϕ(j)ϕ(j)′ | ζt]) | ζt]‖.
In this last expression, the norm of (ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt]) is deterministically
bounded in view of the boundedness of v(·) (Assumption 1) and the exponential
stability of the system (Assumption 2).

Therefore, to complete the proof it suffices to prove that the norm of (E[ϕ(j)ϕ(j)′ |
ζi]−E[ϕ(j)ϕ(j)′ | ζt]), j ≥ i ≥ t, is bounded by a deterministic function of j− i only,
which tends exponentially to zero as j − i → ∞.

Set ϕ(r | s) := E[ϕ(r) | ζs], r ≥ s. Since v(·) is an independent sequence, we have

ϕ(r | s) =

s+1∑
k=−∞

Φ(r, k)v(k − 1).

Taking into account the exponential stability assumption (Assumption 2) and that
the noise v(·) is bounded (Assumption 1), this last expression shows that ‖ϕ(r | s)‖ is
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bounded by a deterministic function of r − s only, which tends exponentially to zero
as r − s → ∞. The term (E[ϕ(j)ϕ(j)′ | ζi] − E[ϕ(j)ϕ(j)′ | ζt]) can now be handled
as follows:

E[ϕ(j)ϕ(j)′ | ζi] − E[ϕ(j)ϕ(j)′ | ζt]
= E[(ϕ(j | i) + (ϕ(j) − ϕ(j | i)))(ϕ(j | i) + (ϕ(j) − ϕ(j | i)))′ | ζi]

− E[(ϕ(j | t) + (ϕ(j) − ϕ(j | t)))(ϕ(j | t) + (ϕ(j) − ϕ(j | t)))′ | ζt]

= ϕ(j | i)ϕ(j | i)′ − ϕ(j | t)ϕ(j | t)′ −
i+1∑

k=t+2

Φ(j, k)∆φ(j, k)′,

where ∆ := E[v(t)v(t)′]. The thesis follows by observing that the norm of each of
these three terms is bounded by a deterministic function of j − i only, which tends
exponentially to zero as j − i → ∞.

Notice that, up to now, no conditions have been introduced guaranteeing that
vector ϕ(·) is somehow exciting (in fact, under Assumptions 1 and 2, v(·) and/or G(·)
may well be identically zero). We now introduce an extra condition (Assumption 3
below) which can be interpreted as an excitation condition. We anticipate that, in
view of Proposition 1, Assumption 3 immediately leads to concluding that ϕ(·) is
persistently exciting in the sense of definition (1) (see Theorem 1 below). The fact
that Assumption 3 holds true in many situations of interest (e.g., for the autoregressive
system (2)) is discussed immediately after the theorem.

Assumption 3. E[ϕ(i)ϕ(i)′ | ζt] ≥ H > 0 ∀i ≥ t + n̄, for some integer n̄.
Theorem 3.2. Under Assumptions 1–3, there exist an integer s and two pos-

itive real numbers k1 and k2 such that the persistence of excitation condition (1) is
satisfied.

Proof. Recalling that, for any pair of positive semidefinite matrices C and D,
λmin[C] ≥ λmin[D] − ‖C −D‖, one obtains

λmin

{
1

k

t+k−1∑
i=t

ϕ(i)ϕ(i)′
}

≥ λmin

{
1

k

t+k−1∑
i=t

E[ϕ(i)ϕ(i)′ | ζt]
}

−
∥∥∥∥∥1

k

t+k−1∑
i=t

(ϕ(i)ϕ(i)′ − E[ϕ(i)ϕ(i)′ | ζt])
∥∥∥∥∥ .

Take now conditional expectation of this last equation with respect to ζt. Thanks to
Assumption 3 and Proposition 1, it is then apparent that there exist an integer s and
a real number β such that

E

[
λmin

{
1

s

t+s−1∑
i=t

ϕ(i)ϕ(i)′
}∣∣∣∣∣ ζt

]
≥ β > 0 ∀t.

Then in view of the boundedness of ϕ(·) (Assumptions 1 and 2), we can conclude that
there exist two positive real numbers k1 and k2 such that

pr

(
λmin

{
t+s−1∑
i=t

ϕ(i)ϕ(i)′

1 + ‖ϕ(i)‖2

}
≥ k1 | ζt

)
≥ k2 ∀t.

Since the σ-algebra generated by v(j) and G(j), j ≤ t − 1, is coarser than ζt, the
thesis follows.
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Next, we show that Assumption 3 holds true in the case of the autoregressive
system (2). Take n̄ = n. Recalling that ϕ(r | s) = E[ϕ(r) | ζs], for any j ∈ [i−n, i−1]
one has

E[ϕ(i)ϕ(i)′ | ζt]
= E[E[(ϕ(i | j) + (ϕ(i) − ϕ(i | j)))(ϕ(i | j) + (ϕ(i) − ϕ(i | j)))′ | ζj ] | ζt]

(since j ≥ t)

≥ E[(ϕ(i) − ϕ(i | j))(ϕ(i) − ϕ(i | j))′ | ζt].

Since ϕ(i) − ϕ(i | j) =
∑i+1

k=j+2 Φ(i, k)v(k − 1), we have (σ2 := E[d(t)2])
• for j = i− 1,

E[ϕ(i)ϕ(i)′ | ζt] ≥ diag(σ2, 0, . . . , 0) =




σ2 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0


 ;

• for j = i− 2,

E[ϕ(i)ϕ(i)′ | ζt] ≥ Φ(i, i) diag(σ2, 0, . . . , 0)φ(i, i)′

=




! ! 0 . . . 0
! σ2 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0


 ;

(· · ·)
• for j = i− n,

E[ϕ(i)ϕ(i)′ | ζt] ≥ Φ(i, i− n + 2) diag(σ2, 0, . . . , 0)Φ(i, i− n + 2)′

=




! ! ! . . . !
! ! ! . . . !
! ! ! . . . !
...

...
...

...
! ! ! . . . σ2


 ,

where the !’s are random entries, whose value is bounded uniformly with respect
to time t and probability outcome. From the above relations, Assumption 3 easily
follows with n̄ = n.

It is interesting to note that Assumption 3 holds in many extra situations. As a
simple example, if G(·) is deterministic such that Assumption 2 holds, then Assump-
tion 3 is met provided that the very minimal condition E[ϕ(i)ϕ(i)′] > 0 is satisfied.

The analysis has been conducted so far under the stability assumption, Assump-
tion 2. It is, of course, of interest to investigate whether the persistence of excitation
condition (1) still holds under the weaker stability assumption, Assumption 2′. Un-
fortunately, this is not the case, as the following simple example shows.

Example. Suppose that ϕ(t) has two components and let G(t) = diag(g(t), 0).
g(·) is an i.i.d. sequence such that g(t) = 2 with probability 0.5 and g(t) = 0.25 with
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probability 0.5. Finally, v(t) = [v1(t)v2(t)]′, where v1(·) and v2(·) are i.i.d. sequences
independent of each other and of g(·) and take on values −1 and +1 with probability
0.5.

Assumptions 1 and 3 are trivially satisfied in this case. Assumption 2′ is also
satisfied. This is seen as follows. Since ‖Φ(t, 0)‖ = g(0)g(1) · · · g(t), for any given
ρ ∈ (0.1), we have

1

t
log(ρ−t‖Φ(t, 0)‖) = log

1

ρ
+

1

t

t∑
s=0

log g(s).

The second term in the left-hand side tends almost surely to E[log g(t)] = 0.5[log 2 +
log 0.25] = −0.5 log 2. Then, by taking ρ to be a real number such that log 1

ρ −
0.5 log 2 < 0, we have that 1

t log(ρ−t‖Φ(t, 0)‖) tends almost surely to a negative
number. From this, we conclude that lim supt→∞ ρ−t‖Φ(t, 0)‖ = 0 almost surely, that
is, Assumption 2′.

Next, we show that the persistence of excitation condition (1) is not satisfied in
this case.

Given any real number h, let Ah := {|ϕi(0)| > h}, where ϕ1(0) is the first
component of ϕ(0). Since g(t) takes on value 2 with probability 0.5, ϕ(0) has an
unbounded distribution and so pr(Ah) �= 0 ∀h. Moreover, note that if |ϕ1(0)| > h,
then |ϕ1(t)| > (0.25)th− 5/4. (g(t) is either 2 or 0.25 and |v1(t)| = 1.) Now, suppose
by contradiction that (1) holds for certain fixed k1, k2, and s. Since ϕ2(i) = v2(i)
keeps bounded and ‖ϕ(i)‖ ≥ (0.25)sh − 5/4(i ∈ [1, s]), a real number h exists such

that condition λmin{
∑s

i=1
ϕ(i)ϕ(i)′

1+‖ϕ(i)‖2 } ≥ k1 is not satisfied on Ah. So

E

[{
λmin

{
s∑

i=1

ϕ(i)ϕ(i)′

1 + ‖ϕ(i)‖2

}
≥ k1

}
· 1(Ah)

]
= 0 < k2 · 1(Ah)

(where 1(Ah) is the indicator function of set Ah) and this contradicts condition (1).
The above example shows that the persistence of excitation condition (1) does not

hold under Assumption 2′. On the other hand, almost all results in the identification
literature (like those in Guo (1990), Bittanti and Campi (1994), or Campi (1994))
have been worked out under this condition (1). Consequently, at the present state of
the art, it is not clear how to handle situations where the system is only characterized
by a mild stability condition like Assumption 2′. The above observation raises an
interesting conceptual question: one may ask if it is possible to work out a persistence
of excitation condition milder than (1), that holds true under Assumption 2′ and still
permits one to prove boundedness results for the identification algorithms. This issue
is certainly worthy of further investigation.
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