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Abstract. This paper presents new results for the identification of predictive models

for unknown dynamical systems. The three key elements of the proposed approach
are: i) an unknown mechanism that generates the observed data; ii) a family of

models, among which we select our predictor, on the basis of past observations; iii)

an optimality criterion that we want to minimize. A major departure from standard

identification theory is taken in that we consider interval models for prediction, that

is models that return output intervals, as opposed to output values. Moreover, we
introduce a consistency criterion (the model is required to be consistent with obser-
vations) which act as a constraint in the optimization procedure. In this framework,
the model has not to be interpreted as a faithful description of reality, but rather as
an instrument to perform prediction. To the optimal model, we attach a certificate
of reliability, that is a statement of the probability that the computed model will
actually be consistent with future unknown data.

1. Introduction. In the standard prediction-error setting for identification of dynamical models,
[2], [7], a parametric model structure is first selected, and the parameters of the model are then
estimated using an available batch of observations. The identified model may then be used to
determine a predicted value for the output of the system, together with probabilistic intervals
of confidence around the prediction. A crucial observation on this approach is that the interval
of confidence determined as above may poorly describe the actual probability that the future
output will fall in the computed interval, if the (unknown) system that generates the observations
is structurally different from what it is assumed in the parametric model. In other words, the
standard approach provides reliable predictions only if strong hypotheses on the structure and
order of the mechanism that generates the data are satisfied. However, assuming that one knows
the structure of the data generation system is often unrealistic. Therefore, the following question
about any identification approach to predictive models arises naturally: what can we say about
the reliability of the estimated model? That is, can we quantify with precision the probability
that the future output will belong to the confidence interval given by the model?

In this paper, we follow a novel approach for the construction of predictor models: instead of

insisting to follow a standard identification route where one first constructs a parametric model by

minimizing an identification cost, and then uses the model to work out the prediction interval, we

directly consider interval models (that is, models returning an interval as output) and use data to

ascertain the reliability of such models. In this way, the procedure for selecting the model is directly

tailored to the final purpose for which the model is being constructed. We gain two fundamental

advantages over the standard identification approach. First, the reliability of the estimation can

be quantified independently of the data generation mechanism. In other words, under certain

hypotheses to be discussed later, we are able to attach to a model a label certifying its reliability,

whatever the true system is; and, second, the model structure selection can be performed by
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2 G. CALAFIORE AND M.C. CAMPI

directly optimizing over the final result. Precisely, for a pre-specified level of reliability, we can

choose the model structure that gives the smallest prediction interval.
The results of the present paper have been inspired by recent works in which concepts from

learning theory have been applied to the field of system identification, see for instance [5] and [8].
The paper is organized as follows: Section 2 introduces the family of models under study.

In Section 3 we present the computational results for the construction of interval models, using
linear regression structures. In Section 4, we develop a method based on leave-one-out estimation
techniques, to assess the reliability of the constructed model as a function of the finite observation
size, under the assumption that the observations are independent and identically distributed (iid).
These results are then extended in Section 5 to the case of weakly dependent observations.

2. Interval predictors and data-consistency. In this section, we introduce two key elements
of our approach: models that return an interval as output (Interval Predictor Models) and the
notion of consistency with observed data.

Let Φ ⊆ R
n and Y ⊆ R be given sets, denoted respectively as the instance set and the outcome

set. An interval predictor model (IPM) is a rule that assigns to each instance vector ϕ ∈ Φ a
corresponding output interval. That is, an IPM is a set-valued map

I : ϕ → I(ϕ) ⊆ Y.

Interval models may be described in parametric form as follows. First, a model class M is consid-
ered (for instance a linear, auto-regressive class), such that the output of a system in the class is
expressed as ξ = M(ϕ, q), for some parameter q ∈ Q ⊆ R

nq . An IPM is then obtained by selecting
a particular feasible set Q, and considering all possible outputs obtained for q ∈ Q, i.e. the IPM
is defined through the relation

I(ϕ)
.
= {ξ : ξ = M(ϕ, q), q ∈ Q}. (1)

In this case, the IPM is also indicated by MQ, and the corresponding output interval is MQ(ϕ). In
a dynamic setting, at each time instant the instance vector ϕ may contain past values of input and
output measurements, thus behaving as a regression vector. Standard auto regressive structures
AR(n)

ξ(k) = ϕT (k)θ + e(k), |e(k)| ≤ γ, (2)

where ϕ(k)
.
= [y(k − 1) · · · y(k − n)]T , give rise to (dynamic) IPMs by setting q = [θT e]T ∈ R

n+1,
and Q = {q : q[1 : n] = θ, q[n + 1] = e ∈ [−γ, γ]} = {θ} × [−γ, γ]. ARX(p, m) structures can be
used similarly, considering ϕ(k)

.
= [y(k − 1) · · · y(k − p)u(k − 1) · · ·u(k − m)]T .

More interestingly, we can consider ARX structures1 where variability is present in both an
additive and multiplicative fashion

ξ(k) = ϕT (k)θ(k) + e(k), |e(k)| ≤ γ. (3)

Here, the regression parameter is considered to be time-varying, i.e. θ(k) ∈ ∆ ⊆ R
n, where ∆ is

some assigned bounded set. In our exposition, we assume in particular ∆ to be a sphere with
center θ and radius r

∆
.
= {θ + δ : θ, δ ∈ R

n, ‖δ‖ ≤ r}. (4)

More generally, an ellipsoidal parameter set may be considered:

∆
.
= {ζ ∈ R

n : (ζ − θ)T P−1(ζ − θ) ≤ 1}, (5)

where P � 0 is a positive definite matrix.
For the model structure (3), (4), the parameters describing the set Q are the center θ and

radius r of ∆, and the magnitude bound γ on the additive term e(k). Given ϕ(k), the output of
the model is the interval

I(ϕ(k)) = [ϕT (k)θ − (r‖ϕ(k)‖ + γ), ϕT (k)θ + (r‖ϕ(k)‖ + γ)]. (6)

For the ellipsoidal model (3), (5) we instead have the interval

I(ϕ(k)) = [ϕT (k)θ − (
√

ϕT (k)Pϕ(k) + γ), ϕT (k)θ + (
√

ϕT (k)Pϕ(k) + γ)]. (7)

One thing that needs to be made clear at this point is that models like (3) are not intended to
be a parametric representation of a ‘true’ system. In particular, θ(k) has not to be interpreted
as an estimate of a true time-varying parameter. It is merely an instrument through which we

1Notice that assuming a structure for constructing the predictive model does not mean that
we are assuming that the actual mechanism that generates the data actually has this structure.
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defined the interval map I that assigns to each ϕ(k) an interval I(ϕ(k)), and this map is used for

prediction.

2.1. Model consistency. Assume now that one realization of an unknown bivariate stationary
process {x(k)} = {ϕ(k), y(k)}, ϕ(k) ∈ R

n, y(k) ∈ R is observed over a finite time window k =
1, . . . , N , and that the observations are collected in the data sequence DN

.
= {ϕ(k), y(k)}k=1,...,N .

We have the following definition.

Definition 1. An interval model (1) is consistent with a given batch of observations DN if

y(k) ∈ I(ϕ(k)), for k = 1, . . . , N.

In other words, the above definition requires that the assumed model is not falsified by
the observations. Notice that, for IPMs described as in (1), the consistency condition means
that there exists a feasible sequence {q(k) ∈ Q} that satisfies the model equations, i.e. y(k) =
M(ϕ(k), q(k)), for k = 1, . . . , N.

Two fundamental issues need to be addressed at this point. The first one concerns the algorith-
mic construction of data consistent models. The second issue pertains to the reliability properties
of the constructed models. In particular, we can ask how large the probability is that a new unseen
datum will still be consistent with the model. The first issue is discussed in the following section,
while Section 4 and Section 5 address the second one.

3. Interval Predictors with linear structure. Consider first the model structure (3), (4),
and introduce a size measure µQ = γ + αr for this interval map. Notice that, if we choose
α = E[‖ϕ(k)‖], then µQ measures the average amplitude of the output interval. In this case,
the optimal model that minimize µQ can be efficiently computed solving a Linear Programming
problem. The following theorem holds (see [4] for a proof).

Theorem 1 (Linear IPM - spherical parameter set). Given an observed sequence DN = {ϕ(k), y(k)},
k = 1, . . . , N , a model order n, and a ‘size’ objective µQ = γ +αr, where α is a fixed non-negative
number, an optimal consistent linear IPM is computed solving the following linear programming
problem in the variables θ ∈ R

n, r, γ

minimize γ + αr, subject to:

r, γ ≥ 0

ϕT (k)θ − r‖ϕ(k)‖ − γ ≤ y(k)

−ϕT (k)θ − r‖ϕ(k)‖ − γ ≤ −y(k)

k = 1, . . . , N.

Similarly, for the model structure (3), (5), the optimal model can be efficiently computed
solving a semidefinite (convex) optimization problem, as detailed in the following theorem.

Theorem 2 (Linear IPM - ellipsoidal parameter set). Given an observed sequence DN = {ϕ(k), y(k)},
k = 1, . . . , N , a model order n, and a ‘size’ objective µQ = γ + Tr PW , where W � 0 is a given
weight matrix, an optimal consistent linear IPM is computed solving the following semidefinite
programming problem in the variables P = P T , θ, γ, and in the slack variables εk

minimize γ + Tr PW, subject to:

P � 0, γ ≥ 0[
ϕT (k)Pϕ(k) y(k) − ϕT (k)θ − εk

y(k) − ϕT (k)θ − εk 1

]
� 0,

εk ≤ γ, εk ≥ −γ,

k = 1, . . . , N.

4. Reliability of IPMs for iid observations. In this section, we tackle the fundamental issue

of assessing the reliability of a data-consistent model, with respect to its ability to predict the
future behavior of the unknown system.

Suppose an optimal IPM of the form (3), (4) is determined using Theorem 1,2 given a batch
DN = {x(k)}k=1,...,N , x(k)

.
= [ϕT (k) y(k)]T , of iid observations extracted according to an un-

known probability measure P , and denote with ÎN the resulting optimal interval map.

2Notice that, in order to avoid repetitions, we discuss only the ‘spherical’ case in the sequel.
Analogous results may be easily derived for the ‘ellipsoidal’ case as well.
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Definition 2. The reliability R(ÎN ) of the IPM ÎN is defined as the probability that a new

unseen datum x = [ϕT y]T generated by the same process that produced DN , is consistent with
the computed model, i.e.

R(ÎN )
.
= ProbP {y ∈ ÎN (ϕ)}. (8)

The main result for iid observations is given in the following theorem.

Theorem 3. Let DN = {x(k) = [ϕ(k)T y(k)]T }k=1,...,N be observations extracted from an iid

sequence with unknown probability measure P , and let ÎN be the optimal interval map3 computed
according to Theorem 1. Then, for any ε, δ > 0 such that

εδ =
n + 2

N + 1
(9)

it holds that

ProbP N

{
R(ÎN ) ≥ 1 − ε

}
≥ 1 − δ. (10)

Proof. Consider N + 1 iid observations DN+1 = {z(1), . . . , z(N + 1)}, z(k)
.
= [ψT (k) η(k)]T ,

ψ(k) ∈ R
n, η(k) ∈ R, extracted according to the unknown probability measure P . These are

‘thought’ (i.e. not actual) observations and serve the purpose of proving our result. Denote with

Îk
N , k = 1, . . . , N + 1, the optimal interval map which is consistent with the N observations

Dk
N

.
= {z(1), . . . , z(k − 1), z(k + 1), . . . , z(N + 1)}.

Notice that Îk
N is not necessarily consistent with the observation z(k).

The idea of the proof is as follows: first we notice that R(ÎN ) is a random variable belonging

to the interval [0, 1]. Then, we show that the expected value of R(ÎN ) is close to 1 and from this
we infer a lower bound on the probability of having reliability not smaller than 1 − ε. Define

R̄N
.
= EP N [R(ÎN )],

where E is the expectation operator, and, for k = 1, . . . , N + 1, let

vk
.
=

{
1, if z(k) is consistent with Îk

N
0, otherwise,

i.e. the random variable vk is equal to one, if z(k) is consistent with the model obtained by means
of the batch of the remaining observations Dk

N , and it is zero otherwise. Let also

ˆ̄RN
.
=

1

N + 1

N+1∑
k=1

vk. (11)

We have that

EP N+1 [vk] = EP N

[
EP [vk|Dk

N ]
]

= EP N

[
ProbP {η(k) ∈ Îk

N (ψ(k))}
]

= EP N [R(Îk
N )] = R̄N ,

which yields

EP N+1 [ ˆ̄RN ] = R̄N . (12)

The key point is now to determine a lower bound for EP N+1 [ ˆ̄RN ]. We proceed as follows: consider
one fixed realization z(1), . . . , z(N + 1), and build the optimal map which is consistent with all of

this observations, ÎN+1. This map results from the solution of the convex optimization problem
P in the variables θ ∈ R

n, r, γ

P : minimize γ + αr, subject to:

r, γ ≥ 0

ψT (k)θ − r‖ψ(k)‖ − γ ≤ η(k),

−ψT (k)θ − r‖ψ(k)‖ − γ ≤ −η(k),

k = 1, . . . , N + 1.

3We assume that all problems, when feasible, have a unique optimal solution. Should this not
be the case, suitable tie-break rules could be used, as explained in [3].
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The other optimal maps Îk
N result from optimization problems Pk, k = 1, . . . , N + 1 which are

identical to P, except that one single constraint relative to the k-th observation is removed in each
problem. From Theorem 5 (in the Appendix) we know that at most d = n + 2 of the observations
when removed from P will change the optimal solution and improve the objective. Therefore, at
least N + 1 − d of the problems Pk are equivalent to P. From this it follows that there exist at

least N + 1 − d optimal maps Îk
N , such that z(k) is indeed consistent with Îk

N . Hence, at least

N + 1 − d of the vk’s must be equal to one, and from (11) we have that

ˆ̄RN ≥ N + 1 − d

N + 1
= 1 − n + 2

N + 1
, almost surely.

Therefore, from (12) the expected value of the reliability is bounded as

R̄N = EP N+1 [ ˆ̄RN ] ≥ 1 − n + 2

N + 1
. (13)

Now, given ε > 0, we can bound the expectation EP N [R(ÎN )] from above as

EP N [R(ÎN )] ≤ (1 − ε)ProbP N {R(ÎN ) < 1 − ε} + 1 · ProbP N {R(ÎN ) ≥ 1 − ε}. (14)

Letting δ̄
.
= ProbP N {R(ÎN ) < 1 − ε}, combining the bounds (13), (14) we obtain that

εδ̄ ≤ n + 2

N + 1
,

from which the statement of the theorem immediately follows.

5. Reliability of IPMs for weakly dependent observations. The results derived in the
previous section for the iid case are now extended to β-mixing processes.

Let {x(k)}∞k=−∞ be a strict sense stationary process with distribution P(−∞,∞) and, given a

set I of integers, let xI denote {x(k)}k∈I and PI be the marginal distribution associated with xI .
We have the following definition.

Definition 3 (β-mixing coefficients, β-mixing process, [1]). The β-mixing coefficients of {x(k)}∞k=−∞
are defined as:

β(T )
.
= {|P(−∞,∞)(C) − (P(−∞,−1]∪[1,∞) × P0)(C)|, C ∈ σ(x(−∞,−T ], x(0), x[T,∞))}.

Process {x(k)}∞k=−∞ is β-mixing if β(T ) → 0 as T → ∞.

If a process is formed by a sequence of independent random variables, then P(−∞,∞) =

P(−∞,−1]∪[1,∞)×P0, so that β(T ) = 0, ∀T , and hence an independent process is a trivial example

of a β-mixing process. In general, β(T ) is a measure of independence between events separated by
a time lag T . β-mixing processes are often used to describe the correlation among data in presence
of dynamics.

Definition 3 is a two-sided definition of β-mixing. More often, a one-sided definition is adopted
where

β(T )
.
= {|P(−∞,∞)(C) − (P(−∞,0] ∪ P[1,∞)(C)|, C ∈ σ(x(−∞,0], x[T,∞))}.

Here, we have preferred to adopt a two-sided definition since it is more handy in the present context
and, as it can be verified, is not more restrictive than the one-sided definition (i.e. if β(T ) → 0 in
the one-sided definition, this also occurs in the two-sided definition, though with different β(T )’s).

The key result for the reliability of optimal interval models constructed using dependent ob-
servations is contained in the following theorem.

Theorem 4. Let DN = {x(k) = [ϕ(k)T y(k)]T }k=1,...,N be observations extracted from a strict-

sense stationary sequence, and let ÎN be the optimal interval map computed according to Theorem

1. Define R(ÎN ) as in (8) where [ϕT y]T is independent of DN (that is, R(ÎN ) is a measure of
accuracy of the interval predictor for unseen data, independent of the observations through which
the predictor has been constructed). Then, for any ε, δ > 0 such that

εδ = inf
T

{
(n + 2)

�N/T 
 + β(T )

}
, (15)

where β(T ) is the β-mixing function associated with {x(k)}∞k=−∞ and �·
 denotes integer part, it

holds that

ProbP[1,N]

{
R(ÎN ) ≥ 1 − ε

}
≥ 1 − δ. (16)
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Before proving the theorem, we note that if the observation process is β-mixing, then β(T ) → 0

as T → ∞ and, for any ε > 0, the confidence parameter δ given by (15) goes to zero as the number
of data points N tends to infinity faster than T .

Proof. The proof extends that of Theorem 3. Here, we do not introduce any auxiliary sequence
{z(k)} (as we did in the iid case) since in a mixing context this is difficult to handle. We also note
that even in the iid case we could have used the original sequence {x(k)} in place of {z(k)} with
a little loss in the final result: N + 1 would have been replaced by N . Define

R̄N
.
= EP[1,N] [R(ÎN )],

and, for k = 1, . . . , N , let

vk
.
=

{
1, if x(k) is consistent with Îk

N
0, otherwise,

where Îk
N is the optimal map which is consistent with

Dk
N

.
= {x(1), . . . , x(k − 1), x(k + 1), . . . , x(N)},

and

ˆ̄RN
.
=

1

N

N∑
k=1

vk. (17)

Let Ck be the support of vk, i.e. 1(Ck) = vk. Now, we have

EP[1,N] [vk] = P(−∞,∞)(Ck)

≤ (P(−∞,k−1]∪[k+1,∞) × Pk)(Ck) + β(1)

= EP(−∞,k−1]∪[k+1,∞)

[
EPk

[1(x(k) ∈ Îk
N )]

]
+ β(1)

= EP[1,k−1]∪[k+1,N]

[
R(Îk

N )
]

+ β(1)

≤ EP[1,N]

[
R(ÎN )

]
+ β(1)

= R̄N + β(1),

which yields

EP[1,N] [
ˆ̄RN ] ≤ R̄N + β(1). (18)

Following the same rationale as in the proof of Theorem 3 where equation (12) is replaced by (18),
it is easy to conclude that the result of the theorem holds true for ε, δ > 0 such that

εδ =
n + 2

N
+ β(1).

The result for a general T is obtained by considering the data subsequence x(1), x(T + 1), x(2T +
1), . . .

6. Numerical example. We propose a simple numerical example to illustrate the nature of the
presented results. For the purpose of the example, we assumed that the ‘unknown’ mechanism
generating the data is

y(k) = u(k − 1)(1 + w1(k)) + 0.1u(k − 2)w2(k), (19)

where w(k) = [w1(k) w2(k)]T is Gaussian with zero mean and E[w(k)wT (j)] = Iδkj , being δkj

the Kronecker delta function, and u(k) = sin(k).
We set ϕ(k) = u(k − 1), and seek an explanatory interval model of the form (3), (4), with

n = 1:

y(k) = ϕ(k)θ(k) + e(k).

In order to fit this explanatory model to the data, we collected N = 200 observations ϕ(k), y(k)

of the remote process (19) in the data sequence DN = {ϕ(k), y(k)}, k = 1, . . . , N .
Setting for instance µQ = γ + 0.6r, and solving the linear program in Theorem 1 on the basis

of the collected observations, we obtained an optimal center θ = 0.9612 with variation radius
r = 2.158, and level of additive noise γ = 0.1022. The resulting interval model is shown in
Figure 1, together with the observed values of ϕ(k), y(k).

Theorem 3 then states a-priori that the reliability level inequality (10) holds with εδ = 3/(N +
1), for any optimal model of the considered type.
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Figure 1. For given ϕ(k), the figure shows the resulting interval
of possible outputs y(k), as predicted by the optimal interval model
constructed on the basis of N = 200 observations. The figure also
shows the observed points used to construct the model.

We also verified a-posteriori (i.e. after the model has been constructed) the reliability of the

computed model, by generating Ñ = 10000 new observations according to the ‘unknown’ mecha-
nism, and testing whether they are or not consistent with the constructed model. The result was
an estimated empirical reliability of R̃ = 0.978 for the above optimal model. In the a-posteriori
test the model is fixed, and one can hence apply the standard Hoeffding inequality [6] to qualify

the empirical estimate with accuracy ε̃ and confidence δ̃. In particular, for log(2δ̃)/2ε̃2 < Ñ , we
have that

Prob{|R̃ − R| ≥ ε̃} ≤ δ̃.

7. Conclusions. In this paper, we have studied dynamical models that return a prediction in-

terval for the output of an unknown remote system. From a computational point of view, interval

predictors with linear structure can be efficiently constructed numerically, on the basis of a finite

number N of past observations, by means of convex programming.
For the more fundamental issue of determining the reliability of such predictors, we derived

bounds on the sample complexity N that grow as the inverse of the required probabilistic levels
of confidence. These bounds improve by orders of magnitude upon similar bounds derived in [4]
that were obtained by means of the Vapnik-Chervonenkis probability inequality.

Appendix A. We next present the statement and proof of a key theorem (Theorem 5 below),
which is used in the proof of the main result (Theorem 3).

We start with a a technical lemma.

Lemma 1. Given a set S of p+2 points in R
p, there exist two points among these, say ξ1, ξ2, such

that the line segment ξ1ξ2 intersects the hyperplane (or one of the hyperplanes if indetermination
occurs) generated by the remaining p points ξ3, . . . , ξp+2.
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Proof. Choose any set S′ composed of p−1 points from S, and consider the bundle of hyperplanes

passing through S′. If this bundle has more than one degree of freedom, augment S′ with additional
arbitrary points, until the bundle has exactly one degree of freedom. Consider now the translation
which brings one point of S′ to coincide with the origin, and let S′′ be the translated point set.
The points in S′′ lie now in a subspace F of dimension p − 2, and all the hyperplanes of the
(translated) bundle are of the form vT x = 0, where v ∈ V, being V the subspace orthogonal to F ,
which has dimension 2.

Call x4, . . . , xp+2 the points belonging to S′′, and x1, x2, x3 the remaining points. Consider

three fixed hyperplanes H1, H2, H3 belonging to the bundle generated by S′′, which pass through
x1, x2, x3, respectively; these hyperplanes have equations vT

i x = 0, i = 1, 2, 3. Since dimF = 2,
one of the vi’s (say v3) must be a linear combination of the other two, i.e. v3 = α1v1 + α2v2.

Suppose that one of the hyperplanes, say H1, leaves the points x2, x3 on the same open half-
space vT

1 x > 0 (note that assuming vT
1 x > 0, as opposed to vT

1 x < 0 is a matter of choice since the
sign of v1 can be arbitrarily selected). Suppose that also another hyperplane, say H2, leaves the
points x1, x3 on the same open half-space vT

2 x > 0. Then, it follows that vT
1 x3 > 0, and vT

2 x3 > 0.

Since vT
3 x3 = 0, it follows also that α1α2 < 0. We now have that

vT
3 x1 = (α1v1 + α2v2)T x1 = α2vT

2 x1

vT
3 x2 = (α1v1 + α2v2)T x2 = α1vT

1 x2,

where the first term has the same sign as α2, and the second has the same sign as α1. Thus,
vT
3 x1 and vT

3 x2 do not have the same sign. From this reasoning it follows that not all the three
hyperplanes can leave the complementary two points on the same open half-space, and the result
is proved.

We now come to the key instrumental result. Consider the convex optimization program

P : min
x∈Rn

cT x subject to x ∈ Xi, i = 1, . . . , m,

where Xi, i = 1, . . . , m are closed convex sets. Let the convex programs Pk, k = 1, . . . , m, be
obtained from P by removing the k-th constraint:

Pk : min
x∈Rn

cT x subject to x ∈ Xi, i = 1, . . . , k − 1, k + 1, . . . , m.

Let x∗ be any optimal solution of P (assuming it exists), and let x∗
k be any optimal solution of

Pk (again, assuming it exists). We have the following definition.

Definition 4 (Support constraints). The k-th constraint Xk is a support constraint for P if
problem Pk has an optimal solution x∗

k such that cT x∗
k < cT x∗.

The following theorem holds.

Theorem 5. The number of support constraints for problem P is at most n.

Proof. We prove the statement by contradiction. Suppose then that problem P has ns > n
support constraints and choose any (n + 1)-tuple of constraints among these.

Then, there exist n + 1 points (say, without loss of generality, the first n + 1 points) x∗
k,

k = 1, . . . , n + 1, which are optimal solutions for problems Pk, and which lie all in the same open

half-space {x : cT x < cT x∗}. We show next that, if this is the case, then x∗ is not optimal for P,
which constitutes a contradiction.

Consider the line segments connecting x∗ with each of the x∗
k, k = 1, . . . , n + 1, and consider

a hyperplane H .
= {cT x = α} with α < cT x∗, such that H intersects all the line segments. Let

x̄∗
k denote the point of intersection between H and the segment x∗x∗

k. Notice that, by convex-
ity, the point x̄∗

k certainly satisfies the constraints X1, . . . ,Xk−1,Xk+1, . . . ,Xn+1, but it does not
necessarily satisfy the constraint Xk.

Suppose first that there exists an index k such that x̄∗
k belongs to the convex hull co{x̄∗

1, . . . , x̄∗
k−1,

x̄∗
k+1, . . . , x̄∗

n+1}. Then, since x̄∗
1, . . . , x̄∗

k−1, x̄∗
k+1, . . . , x̄∗

n+1 all satisfy the k-th constraint, so do all

points in co{x̄∗
1, . . . , x̄∗

k−1, x̄∗
k+1, . . . , x̄∗

n+1} and hence x̄∗
k ∈ co{x̄∗

1, . . . , x̄∗
k−1, x̄∗

k+1, . . . , x̄∗
n+1} sat-

isfies the k-th constraint. On the other hand, as it has been mentioned above, x̄∗
k satisfies all other

constraints X1, . . . ,Xk−1,Xk+1, . . . ,Xn+1, and therefore x̄∗
k satisfies all constraints. From this it

follows that x̄∗
k is a feasible solution for problem P, and has an objective value cT x∗

k = α < cT x∗,
showing that x∗ is not optimal for P. Since this is a contradiction, we are done.
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Consider now the complementary case in which there does not exist a x̄∗
k ∈ co{x̄∗

1, . . . , x̄∗
k−1,

x̄∗
k+1, . . . , x̄∗

n+1}. Then, we can always find two points, say x̄∗
1, x̄∗

2, such that the line segment x̄∗
1x̄∗

2

intersects at least one hyperplane passing through the remaining n − 1 points x̄∗
3, . . . , x̄∗

n+1. Such

couple of points always exist by virtue of Lemma 1. Denote with x̄∗
1,2 the point of intersection (or

any point in the intersection, in case more than one exists). Notice that x̄∗
1,2 certainly satisfies

all constraints, except possibly the first and the second. Now, x̄∗
1,2, x̄∗

3, . . . , x̄∗
n+1 are n points in

a flat of dimension n − 2. Again, if one of these points belongs to the convex hull of the others,
then this point satisfies all constraints, and we are done. Otherwise, we repeat the process, and
determine a set of n − 1 points in a flat of dimension n − 3.

Proceeding this way repeatedly, either we stop the process at a certain step (and then we are
done), or we proceed all way down until we determine a set of three points in a flat of dimension
one. In this latter case we are done all the same, since out of three points in a flat of dimension
one there is always one which lies in the convex hull of the other two.

Thus, in any case we have a contradiction and this proves that P cannot have n + 1 or more
support constraints.

REFERENCES

[1] D. Bosq. Nonparametric Statistics for Stochastic Processes. Springer, New York, 1998.

[2] G.E.P. Box, G.M. Jenkins, and G.C. Reinsel. Time series analysis: forecasting and control.
Prentice Hall, Englewood Cliffs, N.J., 1994.

[3] G. Calafiore and M.C. Campi. Uncertain convex problems: randomized solutions and confi-
dence levels. Working report, submitted for publication, 2003.

[4] G. Calafiore, M.C. Campi, and L. El Ghaoui. Identification of reliable predictor models for
unknown systems: a data-consistency approach based on learning theory. In 15th IFAC World
Congress, Barcelona, Spain, July 2002.

[5] M.C. Campi and P.R. Kumar. Learning dynamical systems in a stationary environment. Sys.
Control Letters, 34:125–132, 1998.

[6] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

[7] L. Ljung. System identification: theory for the user. Prentice Hall, Englewood Cliffs, N.J.,
1999.

[8] E. Weyer. Finite sample properties of system identification of ARX models under mixing
conditions. Automatica, 36:1291–1299, 2000.

E-mail address: giuseppe.calafiore@polito.it, campi@ing.unibs.it


