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Abstract

In this paper, we describe a supervisory control scheme for
adaptively stabilizing an unknown discrete time linear sys-
tem affected by a possibly unbounded noise. The scheme
incorporates a switching logic mechanism, which, at adap-
tively selected event times, places in feedback with the sys-
tem the controller designed for the model which is the best
according to the least squares criterion. The event times are
chosen so as to uniformly stabilize the estimated system.
We show that, when the controller selection is based on a
reduced order model of the system and the unmodeled dy-
namics is sufficiently small, the introduced switching scheme
is successful in stabilizing the system. Moreover, in absence
of unmodeled dynamics, we are also able to characterize
the switching scheme performance in terms of a self-tuning
result.

1 Introduction

In this paper, we address the problem of controlling
an unknown discrete time single-input/single-output
system affected by a possibly unbounded stochastic
noise.
In general, when the uncertainty on the system
description is large, no single candidate controller in
a given family is able to adequately regulate all the
admissible models for the system. This motivates the
use of a switching control scheme, where a supervisor
decides on-line, based on the observations collected
from the operating system, which is the best controller
to be applied and when it is the case to switch to a
different controller.
Logic-based switching controllers were first proposed
in [1] and turned out to be a valid alternative to
the more traditional continuously tuned adaptive
controllers (see e.g. [2], [3]-[8]). Most of the stability
results proven in the literature refer to continuous
time systems. On the other hand, switching controllers
are typically implemented digitally, hence studying
switching control in a discrete time setting is useful
to get a better insight into the actual behavior of a
switching scheme.

1Research developed within the MURST project ‘Nuove tec-
niche per l’identificazione e il controllo adattativo di sistemi in-
dustriali’ and the RTD European project ‘HYBRIDGE’.
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In the so-called “estimator-based” switching
method [2], the controller selection is based on
the system description in terms of a parameterized
model. At each switching time instant, the supervisor
chooses the controller that is designed for the model
whose parameter minimizes a certain performance
index. A commonly adopted performance index is
some integral norm of the output estimation error.
The reader is referred to [9] for alternative indices
using the virtual reference concept.

After formulating the problem in Section 2, in Section 3
we describe the architecture of the proposed supervi-
sory control scheme. Its main blocks are the perfor-
mance index generator and the switching logic. The
performance index generator computes the value of the
performance index based on the input-output data col-
lected from the system. We use the least squares cost
which is shown to guarantee that the output estimation
error is small compared to the signals involved in the
loop, irrespectively of the excitation conditions. More-
over, this property remains valid when part of the sys-
tem dynamics is neglected in the model, if the unmod-
eled dynamics is sufficiently small.
The switching logic generates a switching signal, which
determines the candidate controller to be placed in
closed-loop with the system. The controller selection
is based on the value of the least squares performance
index. The switching rate is slowed by making a dwell
time elapse between consecutive switching times. Here,
the dwell time is adaptively selected so as to guaran-
tee the uniform exponential stability of the estimated
system. This differentiates our contribution from [2, 4]
where the dwell time is kept fixed.
In Section 4, we prove that the introduced switching
control scheme is successful in stabilizing the system
when the unmodeled dynamics is sufficiently small, and
that this is ensured despite of the fact that the stochas-
tic noise acting on the system is possibly unbounded.
We then consider the ideal case when the system be-
longs to the model class. In this situation, if the sys-
tem parameter were consistently estimated, then the
switching controller will perfectly tune to the system
under control, at least in the long run. Unfortunately,
consistency cannot be guaranteed in general since it re-



quires appropriate excitation conditions, which are dif-
ficult to ensure in closed-loop. Yet, the performance
of the switching control scheme can be characterized in
terms of a self-tuning result.

2 Problem formulation

Our goal is to regulate a single-input/single-output dis-
crete time system by means of a controller in a candi-
date controllers family. When the system to be con-
trolled is not known and the uncertainty on its descrip-
tion is large, no single candidate controller would gen-
erally achieve an adequate performance when applied
to each one of the admissible descriptions for the sys-
tem. In order to deal with such a situation, we propose
to adopt an adaptive control scheme where a super-
visor orchestrates the switching among the candidate
controllers, based on the observations collected on the
system. The idea underlying the switching mechanism
design is that, if the accrued information leads to an
accurate description of the system, then the switching
mechanism should select the candidate controller that
is better tuned to the system.
Here, we consider controllers of the form

R(γ; q−1)ut = S(γ; q−1)yt, (1)

where the polynomials R(γ; q−1) = 1−∑mc

i=1 riq
−i and

S(γ; q−1) =
∑nc

i=0 siq
−i in the unit-delay operator q−1

depend on γ = [s0 s1 . . . snc r1 r2 . . . rmc ]T ∈ Γ ⊆
R

nc+mc+1.
The controller selection is based on the following model
for the system:

A(ϑ; q−1) yt+1 = B(ϑ; q−1)ut + wt+1, (2)

where signal w represents some white noise, and
A(ϑ; q−1) = 1 − ∑ns

i=1 aiq
−i and B(ϑ; q−1) =∑ms

i=1 biq
−i+1 are polynomials with parameter ϑ :=

[ a1 a2 . . . ans b1 b2 . . . bms ]T . Note that model (2) has
the nice property to be linearly parameterized, since it
can in fact be rewritten in the regression-like form:

yt+1 = ϕT
t ϑ + wt+1, (3)

where ϕt := [ yt yt−1 . . . yt−ns+1 ut ut−1 . . . ut−ms+1 ]T .
We suppose that the model parameter ϑ belongs to a
set Θ which can be either a finite or a compact subset
of R

ns+ms , and that ms ≥ 1 and ns ≥ 1, so that
the regulation problem is well-posed and not trivially
solved by setting ut = 0, t ≥ 0.
We require that the set of candidate controllers is
sufficiently rich in that

Assumption 1 There exists a map Σ : Θ → Γ associ-
ating to each model (2) with parameter ϑ ∈ Θ a con-
troller (1) with parameter γ = Σ(ϑ) ∈ Γ that stabilizes
it. In the case when Θ is a continuum of parameteriza-
tion, we require Σ to be continuous over Θ.
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We denote by λ, 0 < λ < 1, the stability margin, i.e., the
maximum absolute value over Θ of the eigenvalues of
the closed-loop system where the model with parameter
ϑ is controlled by the controller with parameter Σ(ϑ).
Note that λ is well-defined due to Assumption 1.

In Section 3, we propose an estimator-based switch-
ing scheme using the system description (2) and the
controller mapping Σ. Then, in Section 4 we study
its properties in the case when (2) is a reduced order
model for the system that describes, for example, only
that part of the system which includes its possibly un-
stable modes [10]. To be more precise, we consider the
case when the true system is given by

yt+1 = ϕT
t ϑ◦ + vt + wt+1,

where ϑ◦ ∈ Θ and v is the unmodeled dynamics signal.
v is described as the output of an asymptotically stable
time-invariant linear system fed by the input signal u
whose transfer function ∆◦(z) satisfies

Assumption 2 ∆◦(z) has bounded H-infinity norm:
‖∆◦‖∞ ≤ δ.

Under the standard assumption that ut = 0, t < 0,
from Assumption 2 it easily follows (cf. [11]) that

t∑
τ=0

v2
τ ≤ δ

t∑
τ=0

u2
τ , (4)

which is fundamental in the derivation of the results
stated in the sequel.
As for the noise signal, we assume that

Assumption 3 w is a martingale difference sequence
with respect to a filtration {Ft}, satisfying:

1. supt E[|wt|2/Ft−1] < ∞, almost surely (a.s);

2. lim
N→∞

1
N

N−1∑
t=0

w2
t = σ2 > 0 a.s.

Hence, differently from what is typically done in the
switching control literature ([2, 4, 6, 7, 12]), we do not
suppose that w is bounded.
We call model (3) with parameter ϑ◦ nominal system.
Note that there might be in principle more than a nom-
inal system, i.e., more than a value for ϑ◦ such that the
assumption on the unmodeled dynamics term v is satis-
fied. What really matters for the further developments
is that there exists at least one, to which we shall gener-
ically refer as ϑ◦.

3 Supervisory control structure

We consider an estimator-based supervisor ([2, 4]) im-
plemented as a structured hybrid dynamical system



whose output σ is a switching signal taking values in
the controller parameter set Γ and whose inputs are u
and y. The supervisor is composed of two blocks: i) a
performance index generator ; and ii) a switching logic
(see Figure 1). The hybrid nature of the system derives
from the fact the switching logic part is an event-driven
system, with the controller switching happening at the
switching times. The interested reader is referred to [3]
for an overview on different switching logics. We next
describe our implementation of blocks i) and ii).

Figure 1: Supervisory control architecture.

3.1 Performance index generator
The performance index generator produces at each time
instant t ≥ 0 a signal πt(ϑ), ϑ ∈ Θ, based on the
input-output data collected from the system in the
time interval [0, t]. πt is then used to determine which
model in the model set better resembles the system be-
havior. Here we use as performance index for model
ϑ ∈ Θ the standard least squares (LS) cost, which, on
the basis of equation (3), can be expressed as ([13]):
πt(ϑ) =

∑t
s=0(ys − ϕT

s−1ϑ)2. The best model at time t
according to the LS cost is then the one with parameter

ϑ̂t := arg min
ϑ∈Θ

πt(ϑ).

3.2 Switching logic
The switching logic is an event-driven system which at
the event times {ti}i=0,1,..., with 0 ≤ t0 < t1 < . . . , per-
forms falsification of the currently operating controller
and inference of the behavior of the candidate con-
trollers when placed in feedback with the system ([14]).
Here, according to the estimator-based approach, at
each event time ti both falsification and inference are
performed based on the performance index πti : i) the
current controller is falsified if it is designed for a model
with a parameter value ϑ that does not minimize πti ;
ii) the controller to be switched in the loop is the one
which is tuned to the model with parameter ϑ̂ti .

The switching signal σt takes values in the set Γ and
represents the parameter of the controller placed in
feedback with the system. If we define the parameter
estimate ϑt as follows:

ϑt =

{
ϑ̂ti , if t = ti, i = 0, 1, . . .

ϑt−1, otherwise,
(5)
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initialized with ϑ−1 = ϑ̄ ∈ Θ, then, the switching signal
is given by

σt = Σ(ϑt). (6)

We next explain how the event times are determined.

The idea underlying the estimator-based approach is
that, as the amount of data collected from the system
increases, the estimated system, i.e., the system gov-
erned by (3) with parameter ϑt, better resembles the
system behavior. Hence, by imposing a desired behav-
ior to the estimated system, one actually imposes that
behavior to the underlying system (self-tuning prop-
erty). On the other hand, if the control law were contin-
uously tuned to the parameter estimate ϑ̂t, i.e., ϑt = ϑ̂t,
for all t, then the “frozen” estimated system dynam-
ics will be stabilized, but the overall time-varying esti-
mated system stability will not be ensured. A possible
solution to this issue is then to update the parameter
estimate at a slower rate than the updating of the sys-
tem variables, so as to limit the estimated system time
variability. In particular, one can make a dwell time
elapse between two subsequent time instants when the
estimate is updated. These instants are then the event
times {ti}i=0,1,.... Those event times when the cur-
rently implemented controller is actually falsified are
the switching times.
The dwell time switching logic has been successfully
used in e.g. [2, 4, 15, 16]. Here, similarly to [16], we use
a time-varying dwell time, adaptively selected based on
the parameter estimate ϑt. Precisely, we first introduce
the dwell time function τD : Θ → N mapping each pa-
rameter ϑ ∈ Θ in the dwell time τD(ϑ) ∈ N, and, then,
we define the event times recursively by

ti+1 = ti + τD(ϑti), i = 0, 1, . . .

initialized with t0 = 0.
We next design the dwell time function so as to stabilize
the time-varying estimated system with parameter ϑt.
Set n := max{ns, nc} and m := max{ms, mc} and let

xt := [yt . . . yt−(n−1) ut−1 . . . ut−(m−1)]T . (7)

Model (2) can then be given the representation

xt+1 = A(ϑ)xt + B(ϑ)ut + Cwt+1, (8)

where

A(ϑ) =

266666666666664

a1 . . . an−1 an b2 . . . bm−1 bm

1 0 . . . 0 . . . 0
. . .

. . .
. . .

1 0 0
0 . . . . . . 0 0 . . . . . . 0
0 . . . . . . 0 1 0

. . .
. . .

. . .
. . .

0 0 1 0

377777777777775
,



B(ϑ) = [b1 0 · · · 0 1 0 · · · 0]T , and C =
[1 0 · · · · · · 0]T , with ai = 0 if i > ns, bi = 0 if
i > ms. Note that this state space representation of
model (2) is non minimal and, as it is easily seen from
the block triangular matrix structure of A(ϑ), the
added eigenvalues are all identically equal to zero.
By using vector xt, controller (1) can be rewritten as

ut = L(γ)xt, (9)

where L(γ) = [s0 · · · sn−1 sn r1 · · · rm−1 rm], with si =
0 if i > nc, and ri = 0 if i > mc.
The closed-loop system composed of model (8) con-
trolled by (9) is then described by xt+1 = F (ϑ, γ)xt +
Cwt+1, where

F (ϑ, γ) = A(ϑ) + B(ϑ)L(γ). (10)

Fix a contraction constant µ, with 0 < µ < 1. Then,
the dwell function is given by

τD(ϑ) := inf{τ ∈ N : ‖F (ϑ, Σ(ϑ))τ‖ ≤ µ},
where F (ϑ, Σ(ϑ)) is obtained by replacing γ in (10) with
Σ(ϑ). Note that the dwell function is well-defined since
from Assumption 1 and the fact that the eigenvalues
added in representation (8) are all equal to zero, it fol-
lows that F (ϑ, Σ(ϑ)) is stable for every ϑ ∈ Θ. More-
over, F (ϑ, Σ(ϑ)) with ϑ ∈ Θ has all eigenvalues with
absolute value smaller than the stability margin λ.
In the proposition below we show that this choice
of the dwell function proves effective in stabilizing
the estimated autonomous closed-loop system xt+1 =
F (ϑt, Σ(ϑt))xt. Before stating the proposition, we need
to introduce some notations. Denote by K(P ) the con-
dition number with respect to the 2-norm of the square
matrix P . From the stability margin condition it fol-
lows that K̄ := supϑ∈Θ K(Pϑ), where Pϑ is the solution
to the Lyapunov equation associated with 1

λF (ϑ, Σ(ϑ)):

1
λ

F (ϑ, Σ(ϑ))T P
1
λ

F (ϑ, Σ(ϑ)) − P = −I,

is a bounded constant (cf. [11]).

Proposition 1

i) The adaptively selected dwell time interval is uni-
formly bounded in time: supt≥0 τD(ϑt) ≤ τ̄D, with
τ̄D := inf{τ ∈ N :

√
K̄ λτ ≤ µ}.

ii) The autonomous estimated system xt+1 =
F (ϑt, Σ(ϑt))xt is exponentially stable, uniformly
in time: ‖xt‖ ≤ K̄νt−t?‖xt?‖, 0 ≤ t? ≤ t, with
ν = max{λ, µ

1
τ̄D }.

The proof of Proposition 1 is similar to the one of
Proposition 3.1 in [16] and is omitted due to space
limitations (see [11]).
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4 Stability analysis

In this section, we prove that, if the unmodeled dy-
namics is sufficiently small, then stability is guaranteed
by the proposed switching control scheme. In the case
when the system belongs to the model class, we also
show that the switching control scheme self-tunes.

Let us consider the closed-loop estimated system(
ŷt+1 = [1 −A(ϑt; q

−1)] ŷt+1 + B(ϑt; q
−1) ût + wt+1

ût = S(Σ(ϑt); q
−1) ŷt + [1 −R(Σ(ϑt); q

−1)] ût.

It can be easily seen that the switching control system(
yt+1 = [1 −A(ϑ◦; q−1)] yt+1 + B(ϑ◦; q−1) ut + vt + wt+1

ut = S(σt; q
−1) yt + [1 −R(σt; q

−1)] ut,

with σt given by (6), can be represented as a variational
system with respect to the closed-loop estimated system
as follows:(

yt+1 = [1 −A(ϑt; q
−1)]yt+1 + B(ϑt; q

−1)ut + vt + wt+1 + et

ut = S(Σ(ϑt); q
−1) yt + [1 −R(Σ(ϑt); q

−1)] ut,

where et := ϕT
t [ϑ◦ − ϑt] is the estimation error.

The switching control system stability then can be
proven based on the fact that, on the one hand, by
adopting a slow switching, uniform exponential stabil-
ity of the closed-loop estimated system is guaranteed
(cf. Proposition 1); on the other hand, by switching to
the controller designed for the best LS model, one keeps
the internally generated perturbation term et ‘small’.
This last property is actually shown in Proposition 2
below. The proofs of Proposition 2 and the instrumen-
tal result in Theorem 1 are omitted due to space limi-
tations and can be found in the technical report [11].

Set d := maxϑ1,ϑ2∈Θ ‖ϑ1−ϑ2‖. By using definition (5),
ϑt can be shown to satisfy the following property.

Theorem 1 Suppose that ut is Ft-measurable. Then,

(ϑ◦ − ϑti)
T

ti∑
s=1

ϕs−1ϕ
T
s−1(ϑ

◦ − ϑti)

≤ o
( ti∑

s=1

‖ϕs−1‖2
)

+ 2d
√

2δ

ti∑
s=1

‖ϕs−1‖2, a.s.

By a suitable manipulation of the sole result in The-
orem 1, we get the following bound on the estimation
error.

Proposition 2 Suppose that ut is Ft-measurable.
Then, for every 0 < ε < d,

N−1∑
t=0,t6∈BN−1

e2
t ≤ c(ε, δ)

N−1∑
t=0

‖ϕt‖2 + o
( N−1∑

t=0

‖ϕt‖2
)
, (11)



a.s., where BN−1 is a set of instant points which depends
on N , whose cardinality is uniformly bounded: |BN−1| ≤
CB, ∀N , and c(ε, δ) := c1(ε)+

1
c2(ε)

√
2δ, with c1(ε) and

c2(ε) smooth functions of ε, 0 < ε < d, which tend to
zero as ε → 0.

Remark: If the unmodeled dynamics is not present,
i.e., δ = 0, then equation (11) translates into
1
N

∑N−1
t=0, t6∈BN−1

e2
t = o

(
1
N

∑N−1
t=0 ‖ϕt‖2

)
, which en-

tails that the average square estimation error vanishes
when stability is ensured. This is a key property for the
switching scheme to self-tune.

We are now in the position to prove the stability result.

Theorem 2

i) If δ ≤ δ∗, where δ∗ > 0 is a constant depending on
the parameter uncertainty set structure, the control
map Σ, and the contraction constant µ, then the
switching control system is stable:

lim sup
N→∞

1
N

N−1∑
t=0

[
y2

t + u2
t

]
< ∞, a.s.

ii) If δ = 0, then self-tuning is achieved:

lim sup
N→∞

1
N

N−1∑
t=0

[
y2

t + u2
t

]
= lim sup

N→∞

1
N

N−1∑
t=0

[
ŷ2

t + û2
t

]
,

a.s., where ŷ and û are the output and input signals
generated by the closed-loop estimated system.

Proof: i) Fix a time point N > 0.
In view of the variational representation of the switch-
ing control system it is easily seen that the evolution in
time of xt in (7) is governed by

xt+1 = F (ϑ◦, Σ(ϑt))xt + C[vt + wt+1] (12)
= F (ϑt, Σ(ϑt))xt + C[vt + wt+1 + et], (13)

where F (ϑ, γ) is defined by (10) and C =
[1 0 0 . . . 0]T . Consider set BN−1 introduced in
Proposition 2. For the following derivations, it is con-
venient to use (12) in the time instants t ∈ BN−1 and
(13) for t /∈ BN−1, thus getting

xt+1 =

{
F (ϑ◦, Σ(ϑt))xt + C[vt + wt+1], t ∈ BN−1

F (ϑt, Σ(ϑt))xt + C[vt + et + wt+1], t /∈ BN−1.

Note now that ‖F (ϑ◦, Σ(ϑt))‖ is uniformly bounded.
By the uniform exponential stability of xt+1 =
F (ϑt, Σ(ϑt))xt (Proposition 1), and the uniform bound-
edness of |BN−1| (see Proposition 2), it is then easily
shown that xt can be bounded as follows

‖xt‖ ≤ k1

{
νt‖x0‖ +

t−1∑
i=0,i/∈BN−1

νt−i|vi + wi+1 + ei|
}

,
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t ≤ N , where k1 is a suitable constant, independent of
N , and ν is the constant introduced in Proposition 1.
Some cumbersome computations then lead to

‖xt‖2 ≤ 4k2
1

{
ν2t‖x0‖2 +

1
1 − ν

[ t∑
i=1

νt−iw2
i

+
t−1∑
i=0

νt−iv2
i +

t−1∑
i=0,i/∈BN−1

νt−ie2
i

]}
, (14)

t ≤ N , from which we finally get

1
N

N∑
t=0

‖xt‖2 ≤k2

[ 1
N

N∑
t=1

w2
i +

1
N

N−1∑
t=0

v2
i +

1
N

N−1∑
t=0,t/∈BN−1

e2
t

]

+ o(1), (15)

k2 being a suitable constant.
We next bound the terms in the right-hand side of (15).
By Assumption 3, 1

N

∑N
t=1 w2

t = O(1). By equa-
tion (4) and the definition of ϕt, 1

N

∑N−1
t=0 v2

t ≤
δ 1

N

∑N−1
t=0 ‖ϕt‖2. Term 1

N

∑N−1
t=0,t/∈BN−1

e2
t is immedi-

ately bounded by means of (11). Hence, the final
bound for 1

N

∑N
t=0 ‖xt‖2 is obtained: 1

N

∑N
t=0 ‖xt‖2 ≤

h(ε, δ) 1
N

∑N−1
t=0 ‖ϕt‖2+ o

(∑N−1
t=0 ‖ϕt‖2

)
+O(1), a.s.,

where we set h(ε, δ) := k2[c(ε, δ) + δ]. Since
1
N

∑N−1
t=0 ‖ϕt‖2 ≤ 1

N

∑N
t=0 ‖xt‖2, we then have that for

all δ for which there exists ε with 0 < ε < d such that
h(ε, δ) < 1, 1

N

∑N
t=0 ‖xt‖ (and hence 1

N

∑N−1
t=0 ‖ϕt‖2)

remains bounded, i.e., the system is stable. By recall-
ing the definition of c(ε, δ) in Proposition 2, we have
that if δ = 0, then h(ε, 0) = c1(ε), and hence stability is
ensured by taking ε sufficiently small so that c1(ε) < 1.
In the presence of unmodeled dynamics, stability is en-
sured if δ is smaller or equal to δ∗ determined by com-
puting the infimum of h(ε, δ) with respect to ε, say h̄(δ),
and then imposing h̄(δ∗) < 1. For continuity reasons,
such a δ∗ exists and satisfies δ∗ > 0.

ii) Suppose that there is no unmodeled dynamics (vt =
0). We next prove that yt and ŷt satisfy

y2
t = o(t) and ŷ2

t = o(t). (16)

As shown in (14) with N set equal to t, for any t > 0,

‖xt‖2 ≤ k3


ν2t‖x0‖2 +

t∑
i=1

νt−iw2
i +

t−1∑
i=0,i/∈Bt−1

νt−ie2
i


 ,

where |Bt−1| ≤ CB, ∀t. As for the first term, ν2t‖x0‖ =
o(t). As for the second term, from Assumption 3 it
follows that

∑t
i=1 νt−iw2

i = o(t) (cf. [11]). As for the
third term, by using Proposition 2 with δ = 0 and the
L2-stability result in point i) we get

t−1∑
i=0,i/∈Bt−1

e2
i = o(

t−1∑
i=0

‖ϕi‖2) = o(t). (17)



Therefore, by using these estimates we get ‖xt‖2 = o(t)
from which (16) immediately follows for yt.
As for ŷt, the closed-loop estimated system can be put
in the state space form x̂t+1 = F (ϑt, Σ(ϑt)) x̂t +Cwt+1,
where x̂t := [ŷt . . . ŷt−(n−1) ût−1 . . . ût−(m−1)]T . Then
(16) for ŷ can be derived by an analogous —even though
simpler— proof to the one for the output y of the con-
trol switching system, since in this case the perturba-
tion term et is not present.
Set pt := [yt ut−1]T and p̂t := [ŷt ût−1]. Then, we prove
point ii) by showing that

lim
N→∞

1
N

N∑
t=1

(‖pt‖2 − ‖p̂t‖2) = 0. (18)

Indeed, limN→∞{ 1
N

∑N−1
t=0 [ y2

t + u2
t ] − 1

N

∑N−1
t=0 [ ŷ2

t +
û2

t ]} = limN→∞{ 1
N

∑N
t=1(‖pt‖2 − ‖p̂t‖2) − 1

N (y2
N −

ŷ2
N) + 1

N (y2
0 − ŷ2

0)}, where limN→∞ 1
N (y2

0 − ŷ2
0) = 0

and limN→∞ 1
N (y2

N − ŷ2
N ) = 0 by equation (16).

Consider now the following inequality∣∣∣∣∣ 1
N

N∑
t=1

(‖pt‖2 − ‖p̂t‖2
)∣∣∣∣∣ ≤

[ 1
N

N∑
t=1

(‖pt‖ + ‖p̂t‖
)2

] 1
2

[ 1
N

N∑
t=1

(‖pt‖ − ‖p̂t‖
)2

] 1
2
. (19)

The first factor is bounded. Indeed,

[ 1
N

N∑
t=1

(‖pt‖ + ‖p̂t‖)2
] 1

2 ≤
√

2
N

[ N∑
t=1

‖pt‖2 +
N∑

t=1

‖p̂t‖2
] 1

2
,

where 1
N

∑N
t=1 ‖pt‖2 is bounded as a consequence of

the L2-stability result i), whereas the boundedness of
1
N

∑N
t=1 ‖p̂t‖2 can be proven similarly.

As for the second factor, we have

1
N

N∑
t=1

(‖pt‖ − ‖p̂t‖)2 ≤ 1
N

N∑
t=1

‖pt − p̂t‖2. (20)

Observe that xt − x̂t is governed by the following equa-
tion (xt+1 − x̂t+1) = F (ϑt, Σ(ϑt)) (xt − x̂t) + Cet.
Then by an argument similar to the one leading to
equation (15), we get that 1

N

∑N
t=0 ‖xt − x̂t‖2 ≤

k2
1
N

∑N−1
t=0,t/∈BN−1

e2
t + o(1). Since ‖pt − p̂t‖ ≤ ‖xt −

x̂t‖, from this equation and equation (17), we have
lim supN→∞

1
N

∑N
t=0 ‖pt − p̂t‖2 = 0. Then, taking into

account the boundedness of 1
N

∑N
t=1(‖pt‖+ ‖p̂t‖)2 and

inequality (20), from equation (19) the conclusion is
finally drawn that equation (18) holds true.

5 Concluding remarks

In this paper we have described a switching control
scheme for a discrete time linear system affected by a
398
possibly unbounded stochastic noise. We have proved
that such a scheme is effective in stabilizing the sys-
tem also when it is designed based on a reduced order
model of the system. This requires that the unmodeled
dynamics is sufficiently small. If there is no unmodeled
dynamics, then the switching scheme also self-tunes.
The bound on the admissible unmodeled dynamics de-
pends on the parameter uncertainty set structure and
on some design parameters (the stability margin λ and
the contraction constant µ). Further investigation is
needed to evaluate the conservativeness of the bound.
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