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The controllability of the estimated model can be secured in a stochastic 
framework by a suitable modification of the least-squares algorithm, 
leading to an identification technique that can be safely used in any adaptive 
control scheme. 
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Abstract-The asymptotic controllability of the identified 
system is a central problem in adaptive control. If 
controllability is ascertained, the analysis of even complex 
adaptive controllers based on multistep performance indices 
is drastically simplified. In this paper, we study the 
controllability issue in connection with the recursive 
least-squares (RLS) algorithm. We show that standard RLS 
does not generally provide models that are controllable. 
However, a variant of this method that preserves all the basic 
properties of the standard RLS and also guarantees 
asymptotic controllability is introduced. The algorithm can 
be safely used in any adaptive control system, provided that 
the control law is able to stabilize known invariant plants. 

Copyright 0 19% Elsevier Science Ltd. 

1. INTRODUCTION 

Since the pioneering work of Astrom and 
Wittenmark (1973), the area of self-tuning 
control has attracted an increasing amount of 
interest. In particular, over the last decade, the 
analysis of adaptive schemes has represented a 
stimulating challenge for control theorists, and 
much attention has been paid to the establish- 
ment of rigorous convergence results. 

The first significant contribution in this 
direction is probably due to Goodwin et al. 
(1981). In this celebrated paper, the authors 
showed the self-optimality and mean-square 
stability of a minimum-variance adaptive tracker 
based on the stochastic approximation algorithm. 
The analysis in this paper was inherently based 
on the minimum-phase assumption of the system 
under control. 
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Ever since, much effort has been made in 
order to extend the results of Goodwin er al. 
(1981) to more general situations. In Sin and 
Goodwin (1982), a minimum-variance regulator 
based on a least-squares identification algorithm 
is considered. The self-optimality is achieved 
thanks to a suitable modification of the original 
least-squares technique. In analogy with the 
situation described in Goodwin et al. (1981), in 
the adaptive scheme of Sin and Goodwin (1982), 
the parameter consistency is not guaranteed, 
unless the reference signal is sufficiently rich. In 
order to get a strong consistent parameter 
estimate, Caines and Lafortune (1984) suggested 
the injection of an additive noise in the control 
action so as to improve the excitation charac- 
teristics of the signals. However, as noted in 
Chen and Guo (1987), this results in a 
degradation of the tracking accuracy. Asympto- 
tic optimality can be recovered by letting the 
additive noise vanish in the long run (Chen and 
Guo, 1987). Both Caines and Lafortune (1984) 
and Chen and Guo (1987) are devoted to 
adaptive schemes based on the stochastic 
approximation algorithm. A full treatment of the 
self tuning regulator equipped with the 
extended-least squares algorithm can be found in 
the remarkable paper by Guo and Chen (1991). 

A control law of minimum-variance type is a 
common characteristic of all the above quoted 
contributions. Since one of the peculiar features 
of such a technique is to cancel out the system 
zeros by the introduction of coincident poles in 
the regulator, the system is always required to be 
minimum-phase. Indeed, this constitutes a major 
limitation on the applicability of the theory 
developed in these contributions. 

In a couple of interesting papers, Rootzen and 
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Stemby (Stemby, 1977; Rootzen and Sternby, 
1984) proved that the least-squares estimate 
generally converges even without any excitation 
condition. This result weakened the previously 
known convergence conditions to a great extent, 
and set the basis for a renewed attack on 
long-standing open problems in adaptive control. 
On the basis of the results of Stemby (1977) and 
Rootzen and Sternby (1984), Kumar (1990) 
analyzed the properties of a large class of 
adaptive regulators based on the recursive 
least-squares algorithm. By exploiting the nor- 
mal equations, he was able to establish the 
stability and the optimality of the corresponding 
control scheme. Unfortunately, the general 
control law of Kumar is still governed by a 
dynamics that is factored as the product of two 
terms, the first being the numerator of the 
system transfer function. As a consequence, in 
analogy with the minimum-variance case, the 
minimum-phase assumption is still necessary. 

Turning to the case of non-minimum-phase 
systems, the existing results are quite scarce. In 
this connection, note that the analyses of 
minimum-phase plants always rest-explicitly or 
implicitly+n the stability of the inverse system 
(which implies system input boundedness, given 
system output boundedness). Since this implica- 
tion is obviously false for non-minimum-phase 
plants, the classical lines of reasoning developed 
for the minimum-phase case are not extendible, 
and new routes of analysis have to be 
discovered. 

It is widely recognized (see e.g. Campi, 1994) 
that a drastic simplification in the analysis of 
general adaptive control laws applied to possibly 
non-minimum-phase plants is achieved if the 
following two conditions are ascertained: 

(i) the parameters whose value actually in- 
fluences the behavior of the controlled 
system are estimated with progressively 
increasing accuracy; 

(ii) the asymptotically estimated model is 
controllable (i.e. it does not exhibit pole- 
zero cancellations). 

Clearly, the fulfillment of the first requirement is 
necessary to enable the regulator to select a 
suitable control action for the system. However, 
this does not mean in general that the entire 
dynamics of the system must be learnt. In fact, 
only those parts that are excited by the input 
signals are responsible of its behavior, and 
therefore must be reliably estimated. As for the 
second condition, note that in adaptive control, 
the control action is computed based on the 
knowledge of the estimated model. Therefore 

lack of controllability of such a model leads to 
paralysis in the control selection. 

Unfortunately, establishing the simultaneous 
satisfaction of conditions (i) and (ii) is not easy. 
This is why, in the literature, such conditions are 
often taken for granted (see e.g. Ren, 1993). 
Over the last decade, such a difficulty has 
represented one of the main stumbling blocks in 
adaptive control. 

The goal of the present paper is to enlighten 
this matter in connection with the commonly 
used recursive least-squares (RLS) algorithm. 
We first review some facts concerning the 
convergence of this algorithm, and prove that 
the component of the parameter estimation error 
along the directions of diverging information is 
asymptotically vanishing (Section 2.2). This 
result is strictly related to condition (i) above. 
Unfortunately, RLS does not generally provide 
controllable models. This is proved through a 
simple counterexample in Section 2.3. A 
modified version of RLS is then introduced that 
guarantees asymptotic controllability. This is 
obtained by adding an extra term to the standard 
RLS estimate that has the fundamental feature 
that it tends to zero along the directions of 
diverging information where the system para- 
meters are correctly estimated. In this way, an 
RLS-based algorithm that simultaneously meets 
conditions (i) and (ii) is obtained. The proposed 
algorithm can be successfully used in a variety of 
adaptive control problems. As a significant 
application, in Section 3, we derive a general 
result on adaptive stabilization that holds true 
for any control law, with no restrictions on the 
controlled system, such as the minimum-phase 
condition. 

2. THE RLS ALGORITHM IN ADAPTIVE CONTROL 

2.1. The RLS algorithm 
Consider the linear system 

A(F’; 6”)y(t) 

= B(q-‘; W)u(t - 1) + n(t), t 2 1, (la) 

where 8” = [a; a; . . . a,” b”, by . . bi_ ,I’ E 
(w n+m is the system parameter vector and 
A(q-‘; 19’) and B(q-‘; So) are polynomials in 
the unit delay operator q-l given by 

A(q-‘; 8’) = 1 - i ayq-‘, (lb) 
i=l 

m-l 

B(q-‘; So) = c b:q-‘, b;;#O. 
i=o 

UC) 

We assume that the transfer funtion of the 
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system is minimal 
assumption. 

according to the following 

Assumpfion 1. q”A(q-‘; 6’) and qm-lB(q-‘; 8’) 
are coprime polynomials. 

The system (la) is initialized at time t = 1 with 
given deterministic input and output samples 

u(O), . . . > ~(1 -m), y(O), . . . , y(1 -n). The in- 
put u(t), c 2 1, is the control variable, which is a 
function of past output values (causal control). 
More precisely, u(t) is any Borel-measurable 
function of y(l), y(2), . . . , y(t). The signal n(t) 
is the equation error subject to the following 
assumption. 

Assumption 2. {n(f)} are i.i.d. normally distrib- 
uted, with E[n(t)] = 0 and @z(t)‘] = c2 > 0. 

By introducing the obseruufion vector 

cp(t) = [Y(f) Y0 - 1) . * * 

y(t -n + 1) u(f) u(f - 1) .I. u(t -m + l)]‘, 

the system (la) can be given the form 

y(t) = cp(f - l)V+” + n(t). 

The unknown system parameter 6” is estimated 
recursively through the RLS identification 
algorithm described by the following equations: 

(2) 

3(f) = 3(f - 1) + P(f)cp(f - l)[y(t) 

- q(f - l)‘b(f - l)], 3(O) = 30, (3a) 

P(f) =s(f - 1) - 
P(f - l)cp(f - l)tp(f - l)TP(f - 1) 

1+cp(f-1)TP(f-l)cp(f-1) ’ 

P(0) = PO = P; > 0. (3b) 

Note that the auxiliary matrix sequence P(e) is 
decreasing, so that it tends to some limit as f 
diverges. This limit will be denoted by P(m). 

2.2. Basic properties of the RLS algorithms 
A fundamental issue in the study of RLS 

consists in pointing out whether or not the 
estimate 3(t) converges and, if so, whether the 
asymptotic estimate is close to the true 
parameterization 4”. This issue was investigated 
in the seminal works by Stemby (1977) and 
Rootzen and Stemby (1984) through the 
introduction of the so-called Bayesian approach. 
The basic idea is to take 9” as random subject to 
certain conditions and to show that the RLS 
equations then coincide with those of the 
Kahnan filter. Since the Kalman filter recursively 

produces the conditional expectation of 6” given 
the observations, it is then possible to study the 
RLS algorithm via standard Martingale theory. 
Using this approach, Rootzen and Stemby 
proved that the RLS estimate generally con- 
verges (Rootzen and Stemby, 1984, Theorem 1) 
and that the estimation error tends to zero along 
the directions of diverging information (Rootzen 
and Stemby, 1984, Theorem 2). Kumar (1990) 
(see also Chen et al., 1989) remarked that the 
RLS equations provide the conditional expecta- 
tion of 6” even without requiring any extra 
integrability condition on the observation vector. 

Theorem 1 below summarizes the results on 
RLS that are relevant to the forthcoming 
developments in this paper. See Theorem 1 in 
Kumar (1990) for the proof of point (i) and 
Theorem 2 in Rootzen and Stemby (1984) for 
that of point (ii). 

Theorem 1. There exists a set XC IV’+” with 
Z’(W) = 0 (Z(e) denotes the Lebesgue measure 
on I?‘+,) such that if 6” e X then 

(i) lim,,, 3(t) = 3(m) as., where &i(m) is an 
almost surely bounded random variable; 

(ii) given an (n + m)-dimensional random vector 
x measurable with respect 
a(y(l), y(2), . . .), we have lim,,,xT~(f) 2 
xTao, a.s. on {P(m)x = 0). 

Remark 1. The condition 6” z JV in Theorem 1 
cannot be dropped. As a matter of fact, there are 
situations in which, if the system parameter 
vector belongs to a certain singular set with zero 
Lebesgue measure then the RLS estimate drifts 
out of any bounded set (Nassiri-Toussi and Ren, 
1992). However, this should not be of too much 
concern: similarly to the way in which ahnost all 
the stochastic results hold true with probability 
one (i.e. for all random occurrences except those 
belonging to a set of probability measure zero) 
and still provide a powerful tool in the 
comprehension of random phenomena, the 
Bayesian approach helps gain insight into the 
behaviour of the RLS algorithm even though the 
corresponding results may fail to hold in a set of 
Lebesgue measure zero. 

In the following, we always assume that 
6” @ X 

The statement of Theorem 1 can be translated 
into a more suitable form for the forthcoming 
developments through the use of the so-called 
excitation subspace, originally introduced in 
Bittanti et al. (1990). 

Definition 1. The subspace %={x E 
08 n+m ] (x’ Xy=,, cp(t)cp(t)Tx < m} is called the 
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unexcitution subspace. Its orthogonal comple- 
ment $ = %’ is called the excitation subspace. 

Note that 8 and % are random subspaces 
(% = $(o), g= @), w E &,2 = basic probability 
space). 

Roughly speaking, the unexcitation subspace 
is the set of vectors along which the total amount 
of information remains bounded over time. Since 
the inverse equation of (3b) is P(t)-’ = P(t - 
1))’ + cp(t - l)cp(t - l)=, the so-called algorithm 
information matrix P(t)-’ turns out to be given 
by P(t)-] = PO’ + Xi:; cp(i)cp(i)‘. Therefore the 
excitation subspace can also be seen as the null 
space of the matrix P(m). 

Theorem 2. Denote by dn(t) and &u(t) the 
projections of 3(t) onto 8 and % respectively, 
and by Sn and Su the projections of 19” onto 8 
and % respectively. We have 

(i) lim,,, B,(t) = B,(m) (# S&, in general) 
a.s.; 

(ii) lim,_, aE(r) = aE(w) = 19; a.s. 

Proof. (i) This follows directly from Theorem 
l(i). 

(ii) Consider the vector x = aE(m) - Sr, 
which is measurable with respect to 
a(y(l), y(2), . . .). Since x E %, P(m)x = 0, a.s. . 
From Theorem l(ii), we then ll&-E(m) - Sg112 = 
X=(3&) - 79;) =X=(3(9 - IY”) = 0 a.s., 
which implies &n(m) = Sg a.s. cl 

Theorem 2 says that the asymptotic estimation 
error a(m) = b(m) - 6” is confined to the 
unexcitation subspace. This is not surprising, 
since the estimation error along the excitation 
directions is compensated by the information, 
which diverges with time. 

2.3. The pole-zero cancellation problem 
In this section, we address the problem of 

asymptotic pole-zero cancellation in the estim- 
ated transfer function. We first show that, by 
using the RLS identification algorithm, asympto- 
tic cancellations can actually occur. Then we 
introduce a modified version of RLS, called 
PD-RLS (P(t)-driven RLS), in order to ensure 
asymptotic coprimeness. The modification is 
designed in the light of the results worked out in 
the previous section. This leads to an identmca- 
tion algorithm that maintains the fundamental 
property that the estimation error along the 
excitation directions tends to zero. As discussed 
in Section 3, when this property is secured, one 

can develop a stability theory that generally 
holds for any adaptive control scheme in which 
the control law is able to stabilize a known 
invariant system. 

We start by providing an example in which 
RLS leads to an asymptotic cancellation. 

Counterexample 1. Take u(t) = OVt as the 
control law and assume that the RLS algorithm 
is initialized with PO = I (the identity matrix) and 
a0 such that polynomial qm-‘B(q-‘; a,,) has a 
common factor with q”A(q-‘; 8”). It is easy to 
see that, owing to the presence of noise n(t), the 
excitation subspace is the subspace spanned by 
the first n components of the observation vector. 
Therefore the polynomial A(q-‘; 19’) is consis- 
tently estimated (Theorem 2). On the other 
hand, since u(t) = 0, the estimate of B(q-‘; SO) 
remains unaltered over time: B(q-‘; b(t)) = 
B(q-‘; 8,) Vr. Hence qnA(q-I; 8(m)) and 
qm-‘B(q-l; 3(w)) are not coprime. 

For the introduction of the identification 
algorithm PD-RLS, we need some preliminary 
definitions. 

Given the vector space R”+” of parameters 
6 = [a, a2 . . a, b0 b, . . . b,_,lT, denote by 
(e c R”+” the subset of vectors such that 

q”A(q-‘; 6) and q”-’ B(q-‘; 6) exhibit a com- 
mon factor. The set of vectors whose Euclidean 
distance from Ce is less than E is indicated by Ce,: 

%?< = {6:d(6, U) < E}, 

where d(a, %):=infSZEZ 1119 - 8’11. 

Remark 2. The conditions under which two 
polynomials are coprime is a well-established 
issue in algebraic geometry. In, for example, 
Brieskorn and Kniirrer (1986, Theorem 3, 
Section 4.2), it is shown that 6 E % if and only if 
the following equation is satisfied: 

%( 6) = 0, 

where .%(a) is the resultant of q”A(q-‘; 6) and 

4 m-lB(q-‘; 6), given by 

l-a,-a2 . . . -a, 

m-l 

%e(‘@ = det b0 

n 

In adaptive control, a desired property is that the 
leading coefficient of the estimated polynomial 
B(q-‘; 3(t)) is different from zero. In relation 
to this, we also introduce the set %18, as the set of 
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vectors whose distance from the hyperplan 
5% = (19 :bo = 0) is less than E: 

The PD-RLS algorithm is as follows. 

5$ = {6:d(6,53) <E}. 

Since b;#O, and q”A(q-‘; So) and 

4 m-lB(q-l; So) are coprime polynomials (Ass- 
umption l), the true parameterization 4” does 
not belong to Ce, U S%& for sufficiently small E. We 
assume that some a priori information on 19” is 
available, so that we can tlx an g > 0 such that 6” 
belongs to the interior of the complement of 

‘b;?U %+ 

P(t)-driven RLS algorithm (PD-RLS). 

3(t) = 3(t - 1) + P(t)cp(t - l)[y(t) 

- cp(t - l)‘B(t - l)], 3(O) = 30, 

P(t) = P(t - 1) - 
P(t - l)cp(t - l)cp(t - l)TP(t - 1) 

1+ cp(t-l)TP(t-l)cp(t-1) ’ 

P(O)=P,=P;f>O. 

Recursively construct a vector sequence u(e) E 
R n+m with u(t) depending upon 3(r) and P(z), 
z 5 t, such that 

(i) u(e) a.s. convergent; 

(ii) 3(t) + P(t)u(t) E complement (%, U BJ Vt 
a.s. 

The PD-RLS estimate is given by 

3’(t) = 3(t) + P(t)u(t). 

Remark 3. The above procedure defines a family 
of PD-RLS algorithms, each of which given by a 
different rule for the determination of the 
perturbation vector u(e). The proof that u(e) 
sequences such that conditions (i) and (ii) 
actually exist is provided in Theorem 4 below. 

Remark 4. Contrary to most algorithms prop- 
osed in the literature (see e.g. Praly et af., 1989; 
Wen and Hill, 1992), PD-RLS does not 
incorporate any projection operators. This is 
crucial in order to establish the fundamental 
properties of the algorithm stated in Theorem 3. 

Remark 5. The idea of using perturbation of the 
RLS estimate of the kind proposed herein is not 
new. In a deterministic setting, Lozano and Zaho 
(1994) introduced a similar modification, and 
proved that it provided controllable models in a 
pole-placement context. In contrast to the 
stochastic method introduced in the present 
contribution, the algorithm in Lozano and Zaho 
(1994) is inherently based on the assumption that 
the noise is deterministically bounded by a 
known quantity. This allows one to construct a 
suitable normalized least-squares algorithm (with 

a dead zone depending on the disturbance 
bound) in which the perturbation vector is 
selected within a finite set of possible values. 
Interestingly enough, such a method is too stilf 
in a stochastic framework, where the unbound- 
edness of noise calls for a different line of 
reasoning, as provided in the present paper. 

The modification introduced in the PD-RLS 
algorithm with respect to the standard RLS has a 
twofold objective: 

l to keep the estimate away from the ‘dan- 
gerous’ set V where polynomials q”A(q-‘; 6) 
and q m-lB(q-l; S) are not coprime; 

l to preserve the fundamental property that the 
estimation error tends to zero along the 
excitation directions. 

The first of these is of great importance, since it 
implies the coprimeness of the asymptotically 
estimated transfer function (see Theorem 3). On 
the other hand, when the algorithm is used in an 
adaptive control scheme, the second requirement 
plays a crucial role in securing the stability 
property and the overall control system perfor- 
mance. This assertion can be made intuitively 
clear by noting that the observation vector tends 
to zero along the unexcitation directions (see 
Definition 1). Therefore the behavior of the 
controlled system in the long run is determined 
only by the component of the parameter vector 
in the excitation subspace, and accurate know- 
ledge of this component is sufficient to guarantee 
the desired performance. This idea will become 
more concrete in the next section, when we 
address the question of adaptive stabilization. 

In PD-RLS, the above two objectives are 
pursued by means of the extra term P(t)u(t) in 
the estimation equation. On the one hand, this 
term forces the estimation error to lie in the 
‘safe’ region in which no pole-zero cancellation 
occurs. On the other hand, since P(t) vanishes in 
the excitation directions, this modification is 
expected not to hinder the RLS partial 
consistency property along these directions. 
These considerations are given solid bases in the 
following theorem. 

Theorem 3. The PD-RLS estimate 8’(t) is 
almost surely convergent to a bounded random 
variable 3 ‘(a) such that &L(m) = 8; (where 
&k(m) and 19; are the projections of 3’(w) and 
I?” respectively onto Moreover, 
q”A(q-‘; 3’(w)) and qmlB(~‘l* 3’(m)) 
almost surely coprime polynomials and SAT) 
(the asymptotic estimate of bg) is almost surely 
different from zero. 
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Proof. The convergence of a’(t) follows directly 
from the convergence of a(t) (Theorem l), from 
the fact that the matrix P(t) is monotonically 
decreasing and therefore convergent, and from 
the convergence of u(t) (point (i) in the 
definition of the PD-RLS algorithm). The 
relation &k(w) = 8; is a consequence of the fact 
that the matrix P(t) tends to zero along the 
excitation directions, so that, along these 
directions, a’(t) - a(t) = P(t)u(t)+ 0. Finally, 
since by construction the estimate a’(t) keeps 
away from (e U !B by at least a distance 7, we 
have qnA(qvl; a’(w)) and q”-‘B(q-‘; 8’(w)) 
a.s. coprime and 6;)(m) a.s. different from zero.U 

In the next theorem, we provide a proof of the 
existence of PD-RLS algorithms. 

Theorem 4. The class of PD-RLS algorithms is 
not empty. 

Proof. Let V(t) = {u : B(t) + P(t)u E complement 
(%&U 9&)}. Obviously, V(t) # 0. We first 
prove that 

a(t) = inf { 11 u (1, u E V(t)} is bounded as. 

Set V = P(m)t[&‘- a(m)] (where P(m)t 
denotes the pseudoinverse of P(w)). We have 

8(t) + P(t)G = 3(t) + P(=J)V + [P(t) - P(m)]V 

= 23(t) + [6” - 3(9] + [P(t) - P(w)]U 

(since 6” - 3(w) E image [P(w)]) 

= 6” + [3(t) - 3(w)] + [P(1) - P(w)]6 

+ 6” a.s. 

Since 6” is in the interior of the complement of 
%2zU S&, there exists a time i such that, 
Vt >t, V E V(t), from which the a.s. bounded- 
ness of cu(t) follows. 

On the grounds of the above boundedness 
result, we can now show a possible construction 
of the sequence u(e). 

For t = 0 pick a u(O) E V(0) such that 

IW)II = 40). 
For trl, 

if 3(t) + P(t)u(t - 1) E complement ( ?ZZ U LB,), 

u(r) = u(t - 1) 

otherwise, pick a u(t) E V(t) 

such that ]]u(t)]( = a(t). 

Obviously, u(e) satisfies condition (ii) in the 
definition of PD-RLS. To see that u(a) is as. 
convergent (condition (i)), note first that from 
the relation supI Ilu(t 5 sup, cr(t) and the 

boundedness of a(-), it follows that Ilu(. is a.s. 
bounded. Set b, : = supt ]]u(t) I(. Then, taking into 
account that 8(t) and P(t) are convergent 
sequences, we obtain 

limsup ]][8(2) + P(z)u(t)] - [B(t) + P(t)u(t)]II 
,+a 52, 

slimsup [[l&r) - 3(t)]] + IIP(T) - P(t)llb,] 
r-r rz, 

= 0 a.s. (4) 

By the definition of V(t), at the instants at which 
a new u(t) is selected, we have a(t) + P(t)u(t) E 
complement (Y&U 2&), and a new u(r), r > t, 
is successively chosen only if a(r) + P(z)u(t) C$ 
complement (Ye, U P&) (compare G&U LBzE with 
G&U 9Q. Therefore it follows from (4) that the 
number of instants at which a new selection 
actually occurs is finite. The convergence of u(e) 
follows from this. 0 

In the proof, a sequence u(.) that satisfies 
requirements (i) and (ii) in the definition of the 
algorithm PD-RLS is introduced. We remark 
now that there is no reason to believe that this 
choice is in any sense optimal. Therefore an 
appropriate selection rule of the sequence u(e) 
so as to minimize the computational effort of the 
algorithm, and possibly to meet ad hoc 
requirements, should be the subject of further 
investigation. 

3. APPLICATION EXAMPLE: ADAPTIVE 
STABILIZATION 

The adaptive stabilization of a plant with 
unknown parameters has long been studied. Not 
only is this issue important by itself, but it often 
constitutes a first fundamental step in the 
performance analysis of an adaptive control 
scheme. Most papers on the subject deal with 
specific control laws, so that a plethora of ad hoc 
stability results can be found; see e.g. Goodwin 
et al. (1981) Sin and Goodwin (1982), Bittanti et 
al. (1992) and Campi (1992) for the minimum- 
variance regulator, Guo and Chen (1991) for the 
Astrom-Wittenmark regulator, and Ren (1993) 
for a pole-placement controller. Kumar (1990) 
also provided a general result, which, however, is 
applicable to minimum-phase systems only. 

Our goal in the present section is to present a 
stability result of general validity. It holds true 
regardless of the specific control law and without 
requiring restrictive assumptions on the con- 
trolled system, such as the minimum-phase 
condition. To be specific, consider the pathwise 
mean stability condition 

lim sup $ $ [lu(t)] + [y(t)]] < m a.s. (5) N--r= f I 
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We show that any control law able to stabilize a 
known invariant system meets the condition (5) 
when used in an adaptive fashion, provided that 
the identification is performed through the 
PD-RLS algorithm. The generality of such a 
result makes it applicable without restriction to 
any adaptive scheme in which the PD-RLS 
algorithm is used. 

Consider the following invariant plant: 

A(q-‘; @y(t) = B(q-‘; &)u(t - l), (6a) 

where the polynomials A(q-‘; 6) and B(q-‘; 8) 
are defined similarly to (lb, c): 

A(q-‘; S) = 1 - i: ~iq-‘, 
i=l 

m-l 

(6b) 

B(q-‘; B) = C ~iq-‘, ~~ #O. (6~) 
i=O 

For the known system (6), many well-established 
techniques that exhibit stabilizing properties 
provided that the system has no pole-zero cancel- 
lations (i.e. q”A(q-‘; 8) and qm-lB(q-l; 8) are 
coprime polynomials) are available. Among 
others, we mention infinite-horizon LQ control 
(Anderson and Moore, 1989), pole placement 
(ktrijm and Wittenmark, 1980) and receding- 
horizon control (Mosca and Zhang, 1992; Chisci 
and Mosca, 1993). All these techniques lead to 
control laws of the form 

u(t) = R(q_1; 3)u(t) + S(q-‘; @y(t), (7) 

where 

Z?(q-‘; 6) = 5 ri(79)q-‘, 
i=l 

S(q-‘; S) = 5 Si(6)q-‘, 
i=O 

and the coefficients ri(e) and Si(6) are 
continuous functions of 6 in a neighborhood of 
the true parameterization 8. The stability 
property can be stated precisely as follows. 
Letting z(t) = [y(t) ~(t)]~, the system (6) + (7) 
can be written as 

z(f) = D(q_‘; 3)z(f - l), (8) 

where the polynomial matrix D(q-‘; 6) is 
defined as 

D(q_‘; 8) = 
[I- A(q-‘; *)lq B(q-‘; 6) 

s(q-‘; S)q 1 wq-‘; 6)q . 
The stability condition is then written as 
lIz(t 5 ap*’ IIt(to)]l, p < 1, At = t - to, where 
T(f) is the state of the system (8) given by 

2(f) = [y(t) . . . Y (t + 1 - max b, PI) 

U(f) . . . u(f + 1 - max{m, a})lT. 

cancellation 855 

Let us suppose now that the control law (7) is 
applied in a certainty-equivalent fashion to our 
true system (la). The actual adaptive control law 
is then given by 

u(t) = R(q_‘; 3’(t))u(t) + S(q_‘; 3’(t))y(t), 

(9) 

where 3’(f) is computed through the PD-RLS 
algorithm. Then the ouerull control (OC) system 
(la) + (9) can be written in matrix form as 

z(f) = D(q-‘; 3’(f))Z(f - 1) + 
44 

[ 1 o , (10) 

with 

e(f) = cp(f - l)‘[S” - 3’(f)] + n(f). 

The system z(t) = D(q-‘; 3’(f))z(f - 1) is the 
ouerull estimated (OE) system at time t, and e(f) 
is a perturbation term that accounts for the 
additive noise n(f) and, more importantly, for 
the discrepancy between the true system and the 
estimated one. 

We now want to prove that if the control law 
is selected among the above described set of 
stabilizing techniques then the OE system is 
almost surely uniformly exponentially stable. 

Note that the overall asymptotically estimated 
(OAE) system z(f) = D(q-‘; 3’(m))z(f - 1) is 
almost surely exponentially stable because 
the polynomials q”A(q-‘; 3’(=4) and 
qm-lB(q-1; B’(9) are almost surely coprime 
(Theorem 3). Therefore lIz(t 5 cyp& IIZ(f,)ll, 
p < 1, At = f - to, where z(f) is generated by the 
OAE system (a and p actually depend upon the 
outcome w E a). Taking into account that 
$‘(t)+=3’(m) and that D(q-‘; 6) is almost 
surely continuous in 3’(m), for the OE System 
we then have Ilz(Oll s wb IWo)ll + 
y(to, At) IIt(fo)ll, where y(*, *) is such that 
y(to, At)_* 0, tot m, At fixed. Choose Ai such 
that (~p*‘= p < 1 and i. such that l~(f~, Ai)l I 
6 < 1 - p, Vt, rib. Then, Vf, 2 io, one has 
IIz(fo + Ai)ll 5 (/3 + 6) Il.?Y(to)]l, from which the 
uniform exponential stability of the OE system 
follows. 

Now consider the OC system (10). In view of 
the uniform exponential stability of the OE 
system, z(t) generated by the OC system can be 
bounded as follows: 

llz(wC1+C*i v’+ Ile(i)ll 
i=l 

5 C, + c2 i v’-i{l~(i - l)‘[S’ - 3’(i)]l 
i=l 

+ I4i)lh a.s., 

Cl, =2 and Y < 1 being suitable constants 
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(depending upon o E a). Bearing in mind the 
definition of the observation vector given in (2), 
from the previous inequality one obtains 

with c3 and c4 suitable constants. Obviously, 
(l/N) XL”=, In(i)/ is almost surely bounded. As 
for the second term on the right-hand side, by 
decomposing cp(i - 1) and 6” - a’(i) into their 8 
and % components, it can be handled as follows: 

sj$$ II4 - 1)ll II%- ~k(i)II 

The second term in this last expression tends to 
zero because of the boundedness of II S& - at(i) II 
and the fact that cpu(i - l)-+ 0 as i-+ w (see the 
definition of the unexcitation subspace). There- 
fore, from (ll), we finally get 

~G+G~$$ Ilvd-1)ll II%-f+Nll 
I I 

5~ + c6i,z II& - 1111 II% - ~k(i)ll, a.s., 

with c5 and ch suitable constants. Since 
SE - &k(i)+0 a.s. (Theorem 3), this in- 
equality entails that (l/N C;“=, I( cp(t)II remains 
almost surely bounded. This, in turn, implies the 
result (5). 

The stability result derived in this section is 
summarized in the following theorem. 

Theorem 5. Suppose that the system (1) is 
adaptively controlled through (9) and that the 
non-adaptive version of the control law (9) is 
able to stabilize known time-invariant controll- 
able systems (i.e. (6) + (7) is a stable system 
whenever qnA(q-‘; 8) and qm-‘B(q-‘; I!?) are 
coprime). Then the system (1) + (9) is pathwise 
mean stable, i.e. (5) is satisfied. 

4. CONCLUSIONS 

As is well known, the controllability of the 
estimated model plays a crucial role in adaptive 
control. In this paper, we have shown that, 
irrespective of the control law used, such a 
condition is achieved with probability one 
provided that a suitable variant of the least- 
squares algorithm is used in the parameter 
identification. The proposed method preserves 
all the basic properties of the standard 
least-squares algorithm. In particular, the corres- 
ponding estimation error tends to zero in the 
directions of diverging information, which has 
been proved fundamental in order to guarantee 
general stabilizing properties of adaptive control 
systems. 

The analysis of the present paper is tailored on 
the recursive least-squares algorithm. As such, it 
is not easily extendible to stochastic approxima- 
tion methods. It would be of considerable 
interest to work out analogous results for this 
important class of techniques. 
Acknowledgements-The work reported in this paper was 
supported by MURST (Ministry of University and Technical 
and Scientific Research) under the projects ‘Adaptive and 
Robust Control of Dynamical Systems’ and ‘Model 
Identification, Systems Control and Signal Processing’. The 
author wishes to express his gratitude to Professor Sergio 
Bittanti for technical discussions and encouragement. 

REFERENCES 

Anderson, B. D. 0. and J. B. Moore (1989). Optimal 
Control-Linear Quadratic Methods. Prentice-Hall, En- 
glewood Cliffs, NJ. 

Astrom. K. and B. Wittenmark (1973). On self-tuning 
regulators. Automatica, 9, 185-189. 

Astrom, K. and B. Wittenmark (1980). Self-tuning 
controllers based on pole-zero placement. IEE Proc., Pt 
D, l27,120-130. 

Bittanti, S., P. Bolzern and M. Campi (1990). Recursive least 
squares identification algorithms with incomplete excita- 
tion: convergence analysis and application to adaptive 
control. IEEE Trans. Autom. Contio?, AC-35, 1371-1373. 

Bittanti. S.. M. Camui and F. Lorito (1992). Effective 
identification algoriihms for adaptive ‘control. hf. J. 
Adaptive Control and Sig. Process., 6,221-235. 

Brieskorn, E. and H. Knorrer (1986). Plane Algebraic 
Curves. Birkhauser, Basel. 

Caines, P. E. and S. Lafortune (1984). Adaptive control with 
recursive identification for stochastic linear systems. IEEE 
Trans. Autom. Control, AC-29, 312-321. 

Campi, M. (1992). On the convergence of minimum-variance 
directional-forgetting adaptive control schemes. 
Automatica, 28, 221-225. 

Campi, M. (1995). Adaptive control of nonminimum-phase 
systems. Inr. J. Adaptive Control and Sig. Process., 9, 
137-149. 

Chen, H. F. and L. Guo (1987). Asymptotically optimal 
adaptive control with consistent parameter estimates. 
SIAM J. Control Optim., 25,558-575. 

Chen, H. F., P. R. Kumar and J. H. van Schuppen (1989). 
On Kalman filtering for conditionally Gaussian systems 
with random matrices. Sysr. Control Lett., 13,397~404. 

Chisci, L. and E. Mosca (1993). Zero terminal state receding 
horizon regulation: the singular state transition matrix 
case. Internal Report of the Dipartimento di Sistemi ed 
Informatica, Universita’ di Firenze (private 
communication). 



Pole-zero cancellation 857 

Goodwin, G. C., P. J. Ramadge and P. E. Caines (1981). 
Discrete-time stochastic adaptive control. SIAM J. Control 
Optim., 19,829-853. 

Guo, L. and H. F. Chen (1991). The Astrom-Wittenmark 
self-tuning regulator revisited and ELS-based adaptive 
trackers. IEEE Trans. Autom. Control. AC-36 802- 
812. 

Lozano, R. and X. H. Zaho (1994). Adaptive pole placement 
without excitation probing signals. IEEE Trans. Autom. 
Control, AC-B, 41-58. 

Kumar, P. R. (1990). Convergence of adaptive control 
schemes using least-squares parameter estimates. IEEE 
Trans. Autom. Control. AC-35 4X-424. 

Mosca, E. and J. Zhang (1992). Stable redesign of predictive 
control. Automatica, 28,1229-1233. 

Nassiri-Toussi, K. and W. Ren (1992). On the convergence of 
least squares estimates. In Proc. 31st IEEE Conf on 
Decision and Control, Tucson, AZ, pp. 2233-2238. 

Praly, L., S. F. Lin and P. R. Kumar (1989). A robust 
adaptive minimum variance controller. SZAM J. Control 
Optim., 27,235-2&i. 

Ren, W. (1993). The self-tuning of stochastic adaptive pole 
olacement controllers. In Proc. 32nd IEEE Conf on 
beckon and Control, San Antonio, TX, pp. 1581-1586. 

Rootzen, H. and J. Stemby (1984). Consistency in 
least-squares estimation: a Bayesian approach. 
Automatica, 2@,471-475. 

Sin, K. S. and G. C. Goodwin (1982). Stochastic adaptive 
control using a modified least squares algorithm. 
Automatica, 18,315-321. 

Stemby, J. (1977). On consistency for the method of least 
squares using martingale theory. IEEE Trans. Autom. 
Control, AC-22,346-352. 

Wen, C. and D. J. Hill (1992). Global boundedness of 
discrete-time adaptive control just using estimator 
projection. Automatica, 28, 1143-1157. 


