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Abstract 

Reportedly, guaranteeing the controllability of the esti- 
mated system is a crucial problem in adaptive control. 
In this paper, we introduce a recursive least squares- 
based identification algorithm for stochastic SISO sys- 
tems, which secures the uniform controllability of the 
estimated system and presents closed-loop identifica- 
tion properties similar to those of the least squares 
algorithm. The proposed algorithm is recursive and, 
therefore, easily implementable. Its use, however, is 
confined to cases in which the parameter uncertainly is 
highly structured. 
This new identification algorithm can be safely used 
in adaptive control applications. As a matter of fact, 
we introduce a pole placement adaptive control scheme 
equipped with such an algorithm and prove a pathwise 
stability result for the so-obtained closed-loop system. 

1 Introduction 

In this paper, we introduce a new recursive least 
squares-based identification algorithm to cope with the 
long-standing controllability problem in adaptive con- 
trol. As a matter of fact, it is well known ([l]-[7]) that 
the possible occurrence of pole-zero cancellations in the 
estimated model hampers the operation of adaptive 
control systems when the plant is nonminimum-phase. 
On the other hand, in the absence of suitable identifia- 
bility conditions, standard identification algorithms do 
not guarantee the estimated model controllability. 
Two main streams of methods have been proposed in 
the literature to solve the controllability problem. One 
consists in the a-posteriori modification of the least 
squares estimate ([2]-[4]). By exploiting the proper- 
ties of the least squares covariance matrix, these meth- 
ods secure controllability, while preserving the least 
squares algorithm properties. The main drawback of 
this approach is that the modification is not easily im- 
plementable. The second approach ([5]-[7]) forces the 
estimates to belong to an a-priori known region con- 
taining the true parameter and such that all the mod- 
els in that region are controllable. 
The solution we propose in this paper belongs to the 

second group of approaches briefly described above. 
The required a-priori knowledge is certainly a restric- 
tive assumption, but, in the case such a knowledge is in 
fact available, the identification algorithm we propose 
represents an efficient and easily implementable way 
to circumvent the controllability problem. Moreover, 
we show that our modification to force the estimate 
to belong to the known uncertainty region is active 
only in finite time and it switches off automatically in 
the long run. As a consequence, the new identification 
method retains the closed-loop identification proper- 
ties of the standard least squares method (Theorem 2 
in Section 3). This is of crucial importance in adaptive 
control applications. 
The final section (Section 4) is dedicated to the ap- 
plication of the proposed identification method to an 
adaptive pole placement control problem. We prove 
in particular a pathwise stability result for the corre- 
sponding control scheme. 

2 The system and the uncertainty region 

We consider the discrete time stochastic SISO system 
described by the following ARX model 

A(#‘; q--l) yt = B(19”; q--l) ut + nt, (1) 

where A(6”; q-‘) and B(8”; q-l) are polynomials in the 
unit-delay operator q-l depending on the system pa- 
rameter vector 8” = [a: a;. . . ai bi bz+, . . . b&+,lT. 
Precisely, they are given by A(P; q-l) = 1 - 

,& apqTi and B(b’; q-l) = Cz:” l$‘qvi. 
As for the stochastic disturbance (7~) acting on the 
system, it is described as a martingale difference se- 
quence with respect to an increasing sequence of o- 
fields {Ft}, satisfying the following conditions 

A.l) supE[(nt+lIP/Ft] < co, a.s. for some ,0 > 2, 
t 

A.2) l$nnf i 2 7~: > 0. 
k=l 

In this paper, a new identification algorithm for system 
(1) is introduced, which secures the estimated model 
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controllability, while preserving the least squares algo- 
rithm closed-loop identification properties. These re- 
sults can be worked out under the a-priori knowledge 
that 

A.3) 19” is an interior point of S(8,r) = (6 E 

where the n + m + l-sphere S(8,r) is such that all 
models with parameter 19 E S(8,r) are controllable. 
Assumption 3 is certainly a stringent condition. It re- 
quires that the a-priori parameter uncertainty is re- 
stricted enough so that the uncertainty region can be 
described as a sphere completely embedded in the con- 
trollability region. In this connection, the center $ of 
the sphere should be thought of as a nominal, a-priori 
known, value of the uncertain parameter 6”, obtained 
either by physical knowledge of the plant or by some 
coarse off-line identification procedure. The identifica- 
tion algorithm should then be used to refine the pa- 
rameter estimate during the normal on-line operating 
condition of the control system so as to better tune the 
controller to the actual plant characteristics. 

3 The recursive identification algorithm 

Letting (Pt = [ yt * * *!h-(n-1) Ut-(d-1) *. *‘2lt-(m+d-1) IT 

be the observation vector, system (1) can be given the 
usual regression-like form 

yt = &_ldo + nt. 

The recursive algorithm for the estimation of parameter 
6” is given by the following recursive procedure: 

1. Compute Pt according to the following procedure: 

set TO = Pt-l 

fori=lton+m+l, 
i 

then, 

Pt = Tn+m+l - 
Tn+m+wt-&-J’n+m+l 

1 + &Tn+m+lw-1 ’ 
(2.1) 

3. If 8t $ S(~,T), project the estimate 
sphere S(?9, T): 

i 

1 

&= 
dt, if 8, E S(B, r) 

,,9: -8,, f-8 r+d , otherwise. 

& onto the 

(2.5) 

It is possible to verify (Theorem 1 below) that equa- 
tions (2.1)-(2.4) recursively compute the minimizer of 
the performance index 

t 

C(Yk - (Pm2 + 4119 - fill2 
k=l 

(3) 

(here we neglect the initialization issue, see Theorem 1 
below for a precise statement). This observation allows 
for an easy interpretation of the algorithm (2.1)-(2.5). 
In equation (3), the first term xi=, (yk -‘pzV’_1ti)2 is the 
standard performance index for the least squares algo- 
rithm, while the second term at1h9-6112 penalizes those 
parameterizations which are too far from the a-priori 
nominal parameter value 8. In Theorem 1 point ii), we 
show that the coefficient at in front of 1119 - 6112 grows 
rapidly enough so that term at 1129 - $(I2 asserts itself in 
the long run in such a way that the estimate & belongs 
to S(8,r), for t large enough. As a consequence, the 
projection operator in equation (2.5) is automatically 
switched off when t tends to infinity. The fact that the 
estimate becomes free of any projection in the long run 
has a beneficial effect on its asymptotic properties. As 
a matter of fact, in Theorem 2 we prove that & ex- 
hibits closed-loop properties which are similar to those 
of the standard recursive least squares estimate. This 
is crucial in adaptive control applications. 

Theorem 1 
i) The parameter estimate 8, obtained through the re- 
cursive procedure (2.1)-(2.4) initialized with 

a0 = (log(ro))‘+6 (Q = QT > 0) 

PO = [Q-ml]-’ 

is the minimizer of the performance index 

2. Compute the least squares type estimate 8, accord- 
ing to the equation: 

8, = &-I + Ptcpt-1(yt - $-$Ll> + pt(% - 

a--l)@ -A--l) (2.2) 

where 
7-t = Tt-1 + II%Ill2 (2.3) 

at = (log(rt))1+6, (6 > 0). (2.4) 

vt(d) = c(!/k - ‘P;&J)~ + (~9 - 8)TQ(~ - 8) 

k=l 

is the standard least squares performance index with 
regularization term (6 - 8)TQ(S - 8) and 

at = (l%(~ bk-1/i2 + tr(Q)))1+6. 
k=l 

(4) 



ii) Assume that ut is Ft-measurable. Then, there exists 

a finite time instant fsuch that 8, E S(B,r), t > t; as.. 

Proof. 
Part i) Trivial and therefore omitted. 

Part ii) Denote by 8:’ the minimizer 
squares performance index Vt(6) and set 

t 

of the least 

k=l 

It is then easy to show that 6, = argBEg%+, Dt(29) 

can be expressed as a function of a?” as follows 

By subtracting 8, we get 

it-8 = (Qt+aJ)-‘Q&9”-8)+(Qt+atI)-‘Qt(@-19”). 

Thus, the norm of & - 8 can be upper bounded as 
follows 

II&-~11 F 111-9”-~ll+Il(&t+~t~)-‘&~IlllQ~(~~”-~”)ll. 
(5) 

We apply now Theorem 1 in reference [8] so as to upper 

bound the term I~Qf(~~s-~o)I~. Since ut is assumed to 
be Ft-measurable, and also considering Assumption 1, 
by this theorem we obtain the upper bound on the least 
squares estimation error: 

IlO; @is - ~‘=)112 = Wdt4Qt))L a.s.. (6) 

The term I/(&t + atI)-‘&ill can instead be han- 
dled as follows. Denote by {h,t,. . . ,h+m+~,t} 
the eigenvalues of the positive definite matrix 

Qt. Since Qt is symmetric and positive definite, 
there exists an orthonormal matrix Tt such that 

Qt = Tt diag(h,t,. . . ,L+,+l,t)T? and 92 = 

Tt diag Xt,, , :, . , Xi+,+,,, Ttsl. Then, 
( > 

(Qt+cutI)-‘Qj = Tt(T;‘(Qt+cutl)Tt)-‘T;‘Q~TtT,-’ 

. ( 4 =Ttdw Xl,t+at,...l G+m+l,t 
L+n+l,t + at TF? 

This implies that 

II(Qt + cd,-‘Q;II = : max 
i=l,...,n+m+l 

. (7) 

Consider now the function: f(z) = A, z 1 0. Such 

a function has an absolute maximum value fat -+ in 

x = crt. It then obviously follows from equation (7) 
that 

3 1 -1 
II(Qt + atTIQt” II I -at ‘. 

2 (8) 

Substituting the estimates (6) and (8) in inequality (5), 
we obtain 

h being a suitable constant. 
Since by definition (4) (;Yt = (log(tr(Qt)))1+6 and from 
Assumption 2 JAltr(Qt) = 00, we then obtain that 

Ve > 0 there exists a time instant r such that Ilat - 
811 5 lIti0 - 811 + E, Vt 2 7. By Assumption 3, this 
implies that there exists a finite time instant f such 
that & E S(B,r), Vt > .F, i.e. point ii). Cl 

Part ii) in Theorem 1 shows that & E S(g,r), that 
is the projection operation (2.5) is disconnected, in the 
long run. As a consequence of this fact, the estimate 8, 
preserves closed-loop properties similar to those of the 
least squares algorithm. In addition, the uniform con- 
trollability of the model is guaranteed. This is precisely 
stated in Theorem 2 below. Preliminarily, we remind 
that a standard measure of the controllability of model 
yt = (pF-i6 + nt is given by the absolute value of the 
determinant of the Sylvester matrix, namely SyZw(?s) 
(see e.g. [9]). 

Theorem 2 (‘Properties of the estimate at) 
i) There exists a constant c > 0 such that 
Idet(SyZw(dt))l 2 c, V t, a.s.. 

ii) Assume that ut is Ft-measurable. Then, the identi- 
fication error satisfies a.s. the following bound 

(log(X,,,(~:=, (Pk-l(P;-1 + Q))) I+6 
~p-dt~~2 = 0 

X,,G,(~:=~ (Pk--1$-l + 9) ’ 

Proof. 
Part i) Since the absolute value of the Sylvester matrix 
determinant is a continuous function of the system pa- 
rameter 6 and it is strictly positive for any 6 E S(8, r), 
we can take c := min Idet(SyZv(b))l > 0. Point i) 

7%s(B,r) 
then immediately follows from the definition of 8, in 
equation (2.5). 

Part ii) Let us rewrite the performance index Dt(19) 
as a function of the least squares estimate 8:” = 

f-g ti,gpm+, WJ): 

Dt(S) = (6 - @‘S)T[x (Pk--1$‘;-‘-1 + &I(8 - 8;‘) 

k=l 

+at(llJ - 6112 + I@;“). 



From the definition of it, it follows that 

L&(8,) - vt(@“) < Dt(P) - lqty) = O(crt) (9) 

a.s., where the last equality is a consequence of the 
already cited Theorem 1 in [8] and of the boundedness 
of 6”. Consider now the inequality 

k=l 
t 

I: 2{(29” - @)*[~ (pk--l(p;-‘--1 + Q](tY” - 9;“) 
k=l 

+(Bf” - &)*[k (pk--1(P:--~ + Ql@,“” - &>I. 
k=l 

Since in view of equation (9) both terms in the right- 
hand-side are almost surely O((Y~), we get 

Since 8, = at, Vt 2 f (point ii) in Theorem 1) and 
also recalling definition (4) of ot , point ii) immediately 
follows. cl 

4 Stabilization via adaptive pole placement 

Let A*(q-l) = Cizi’ afqsi (s = max{n,m+d}) be an 
arbitrary stable polynomial with a: = 1. Given a con- 
trollable system yt = (pT-i6 + nt, it is known (see e.g. 
[lo]) that there exist unique polynomials L(ti; q-l) = 
C;z; li(8)q-i and R(19; q-‘) = CT=; ~~(3) q-i such 
that the closed-loop system 

1 

yt = [l - A(19; q-l)] yt + B(19; q-‘) ut + nt 
ut = -qe q-9 (Yt - Y;> + R(d; q-7 ‘Ilt 

has characteristic polynomial A*(q-l), {yz} being a 
bounded and deterministic reference signal. 
The coefficients {Zi(d)}i=~,...,~-l and {ri(9)}i=1,...,~-1 
are in fact given by the following equation 

-TS-1 = syzv(?9)-1 (10) 
-10 4-l 

-1,-l G-1 

In adaptive control the system parameter vector 6” is 
unknown. Then, according to the certainty equivalence 
principle, one chooses the control law so as to assign the 
closed-loop poles to the estimated system, as if it were 
the true system. If the estimated system accurately 

describes the true system, one should be succeeding 
in stabilizing the true system through this procedure. 
When dealing with time-varying estimated parameters, 
it is a wise and widely adopted - see e.g. [ll] - strategy 
to update the estimate at a slower rate than the system 
variables updating rate. In this way, the slow time 
variability of the corresponding adaptive control law 
cannot hamper the overall stability of the closed-loop 
control system. Following this idea, we incorporate a 
freezing feature in the estimator. Precisely, we use the 
following parameter estimate 

tit = tit> 
I- 

ift=iT,i=0,1,2 ,... 
h-1, otherwise. (11) 

In Theorem 3 it is shown that the updating time inter- 
val T can be selected so as to uniformly stabilize the 
estimated time-varying system. This result is funda- 
mental in order to prove that the pole placement con- 
trol law tuned to the estimated parameter with freezing 
(11) is in fact able to stabilize the unknown true system 
(Theorem 4). 
We first introduce some notations to which we shall re- 
fer in the theorem below. 
Consider the autonomous estimated system: 

{ 

yt = [l - 4kr1)]yt + Vt;P)w . 
w = Jq&; q-l) Yt + R(&; q-l) Ut 

c12J 

By letting zt := [pt.. . yt--p+l ut . . . ut--q+i]T with p = 
max{s - 1, n}, q = max{s - 1, d + m}, system (12) can 
be given the state space representation 

where matrix F(9) is defined in equation (13) below 
and ai = 0 if i > n, li(19) = 0 if i > s - 1, bi = 0 if 
i < d or i > d + m, ri(d) = 0 if i > s - 1. 

Theorem 3 
Fix a constant p < 1 (contraction constant) and set 

T(6) := inf{r E Z+ : ]]F(9)7]] < p}. 

Then, sup6es(~,r) T(6) is finite and with the position 
T := ~up~e~(~,~) T(d) in (11) we have that the au- 
tonomous system zt = F(6t) zt-1 is 8.s. exponentially 
stable, uniformly in time: ]]zt]] _< Mctwt’ (]zt* ]I, Vt, t’, 
t* 5 t, where M > 0 and 0 < D < 1 are suitable 
constants. 

Proof. 
The proof of the theorem is omitted due to space lim- 
itations. However, based on the stability of the frozen 
matrix F(dt) and its slow time-variability (see (ll)), 
the interested reader can work out by himself the rather 
simple proof. 0 



F(d) = 

a1 . . . aP 
1 

h . . . b, 

s: 
0 

lo (d)Ul + 11(?9) . . * lo@%, + lp(d) lo(Wl + Q(IJ) . . . lo VP, + fq @I 
1 

L 

Theorem 4 (L2-stability) 
With the same positions as in Theorem 3, the closed- 
loop system 

._ yt = [l - A(P; q-l)] yt + B(d”; q-l) ut + nt 
w = L(%; q-9 (Yt - Y;) + fl(fit; q-‘) ‘Ilt 

04) 

N 

is pathwise L2-stable: li;:tp k c [yz + ui] < co 
t=1 

a.s.. 0 

The proof of Theorem 4 is based on the following 
Lemma whose technical proof is omitted due to space 
limitations. 

Lemma 1 
Consider a sequence of l-dimensional vectors {ut} such 
that the following assumptions are satisfied: 

i) {ut} is bounded: llvtjl 5 ti, Vt; 

ii) {wt} is piecewise constant: uUt = wti, t E [ti, &+I), 
where ti is such that T := sup(ti+r - ti) < co. 

Given a second Z-dimensional veitor sequence {zt} such 
that 

t=o 

it follows that 

t=o 

2 (&)2 = o& l,4,2 + N, 
t=o, t@j+, t=o 

where a, is a set of instant points which depends on 
N, whose cardinality, however, is upper bounded by Tl 
for any N: 113~1 2 Tl, VN. 0 

Proof of Theorem 4. 
Fix a time instant point N > 0. 
Since (79” - tit} is bounded and constant over [iT, (i + 
l)T) (see (ll)), V i, T < co (see Theorem 3), and 

C;To(cpLl (6” -4~))~ = 4EfT, ll’~t-111~) +0(l), V i 
(see Theorem 2), we can apply Lemma 1 to get an 
upper bound on the pathwise square average of the 

0 J 

(13) 

identification error et := &-,(P - ‘Icft) up to time N. 
Such a bound is given by 

1 

77 5 e: = $& ,,w-1,/2 + N), (15) 
t=o, t@N t=o 

where the set BN of instant points depends on N, 
but has a cardinality which is upper bounded by 
(n + m + l)N for any N. 
In the time interval [O,N] the state vector xt = 

[Yt Yt-1 . . . yt-,+I Ut ut-r . . . Ut-9+r]T associated with 
system (14) is governed by the following equation 

J’(&) w-l + G(&)[et + m] - HL(dt, q-lb;, 

xt = 
t $ BN 

F”(W xt-1 + G(Wnt - H-Vt,q-%/f, ’ 

tea, 

(16) 
where F” (19) is given in equation (17) below and vec- 
tors G(8) and H are respectively given by G(G) = 
[10...01c(19)0...0]TandH=[O0...010...0]T. 
Since 6t belongs to the compact set S(8,r) and F”(6) 
and G(6) are continuous function of 6, 6 E S(8, T), we 
then have that ~~F”(~t)~~ < h and IlG(St)ll < h, h being 
a suitable constant. From this fact and the uniform ex- 
ponential stability of xt = F(dt)xt-1 (Theorem 3), it 
is easily understood that the state vector xt generated 
by system (16) can be bounded as follows 

llxtll 5 (hM)laNl{ot-laNIIIxoII + CL=, iPk-lB~l 

bul+Is;ll+ 2 iit-k-IBNllekl}, t 5 N, 
k=O,k@N 

where ji; := L(tik, q-l)y;. As a consequence, we also 
have 

llxtl12 i ~I{~2t11~0112 + c:=, ct-k[n: + m21 

+ C;=O&fBN ct-ke$), t 5 N, 

ICI being a suitable constant, independent of N. 
Bearing in mind the definition of the observation vector 



F” (4 = 

a f 
1 

. . . . . . 

-. 
o :: 

lo(G + Zl(79) . . . lo(t9)a; + Z&9) Zo(d)b; + q(6) (17) . . . 
1 

*. 

pt, from this last inequality we get 

(18) 

where k2 is a suitable constant. 

The first term in the right-hand-side of this expres- 

sion vanishes as N tends to infinity. As for the second 

term $ CL, n F, by exploiting Chow’s theorem (see 

e.g. [12]) and A ssumption 1 on the noise, it can be 
easily shown that it is almost surely bounded. The 
third term is bounded as well since $ is bounded. jj; 
is in fact given by a linear combination of s samples 
of the reference signal y; weighted with the coefficients 

{W>)i=o,...,s-1, which are continuous and therefore 
bounded functions of 6, 19 E S(a,r) (see (10)). 

By using these estimates of the first three terms in the 

right-hand-side of inequality (18) and applying equality 

(15), we obtain 

which implies- that & c,“=, ]]pt]]2 remains bounded. 
Then, the thesis immediately follows. 0 

5 Conclusions 

In the present contribution, we have introduced a new 
identification algorithm securing the estimated system 
controllability, which is widely recognized as a cen- 
tral problem in adaptive control. The proposed ap- 
proach requires some a-priori knowledge on the region 
to which the true parameter belongs, but, in contrast 
with other methods, it has the advantage to be easily 

implementable. It is therefore suggested as an effec- 

tive solution to the controllability problem in all the 
situations in which the required a-priori knowledge is 

available. 
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