
Scenario optimization with relaxation: a new tool for design and
application to machine learning problems

Marco C. Campi and Simone Garatti

Abstract— Scenario optimization is by now a well established
technique to perform designs in the presence of uncertainty.
It relies on domain knowledge integrated with first-hand
information that comes from data and generates solutions that
are also accompanied by precise statements of reliability. In this
paper, following recent developments in [20], we venture beyond
the traditional set-up of scenario optimization by analyzing
the concept of constraints relaxation. By a solid theoretical
underpinning, this new paradigm furnishes fundamental tools
to perform designs that meet a proper compromise between
robustness and performance. After suitably expanding the scope
of constraints relaxation as proposed in [20], we focus on
various classical Support Vector methods in machine learning –
including SVM (Support Vector Machine), SVR (Support Vec-
tor Regression) and SVDD (Support Vector Data Description)
– and derive new results for the ability of these methods to
generalize.

I. INTRODUCTION

The scenario approach is a relatively recent, and yet well
established, data-driven approach to make reliable designs
in the presence of uncertainty. This capability to cope with
uncertainty is becoming ever more important in nowadays
engineering practice and, after its introduction in the seminal
paper [4], the scenario approach has obtained increasing
attention as witnessed by many theoretical developments,
[9], [1], [10], [30], [13], [23], [38], [14], and it has found
application to various fields including control system design,
[5], [12], [19], [29], [22], [2], [25], [27], [18], [26], system
identification, [37], [7], [36], [17], [21], and machine learn-
ing, [6], [8], [24], [15].

Letting x be the vector of design variables (e.g. the
parameters of a controller, or those of a regression model or
a predictor), the scenario approach builds upon the following
two ingredients that are typical of many design problems:

i. a cost function c(x), which we would like to make as
small as possible;

ii. a family of constraints for x, indexed by δ and expressed
as f(x, δ) ≤ 0.

The parameter δ that appears in f represents uncertainty
and models imprecise knowledge about the environment to
which our design will be applied. Each δ corresponds to a
potential situation and, for a given δ, constraint f(x, δ) ≤ 0
incorporates all restrictions1 enforced in that situation. Note

M.C. Campi is with the Department of Information Engineering, Uni-
versity of Brescia, via Branze 38, 25123 Brescia, Italy. S. Garatti is
with the Department of Electronics, Information and Bioengineering, Po-
litecnico di Milano, piazza L. da Vinci 32, 20133 Milano, Italy. Emails:
simone.garatti@polimi.it, marco.campi@unibs.it.

1When multiple restrictions as expressed by inequalities fl(x, δ) ≤ 0,
l = 1, . . . , L, are present, one defines f(x, δ) = maxl=1,...,L fl(x, δ).

also that c(x) depends on the design variables only. This
is with no loss of generality: would the cost depend on δ,
one might trace it back to the present setup by introducing
a new, equivalent, problem that has an additional variable h
where the cost function is c′(x, h) = h and the constraints are
f ′(x, h, δ) ≤ 0 with f ′(x, h, δ) = max{f(x, δ), c(x, δ)−h}.

One fundamental aspect in the practice of scenario op-
timization is that one is not required to have at disposal
a model for how the uncertainty parameter δ is generated.
Indeed δ is modeled as a random element over some prob-
ability space (∆,D,P), where ∆ and P remain undefined
throughout the algorithmic and theoretical developments of
the method. This is practically important since in many
applications assuming that ∆ and P are known to the
designer is unrealistic: ∆ and P refer to the “real world”
and can be truly complex objects in modern engineering for
which hardly complete a-priori knowledge is available (think
e.g. of biological or social systems, or of problems arising in
autonomous driving, just to make but a few examples). Mo-
tivated by this observation, the scenario approach takes data
as the primary source of knowledge and, more specifically,
it assumes that a sample of instances of δ acquired through
experience is available to the designer (these instances are
denoted by δ1, . . . , δN and called “scenarios”). In this con-
text, the scenario approach maps δ1, . . . , δN into a design
that tries to minimize c(x) while also satisfying constraints
f(x, δ) ≤ 0 with high probability.

In practice, cost reduction and constraints satisfaction are
often contrasting objectives so that a high level of robustness
against constraints violation results in poor performances.
A proper trade-off depends on the application at hand and
it is important to allow for flexibility in the optimization
procedure to accommodate various situations. This was the
idea behind the introduction of a new scenario scheme,
named scenario optimization with relaxation in Section 5.2
of paper [20], which amounted to consider the following
optimization program:

min
x∈X

ξi≥0,i=1,...,N

c(x) + ρ

N∑
i=1

ξi (1)

subject to: f(x, δi) ≤ ξi, i = 1, . . . , N,

The interpretation of (1) is that some scenario constraints
f(x, δi) ≤ 0 can be violated for the purpose of improving the
cost but constraints violation has itself a cost as expressed
by the auxiliary optimization variables ξi: if ξi > 0, then
constraint f(x, δi) ≤ 0 is relaxed to f(x, δi) ≤ ξi and
this generates the regret ξi, which adds to the original cost

ar
X

iv
:2

00
4.

05
83

9v
3

 [
cs

.L
G

]
 2

0
O

ct
 2

02
0

c(x). The parameter ρ can be used to set a suitable trade-
off between the original cost and the cost generated by the
regret for violating constraints.

Program (1) furnishes a flexible scheme that allows the
designer to explore various tentative solutions obtained as
ρ varies between the two extremes ρ = 0 (no regret for
constraints violation) and ρ = ∞ (infinite regret for con-
straints violation). In this process of selection the designer
is aided by quantitative tools that describe the quality of the
solutions x∗ρ. Recalling i. and ii., it is natural that the designer
is concerned about the achieved cost c(x∗ρ) and the ensuing
risk V (x∗ρ) where

V (x) = P{δ : f(x, δ) > 0}

quantifies the probabilistic level of constraints violation. It
is important to note that c(x∗ρ) is readily available to the
designer once x∗ρ has been computed; in contrast, the risk
cannot be directly evaluated since its definition involves P,
which is an unknown element of the problem. In [20], it
was shown that a tight evaluation of V (x∗ρ) is possible by
adopting the so called wait-&-judge perspective of [11].
Specifically, a certificate on V (x∗ρ) is obtained from the
value taken by an observable quantity s∗ρ, which is defined
as the number of δi’s for which f(x∗ρ, δi) ≥ 0 (i.e., s∗ρ =
no. of active constraints + no. of violated constraints).
Note also that, the solution x∗ρ can be reconstructed from
these constraints and, hence, s∗ρ can be interpreted as the
complexity of the solution.

As is intuitive, the no. of violated constraints alone (em-
pirical risk) is not a valid indicator of the true risk V (x∗ρ)
since optimization generates a bias towards larger risks by
drifting the solution against the constraints. The thrust of the
result of [20] is that the complexity is instead inescapably
linked to V (x∗ρ) irrespective of the problem at hand, and as
such it can be used to always tightly judge the level of risk. It
turns out that two scenario solutions with the same empirical
risk can have quite different true risks V (x∗ρ) depending
on undisclosed mechanisms by which the satisfaction of
some constraints implies the satisfaction of other, unseen,
constraints. Nonetheless, it is a universal fact that all these
mechanisms are captured by the complexity, which, alone,
allows one to derive tight evaluations.

In this paper we build upon the result of [20] and apply
it to the important class of Support Vector methods, which
have been developed in machine learning for classification
and regression problems. Specifically, we consider Support
Vector Regression - SVR, [31], [33], Support Vector Machine
- SVM, [16], and Support Vector Data Description - SVDD,
[34]. It is a fact that all these methods fit quite well the frame-
work of [20] and the dichotomy between cost and constraints
satisfaction described above corresponds to the dichotomy
between having informative regressors or classifiers and their
misprediction or misclassification level for the given data
generation mechanism. The main contribution of this paper
is to establish all the connections between the general theory
of [20] and Support Vector methods, including the necessary
adaptations of the theory to the specific setups when required.

It is then shown how the new theory makes a big advance in
the reliable usage of Support Vector methods, especially in
relation to the long-standing problem of the tuning of hyper-
parameters, which is key to obtain good solutions.

Support Vector methods will be dealt with in Section III.
For a better understanding of this part, we will first revisit
in Section II the theory of [20] and we will present it in a
broader setup than that of [20], by considering convex opti-
mization over generic (possibly infinite dimensional) vector
spaces. This is a necessary step since generic vector spaces is
the natural setup for Support Vector methods whenever the so
called kernel trick is applied. Exploiting the full power of the
theory of [20] in the most general setup possible is a second
contribution of the present paper. In addition, this section
provides a deep asymptotic analysis of the risk when the
sample size N tends to infinity. The paper will be closed by
a numerical simulation in Section IV, which further clarifies
the obtained achievements.

II. RISK ASSESSMENT IN SCENARIO OPTIMIZATION WITH
CONSTRAINTS RELAXATION

In this section, we revisit and extend the theory of [20]
for the assessment of V (x∗ρ) (Theorem 1 below). We start
by formally stating the assumptions that are required for
the derivation. The first specifies the mathematical frame of
work, while the second ensures that x∗ρ is well-defined. The
third assumption is instead a technical requirement whose
implications will be commented upon later.

Assumption 1 (mathematical setup): x is an element of a
vector space X (possibly infinite dimensional). c(x) and, for
any given δ ∈ ∆, f(x, δ) are convex functionals of x. The
scenarios δi, i = 1, . . . , N , form an independent random
sample from (∆,F ,P). ?

Assumption 2 (existence and uniqueness): Consider
optimization problems as in (1) where N is substituted
with any index m = 0, 1, . . . and δi, i = 1, . . . ,m, is an
independent sample from (∆,F ,P). For every m and for
every outcome of (δ1, δ2, . . . , δm), it is assumed that these
optimization problems admit a solution (i.e., the problems
are feasible and the infimum is achieved on the feasibility
set). If for one of these optimization problems more than
one solution exists, one solution is singled out by the
application of a convex tie-break rule, which breaks the tie
by minimizing an additional convex functional t1(x), and,
possibly, other convex functionals t2(x), t3(x), . . . if the tie
still occurs.2 ?

The following is a technical non-accumulation assumption
of functionals f(x, δ).

2Note that only the tie with respect to x is broken by t1(x), t2(x), t3(x),
. . . . On the other hand, for a given x∗ the values of ξi, i = 1, . . . ,m, remain
unambiguously determined at optimum by relation ξ∗i = f(x∗, δi), so that
no tie on ξi, i = 1, . . . ,m, can persist after the tie on x is broken.

Assumption 3 (non-accumulation): For every x in X ,
P{δ : f(x, δ) = 0} = 0. ?

This assumption is connected to the concept of non
degeneracy introduced in Definition 3 of [20] and it is often
satisfied when δ itself does not accumulate (e.g. when it has
density).

We are now ready to present the result that provides
a quantitative evaluation of the risk in the context of
optimization with constraints relaxation.

Theorem 1: For a given value in (0, 1) of the confidence
parameter β, consider for any k = 0, 1, . . . , N − 1 the
polynomial equation in the t variable(
N

k

)
tN−k− β

2N

N−1∑
i=k

(
i

k

)
ti−k− β

6N

4N∑
i=N+1

(
i

k

)
ti−k = 0,

(2)
and for k = N consider the polynomial equation

1− β

6N

4N∑
i=N+1

(
i

N

)
ti−N = 0. (3)

For any k = 0, 1, . . . , N − 1 equation (2) has exactly two
solutions in [0,+∞), which we denote with t(k) and t(k)
(t(k) ≤ t(k)). Instead, equation (3) has only one solution
in [0,+∞), which we denote with t(N), while we define
t(N) = 0. Let ε(k) := max{0, 1−t(k)} and ε(k) := 1−t(k),
k = 0, 1, . . . , N . Under Assumptions 1, 2 and 3, for any ∆
and P it holds that

PN{ε(s∗ρ) ≤ V (x∗ρ) ≤ ε(s∗ρ)} ≥ 1− β, (4)

where x∗ρ is the solution to (1), possibly after breaking the
tie according to Assumption 2, and s∗ρ is the number of δi’s
for which f(x∗ρ, δi) ≥ 0. ?

Proof: The proof is easily obtained by noticing that
the proof of Theorem 4 in [20], given for the case
of optimization over Euclidean spaces, applies mutatis
mutandis to the present more general setup. ?

The main message conveyed by Theorem 1 is that it is
possible to construct an interval [ε(s∗ρ), ε(s

∗
ρ)] where V (x∗ρ)

lies with high confidence 1 − β, and no information on ∆
and P is required in this process (distribution free result).
The interval depends on s∗ρ, which is an observable, and
for different values of s∗ρ we obtain different ranges for
V (x∗ρ), showing that s∗ρ carries fundamental information for
the estimation of V (x∗ρ). Figure 1 depicts ε(k) and ε(k)
for N = 2000 and β = 10−4, 10−6, 10−8, from which we
see that small and informative intervals are obtained even
for extremely high levels of confidence. Further building on
the result in Theorem 1, Section II-A provides asymptotic
evaluations and establishes a universal fact that the risk tends
to the ratio between complexity and the sample size N as
N tends to infinity.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. ε(k) and ε(k) for N = 2000 and β = 10−4, 10−6, 10−8.

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
st

risk

complexity

Fig. 2. The cost-risk plot. Dots in the picture correspond to the values of
s∗ρ that have been observed for a range of selections of the parameter ρ.

The typical usage of Theorem 1 is as follows. The designer
solves (1) repeatedly for various values of ρ and obtains var-
ious solutions x∗ρ achieving different trade-offs between cost
and risk. As ρ varies, the cost is computed, while Theorem 1
allows one to evaluate the risk based on the observed value
of the complexity s∗ρ. In this way, the designer can generate a
cost-risk plot like the one depicted in Figure 2, where the cost
c(x∗ρ) and the confidence interval [ε(s∗ρ), ε(s

∗
ρ)] for V (x∗ρ)

are depicted corresponding to various values of ρ. The user
is thus provided with the relevant information to select the
solution that achieves the best compromise for the problem
at hand.

A. Asymptotic results

We state a theorem that provides explicit bounds for ε(k)
and ε(k), followed by comments on the asymptotic behavior
of these bounds.

Theorem 2: Functions ε(k) and ε(k) introduced in Theo-
rem 1 are subject to the following bounds:

ε(k) ≤ k

N
+ C

√
k ln 1

β +
√
k ln k + 1

N
(5)

ε(k) ≥ k

N
− C

√
k ln 1

β +
√
k ln k + 1

N
(6)

where C is a suitable constant (independent of k, N and
β) and the bounds hold for 1 ≤ k ≤ N and β ∈ (0, 1),
while, for k = 0, we have ε(0) ≤ (ln(1/β) + 1) · C/N and
ε(0) ≥ 0. ?

Proof: see Appendix A ?

In (5) and (6), the dependence in β is inversely logarith-
mic, which shows that “confidence is cheap”. For any fixed
k, we see that ε(k) and ε(k) merge onto the same value k/N
as fast as O(1/N), while for k that grows at the same rate as
N , say k = µN , convergence towards k/N takes place at a
rate O(ln(N)/

√
N). Hence, we see that we can construct a

strip around k/N whose size goes to zero as O(ln(N)/
√
N)

and the bi-variate distribution of risk and complexity all lies
in the strip but a slim tail that expands beyond the strip whose
probability is no more than β.

III. APPLICATION TO SUPPORT VECTOR METHODS

In this section, the general theory for scenario optimization
with constraints relaxation is applied to various well known
Support Vector methods. The results stemming from this
analysis are unprecedented and show that complexity carries
fundamental information to tightly judge the ability of these
machines to generalize.

We consider in turn: SVR (Support Vector Regression),
SVDD (Support Vector Data Description) and SVM (Support
Vector Machine). To SVR and SVDD the theoretical appara-
tus developed in the previous section can be directly applied,
while SVM requires some additional effort to rigorously
accommodate some degenerate situations; the analysis for
SVM also shows the versatility of the theory.

To ease the notation, we drop from this section onward
the subscript ρ in the optimal solution.

A. Support Vector Regression - SVR

Let {(ui, yi)}Ni=1 be a data set, where the ui’s are
elements of a Hilbert space U and the yi’s are the
corresponding output values in R. Each data point is
extracted independently of the others from a common
probability distribution.

Remark 1: Depending on the application, values ui can
be thought of as raw measurements of physical quantities
or rather as measurements lifted into a feature space by
means of a feature map ϕ(·), so that ui = ϕ(mi), where
mi is a vector of measured quantities. Interestingly, when
SVR is applied, the actual computation of the solution
only involves the evaluation of inner products in feature
space, that is, 〈ϕ(mk), ϕ(mj)〉, which can be done without
explicitly evaluating ϕ(mi). Indeed, one can define a
“kernel” k(mk,mj) := 〈ϕ(mk), ϕ(mj)〉 and working with
function k(·, ·) enables one to implicitly operate in the
(high-dimensional) feature space without ever computing
explicitly the coordinates of the measurements in the
lifted feature space. This is the so-called “kernel trick”.
Pushing all this even further, it can be observed that for
the operation of the method one does not even need to
provide an explicitly description of the inner product
〈·, ·〉 and of the feature map ϕ(·) from which k(·, ·)
is defined by composition: in fact one can start off by
assigning k(·, ·) directly and theoretical results in RKHS

– Reproducing Kernel Hilbert Spaces – assure that this
always corresponds to allocate a suitable couple 〈·, ·〉 and
ϕ(·) so that k(·, ·) = 〈ϕ(·), ϕ(·)〉, provided that the kernel
is positive definite (i.e.,

∑n
i=1

∑n
j=1 k(mi,mj)cicj ≥ 0,

for all choices of n and all finite sequences of points
(m1, . . . ,mn) and real values (c1, . . . , cn)). When adopting
this standpoint, the interpretation of k(·, ·) is that it is a
user-specified similarity function over pairs of data points
in raw representation. ?

In the following, we refer to SVR with adjustable size as
described in [31]. For given parameters τ, ρ > 0, consider
the optimization program:

min
w∈U,γ≥0,b∈R
ξi≥0,i=1,...,N

(γ + τ‖w‖2) + ρ

N∑
i=1

ξi (7)

subject to: |yi − 〈w,ui〉 − b| − γ ≤ ξi, i = 1, . . . , N.

The cost function in (7) minimizes a weighted sum of the
size γ of the “tube” used for prediction and the regularization
term ‖w‖2, to which penalties ξi are added for output mea-
surements yi that are not in the tube, i.e., their distance from
the interpolating function 〈w,ui〉 + b is more that γ. Upon
solving program (7), one finds the solution (w∗, γ∗, b∗, ξ∗i),
which gives the prediction tube

|y − 〈w∗,u〉 − b∗| ≤ γ∗. (8)

When a new value ū is given, the corresponding output ȳ is
forecast to be in the tube, that is, in the range of y values
such that |y−〈w∗, ū〉− b∗| ≤ γ∗. In this process, parameter
ρ is used as a tuning knob to adjust the size of the tube
against the risk of violating (8), which in this context can
be interpreted as the probability of an erroneous prediction
(i.e. the actual value ȳ is not in the tube). In this context,
one should note that the size of the prediction tube is known
from the solution of the optimization program, while the
theory here developed provides a fundamental grasp on the
other quantity, the probability of an erroneous prediction.
These two pieces of information form the beacon to select
a suitable value of the tuning parameter ρ. See also Section
IV for a numerical example.

Remark 2: It is perhaps worth elaborating a bit on what
the tube is in case of a lifting in a feature space. As we shall
show below, w∗ is always given by a linear combination of
the points ui, say w∗ =

∑
i α
∗ui. Substituting in (8) we

obtain
|y −

∑
i

α∗〈ui, u〉 − b∗| ≤ γ∗,

which in kernel notation also becomes

|y −
∑
i

α∗k(mi,m)− b∗| ≤ γ∗.

?
Throughout, we make the following assumption.

Assumption 4: Over the support of u, the conditional
distribution of y given u admits density. ?

In order to apply the theory from Section II we need
to show that the solution to (7) exists and is unique
(Assumption 2) and that a non-accumulation assumption
applies (Assumption 3). The validity of these facts is shown
in the following.

Existence: While w belongs to a possibly infinite dimensional
Hilbert space U , the minimization problem in (7) (with m
in place of N as required in Assumption 2) can be seen
as finite dimensional because allowing for components
of w outside the finite dimensional span of points ui,
i = 1, . . . ,m, does not help satisfy the constraints (note
that in the constraints w shows up under the sign of inner
product 〈w,ui〉 only), while it increases the cost function
(write w = wu + w⊥u , with wu ∈ span of ui, i = 1, . . . ,m,
and w⊥u orthogonal to the same span, and then apply
Pitagora’s theorem: ‖w‖2 = ‖wu‖2 + ‖w⊥u ‖2). Hence, (7)
is a finite-dimensional problem with closed constraints and
quadratic non-negative cost over the optimization domain.
As such, it certainly admits solution. ?

Uniqueness: At optimum, w∗ is certainly unique because,
assuming by contradiction that there are two optimal
solutions (w∗1 , γ

∗
1 , b
∗
1, ξ
∗
i,1) and (w∗2 , γ

∗
2 , b
∗
2, ξ
∗
i,2) with

w∗1 6= w∗2 , then an easy computation shows that the point
half way between these two solutions would be feasible and
superoptimal (the reader may also want to refer to Theorem
3 in [3] where the same issue is discussed in relation to an
algorithmically slightly different, but conceptually identical,
problem). Instead, γ∗, b∗ and ξ∗ might be non-unique.
To identify a unique solution we select the smallest γ∗

and the b∗ with smallest absolute value. Note that this
certainly breaks the tie because the smallest γ∗ is obviously
unique while, if one had two values for b∗ smallest in
absolute value, say b∗ = ±b̄, corresponding to the solutions
(w∗, γ∗, b̄, ξ∗i,1) and (w∗, γ∗,−b̄, ξ∗i,2) (keep in mind that w∗

and γ∗ must be the same at optimum), then optimality of
these two solutions would imply that

∑N
i=1 ξ

∗
i,1 =

∑N
i=1 ξ

∗
i,2

and therefore the solution half way between (w∗, γ∗, b̄, ξi,1)
and (w∗, γ∗,−b̄, ξi,2), i.e., (w∗, γ∗, 0, 0.5 · ξi,1 + 0.5 · ξi,2),
would be feasible thanks to convexity, it would achieve
the same cost as the other two solutions, but it would
be preferred because it carries a smaller value for |b∗|
than in the two alleged solutions. Once w∗, γ∗ and b∗ are
uniquely determined, also the ξ∗i ’s remain determined, see
the footnote at the end of Assumption 2.

Non-accumulation: Non-accumulation requires that,
∀w, γ, b, one has:

P{|y − 〈w,u〉 − b| − γ = 0} = 0.

Since the conditional distribution of y given u admits
density, one has P{|y − 〈w,u〉 − b| − γ = 0} = P{P{|y −

〈w,u〉−b|−γ = 0|u}} = P{P{y = 〈w,u〉+b±γ|u}} = 0.

Since all conditions are satisfied, we can apply Theorem
1 to SVR, which gives the following result.

Theorem 3 (Reliability of SVR): With ε(·) and ε(·) as de-
fined in Theorem 1, we have

PN{ε(s∗) ≤ P{(u, y) : |y − 〈w∗,u〉 − b∗| > γ∗} ≤ ε(s∗)}
≥ 1− β,

where s∗ is the number of (ui, yi)’s for which |yi−〈w∗,ui〉−
b∗| ≥ γ∗. ?

B. Support Vector Data Description - SVDD

Support Vector Data Description is a data-driven technique
used to identify a portion of space that covers most of the
probabilistic mass from which data have been generated,
while including little superfluous space. SVDD creates a
spherically shaped form and, analogous to SVR, it can be
made more flexible by a lifting into a feature space. See e.g.
[34] for a more comprehensive description.

Let {pi}Ni=1 be an independent data set in a Hilbert space
P sampled from a common probability distribution. These
points can be raw data or, in complete analogy with the
discussion in Remark 1, data lifted into a feature space by
by means of a map ϕ(·). SVDD constructs a sphere in P by
solving the following optimization program:

min
c∈P,γ≥0

ξi≥0,i=1,...,N

γ + ρ

N∑
i=1

ξi (9)

subject to: ‖pi − c‖2 − γ ≤ ξi, i = 1, . . . , N.

We next address existence, uniqueness and non-
accumulation for this problem.

Existence: Similarly to SVR, the optimal c∗ must belong to
the finite dimensional space generated by pi, i = 1, . . . ,m,
and a solution to (9) certainly exists.

Uniqueness: At optimum, the center of the sphere c∗

is unique while γ∗ and the ξ∗i ’s may not be unique, refer to
Theorems 2 and 3 in [35]; moreover non-uniqueness may
only occur when ρ = 1/M for some integer M , refer again
to Theorem 3 in [35]. To break the tie if it occurs, select
the smallest γ∗; note that in this way also the ξ∗i ’s remain
uniquely determined as explained in the footnote at the end
of Assumption 2.

Non-accumulation: For SVDD, non-accumulation requires
the following condition to hold ∀c, γ:

P{‖p− c‖2 = γ} = 0 ∀c, γ. (10)

This condition simply requires that probabilistic mass does
not accumulate over hyper-spheres and it is formalized in the
following assumption.

Assumption 5: Assume that (10) holds. ?

We now have the following theorem.

Theorem 4 (Reliability of SVDD): With ε(·) and ε(·) as
defined in Theorem 1, we have

PN{ε(s∗) ≤ P{p : ‖p− c∗‖2 > γ∗} ≤ ε(s∗)}
≥ 1− β,

where s∗ is the number of pi’s for which ‖pi − c∗‖2 ≥ γ∗.
?

C. Support Vector Machines - SVM

SVM is a well-known technique that constructs binary
classifiers from a data set. Given a new out-of-sample case,
the classifier predicts the corresponding unseen label to take
value −1 or 1. −1 and 1 represent two different classes,
whose meaning depends on the application at hand and can
e.g. be sick or healthy, right or wrong, male or female.
Among the vast literature on SVM, refer e.g. to [16], [32].

Let {(ui, yi)}Ni=1 be a data set of independent observations
from a common probability distribution, where the ui’s
are elements of a Hilbert space U and the yi’s are the
corresponding labels, −1 or 1. Similarly to SVR, the ui’s
can be thought of as raw measurements or measurements
lifted into a feature space, refer to Remark 1.

The classifier is obtained by solving the program:

min
w∈U,b∈R

ξi≥0,i=1,...,N

‖w‖2 + ρ

N∑
i=1

ξi (11)

subject to: 1− yi(〈w,ui〉 − b) ≤ ξi, i = 1, . . . , N.

Existence and uniqueness of the solution (w∗, b∗, ξ∗i)
to this program present no difficulties. In contrast, non-
accumulation raises some subtle issues in specific conditions
(which refer to the situation where w∗ = 0) that make a
rigorous application of results from Section II non-trivial.

Existence: As in previous support vector methods, w∗

must belong to a finite dimensional subspace spanned by
{ui, i = 1, . . . , N} and an optimal solution certainly exists.

Uniqueness: w∗ is unique while b∗ may not be, see
Theorem 2 in [3]. Break the tie by minimizing |b + 1|.3
Similarly to SVR, this returns unique w∗ and b∗ and the
ξ∗i ’s also remain uniquely determined.

Non-accumulation: It requires satisfaction of the condition

P{1− y(〈w,u〉 − b) = 0} = 0 ∀w, b.

A problem with this condition rises for w = 0 and b = ±1,
in which case the condition becomes

P{1± y = 0} = 0,

3The reason for choosing |b + 1| and not |b| is that this prevents the
solution w∗ = 0 and b∗ = 0 from happening (which would result in a
not-well defined classifier, see below).

which is generally not satisfied. This is sign of an intrinsic
difficulty: if one sees all labels of one type −1 or 1
(which happens with nonzero probability), then program
(11) returns w∗ = 0 and −b∗ = 1 (in case of all labels
equal to 1) or −b∗ = −1 (in case of all labels equal to
−1). Then, one ends up in a degenerate situation where
the solution is identified by various subsets of the data set
(think of when all labels are 1: any non-empty subset of
data points returns the same solution), which is exactly what
the non-accumulation Assumption 3 rules out. Moreover,
seeing all labels of one type is not the only case in which
w∗ = 0 and b∗ = ±1 and it is easy to figure out other
configurations of data points for this to happen. In all
these cases, degeneracy occurs. Hence, the fact that the
non-accumulation Assumption 3 is not satisfied is not
accidental and has deep motivations. Nevertheless, we can
get around this difficulty and get the theory to work for
a heated version of the problem. By a cooling procedure,
one then finds rigorous results for SVM. Along this route,
we also introduce a breakdown of the initial optimization
problem into three distinct problems where a problem that
has a specific simple structure is considered when one
knows that w∗ = 0 for the initial problem (11); this is
instrumental to finding tight evaluations of the risk for this
case as well. One side effect of this process is that in the
final result the confidence parameter is elevated from the
value β to the value 3β, which has however very little
impact in practice. The technically articulated heating and
cooling theory is presented in the Appendix, while here
below we give the final result. The result requires that u
are generically distributed and do not concentrate on linear
manifolds, as the following assumption states.

Assumption 6: Assume that

P{(u, y) : 〈a,u〉 − h = 0} = 0 ∀a 6= 0, h.

?

Theorem 5 (Violation of SVM): With ε(·) and ε(·) as de-
fined in Theorem 1, we have

PN{ε(s∗) ≤ P{(u, y) : 1− y(〈w∗,u〉 − b∗) > 0} ≤ ε(s∗)}
≥ 1− 3β,

where s∗ is so defined: when w∗ 6= 0, s∗ is the number of
(ui, yi)’s for which 1 − yi(〈w∗,ui〉 − b∗) ≥ 0 and, when
w∗ = 0, s∗ is the number of data points whose label belongs
to the class with fewer elements (if e.g. there are 960 data
points with label 1 and 40 with label −1, then s∗ = 40; if
there is a fifty-fifty split, then s∗ is equal to half of the data
points). ?

Proof: see Appendix B. ?

One further point that needs be clearly highlighted is that
in SVM constraints violation does not correspond to mis-
classification. This marks a difference with SVR and SVDD

where indeed constraints violation meant misprediction and
was the final quantity that we wanted to keep under control.
To understand this point, refer to the classifier generated by
SVM:

classify as 1 points u such that 〈w∗,u〉 − b∗ > 0;

classify as − 1 points u such that 〈w∗,u〉 − b∗ < 0.

Hence, we make an error if (u, y) is such that

y(〈w∗,u〉 − b∗) < 0,

corresponding to having disagreement between the classifier
and the actual sign of y. This condition is more restrictive
than constraints violation, and in fact it implies that

1− y(〈w∗,u〉 − b∗) > 0.

Importantly, implication is strict and misclassification occurs
more rarely than constraints violation. As a consequence,
Theorem 5 can be used to only upper bound the probability
of misclassification, a result that is stated in the next theorem.

Theorem 6 (Misclassification of SVM): Define ε(·) as in
Theorem 1. We have

PN{P{(u, y) : y is misclassified} ≤ ε(s∗)} ≥ 1−3β, (12)

where s∗ is so defined: when w∗ 6= 0, s∗ is the number
of (ui, yi)’s for which 1 − yi(〈w∗,ui〉 − b∗) ≥ 0 and,
when w∗ = 0, s∗ is the number of data points whose label
belongs to the class with fewer elements. ?

IV. NUMERICAL EXAMPLE

Inspired by the numerical example reported in [31], we ap-
plied SVR to find a regression model for points generated by
a noisy sinc function. Specifically, we considered a data set
formed by N = 2000 examples (mi, yi) with mi extracted
uniformly from [−3, 3] and yi = sin(πmi)/(πmi) + ei,
ei being extracted from a Laplace distribution with mean
µ = 0 and parameter b = 1. The kernel trick with Gaussian
kernel exp(−|mk − mj |2) was also adopted to expand
the input space [−3, 3] into an infinite dimensional feature
space in which we cast the optimization in (7). We set
τ = 0.01 and then program (7) was repeatedly solved for
ρ = (3/5)`, ` = 0, 1, . . . , 14. Each time the solution was
stored along with the complexity s∗. We set β = 10−4 and,
resorting to Theorem 1 for the calculation of [ε(s∗), ε(s∗)],
we constructed the cost-risk plot, which in fact turned out to
be the one in Figure 2. For ρ = 1 we obtained the smallest
value for s∗, and thereby of the range for the risk, at the
expense of a large cost. As ρ increased, s∗ also increased
monotonically. At the beginning, we had a rapid drop of the
cost paired with a moderate increase of the risk. Instead,
later, a decrease of cost implied a significant deterioration
of the risk. Altogether, this suggested to opt for models
corresponding to ρ in the range (3/5)7, . . . , (3/5)10 and,
in particular, we chose ρ̄ = (3/5)9, yielding s∗ = 105,
corresponding to [ε(s∗), ε(s∗)] = [0.032, 0.08], and c(x∗) =

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

Fig. 3. SVR model for ρ = 1.

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

Fig. 4. SVR model for ρ = (3/5)9.

0.30. Since τ was small, γ∗, the size of the tube, was
nearly identical to the cost. Figures 3, 4, and 5 depict the
models obtained for ρ = 1, ρ = (3/5)9, and ρ = (3/5)14

and a visual inspection, possible in this case because we
are considering a toy example with m scalar, confirms the
analysis based on the ground of the cost-risk plot.

Finally, we tested the validity of Theorem 1. We kept ρ̄
at the value (3/5)9 and solved (7) 200 times, each time
drawing a new sample of size 2000. Each solution was
tested on 10000 additional random (m, y) and the risk was
evaluated by Monte Carlo techniques. Figure 6 plots the
pairs (complexity,risk) obtained in the 200 trials, along with
the upper and lower limits given by ε(k) and ε(k) when
β = 10−4. Theorem 1 predicts that, on average, the risk
is within the prescribed intervals 9999 times out of 10000.

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

Fig. 5. SVR model for ρ = (3/5)14.

40 60 80 100 120 140 160
0

0.05

0.1

0.15

Fig. 6. (complexity,risks) pairs (blue dots) vs. ε(k) and ε(k) (continuous
dotted lines); N = 2000 and β = 10−4.

As expected, this was the case for all the 200 points in our
simulation. A visual inspection also reveals that the spread
of the evaluated risks fills well the vertical range given
by the theoretical result, a sign that the theoretical result
provides tight evaluations in spite of its prerogative of being
distribution free.

REFERENCES

[1] T. Alamo, R. Tempo, and E.F. Camacho. A randomized strategy
for probabilistic solutions of uncertain feasibility and optimization
problems. IEEE Transactions on Automatic Control, 54(11):2545–
2559, 2009.

[2] T. Alamo, R. Tempo, A. Luque, and D. R. Ramirez. Randomized
methods for design of uncertain systems: sample complexity and
sequential algorithms. Automatica, 51:160–172, 2015.

[3] C.J.C. Burges and D.J. Crisp. Uniqueness of the svm solution. In
Advances in Neural Information Processing Systems 12 (NIPS 1999),
pages 223–229, Denver, CO, 1999.

[4] G.C. Calafiore and M.C. Campi. Uncertain convex programs: ran-
domized solutions and confidence levels. Mathematical Programming,
102(1):25–46, 2005.

[5] G.C. Calafiore and M.C. Campi. The scenario approach to robust
control design. IEEE Transactions on Automatic Control, 51(5):742–
753, 2006.

[6] M.C. Campi. Classification with guaranteed probability of error.
Machine Learning, 80:63–84, 2010.

[7] M.C. Campi, G. Calafiore, and S. Garatti. Interval predictor models:
identification and reliability. Automatica, 45(2):382–392, 2009.

[8] M.C. Campi and A. Carè. Random convex programs with l1-
regularization: sparsity and generalization. SIAM Journal on Control
and Optimization, 51(5):3532–3557, 2013.

[9] M.C. Campi and S. Garatti. The exact feasibility of randomized solu-
tions of uncertain convex programs. SIAM Journal on Optimization,
19(3):1211–1230, 2008.

[10] M.C. Campi and S. Garatti. A sampling-and-discarding approach to
chance-constrained optimization: feasibility and optimality. Journal of
Optimization Theory and Applications, 148(2):257–280, 2011.

[11] M.C. Campi and S. Garatti. Wait-and-judge scenario optimization.
Mathematical Programming, 167(1):155–189, 2018.

[12] M.C. Campi, S. Garatti, and M. Prandini. The scenario approach for
systems and control design. Annual Reviews in Control, 33(2):149 –
157, 2009.

[13] A. Carè, S. Garatti, and M.C. Campi. FAST - Fast Algorithm for the
Scenario Technique. Operations Research, 62(3):662–671, 2014.

[14] A. Carè, S. Garatti, and M.C. Campi. Scenario min-max optimization
and the risk of empirical costs. SIAM Journal on Optimization,
25(4):2061–2080, 2015.

[15] A. Caré, F.A. Ramponi, and M.C. Campi. A new classification
algorithm with guaranteed sensitivity and specificity for medical
applications. IEEE Control Systems Letters, 2(3):393–398, 2018.

[16] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273–297, 1995.

[17] L.G. Crespo, S.P. Kenny, and D.P. Giesy. Random predictor models
for rigorous uncertainty quantification. International Journal for
Uncertainty Quantification, 5(5):469–489, 2015.

[18] A. Falsone, L. Deori, D. Ioli, S. Garatti, and M. Prandini. Optimal
disturbance compensation for constrained linear systems operating in
stationary conditions: A scenario-based approach. Automatica, 110,
2019.

[19] S. Garatti and M.C. Campi. Modulating robustness in control design:
principles and algorithms. IEEE Control Systems Magazine, 33(2):36–
51, 2013.

[20] S. Garatti and M.C. Campi. Risk and complexity in scenario opti-
mization. Mathematical Programming, 2019. Published on-line. DOI:
https://doi.org/10.1007/s10107-019-01446-4.

[21] S. Garatti, M.C. Campi, and A. Caré. On a class of interval predictor
models with universal reliability. Automatica, 110(108542), 2019.

[22] S. Grammatico, X. Zhang, K. Margellos, P.J. Goulart, and J. Lygeros.
A scenario approach for non-convex control design. IEEE Transac-
tions on Automatic Control, 61(2):334–345, 2016.

[23] K. Margellos, P.J. Goulart, and J. Lygeros. On the road between
robust optimization and the scenario approach for chance constrained
optimization problems. IEEE Transactions on Automatic Control,
59(8):2258–2263, 2014.

[24] K. Margellos, M. Prandini, and J. Lygeros. On the connection between
compression learning and scenario based single-stage and cascading
optimization problems. IEEE Transactions on Automatic Control,
60(10):2716–2721, 2015.

[25] H.A. Nasir, A. Carè, and E. Weyer. A randomised approach to
flood control using value-at-risk. In Proceedings of the 54th IEEE
Conference on Decision and Control (CDC), pages 3939–3944, 2015.

[26] H.A. Nasir, A. Carè, and E. Weyer. A scenario-based stochastic
mpc approach for problems with normal and rare operations with
an application to rivers. IEEE Transactions on Control Systems
Technology, 27(4):1397–1410, 2019.

[27] H.A. Nasir, T. Zhao, A. Carè, Q.J. Wang, and E. Weyer. Efficient
river management using stochastic mpc and ensemble forecast of
uncertain in-flows. IFAC-PapersOnLine, 51(5):37 – 42, 2018. 1st IFAC
Workshop on Integrated Assessment Modelling for Environmental
Systems IAMES 2018.

[28] M.E. Payton, L.J. Young, and J.H. Young. Bounds for the difference
between median and mean of beta and negative binomial distributions.
Metrika, 36:347?354, 1989.

[29] G. Schildbach, L. Fagiano, C. Frei, and M. Morari. The scenario
approach for stochastic model predictive control with bounds on
closed-loop constraint violations. Automatica, 50(12):3009–3018,
2014.

[30] G. Schildbach, L. Fagiano, and M. Morari. Randomized solutions to
convex programs with multiple chance constraints. SIAM Journal on
Optimization, 23(4):2479–2501, 2013.

[31] B. Schölkopf, P. Bartlett, A. Smola, and R. Williamson. Shrinking
the tube: A new support vector regression algorithm. In Advances in
Neural Information Processing Systems 11 (NIPS 1998), pages 330–
336, Denver, CO, 1998.

[32] B. Schölkopf and A.J. Smola. Learning with kernels.

[33] A.J. Smola and B. Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14:199–224, 2004.

[34] D.M.J. Tax and R.P.W. Duin. Support vector data description. Machine
Learning, 54:45–66, 2004.

[35] X. Wang, F. Chung, and S. Wang. Theoretical analysis for solution of
support vector data description. Neural Networks, 24:360?369, 2011.

[36] J.S. Welsh and H. Kong. Robust experiment design through randomi-
sation with chance constraints. In Proceedings of the 18th IFAC World
Congress, Milan, Italy, 2011.

[37] J.S. Welsh and C.R. Rojas. A scenario based approach to robust
experiment design. In Proceedings of the 15th IFAC Symposium on
System Identification, Saint-Malo, France, 2009.

[38] X. Zhang, S. Grammatico, G. Schildbach, P.J. Goulart, and J. Lygeros.
On the sample size of random convex programs with structured
dependence on the uncertainty. Automatica, 60:182–188, 2015.

APPENDIX

A. Proof of Theorem 2

Let v := 1−t. Equation (2) for k = 0, . . . , N−1 becomes

β

2N

N−1∑
i=k

(
i

k

)
(1− v)i−k +

β

6N

4N∑
i=N+1

(
i

k

)
(1− v)i−k

=

(
N

k

)
(1− v)N−k. (13)

The fact that (2) has two solutions in [0,+∞), as stated
in Theorem 1, translates into that equation (13) has two
solutions in (−∞, 1], namely ε(k) and ε(k). Observing that
the left-hand side of (13) is equal to β/2N > 0 for v = 1,
while the right-hand side is zero at the same point, we then
conclude that, when running backward from 1 to −∞, the
left-hand side is first above, then below, and then above again
of the right-hand side, as graphically illustrated in Figure 7.
Next consider the following two inequality conditions:

β

2N

N−1∑
i=k

(
i

k

)
(1− v)i−k ≥

(
N

k

)
(1− v)N−k,(14)

β

6N

4N∑
i=N+1

(
i

k

)
(1− v)i−k ≥

(
N

k

)
(1− v)N−k.(15)

These two inequalities can be used to effectively locate a
suitable upper-bound for ε(k) (inequality (14)) and lower-
bound for ε(k) (inequality (15)). This is explained as follows.
Take the ratio of the left-hand side over the right-hand side
of equation (14):

β

2N

N−1∑
i=k

(
i
k

)(
N
k

) (1− v)i−N .

Over (−∞, 1), this function is strictly increasing, moreover

for v = 0 it is smaller than β/2 < 1 (note that (ik)
(Nk)

< 1)
while it tends to +∞ as v → 1. Therefore, it picks the value
1 in one and only one point in (0, 1), which shows that
equality is attained in (14) for only one value of v ∈ (0, 1).
Hence, the two functions showing up in the left-hand and
right-hand sides of (14) are mutually positioned as shown
in Figure 7.
Further, it is claimed that any v satisfying (14) is an
upper-bound to ε(k). Indeed, when moving from equation
(13) to (14) we have removed from the left-hand side of
(13) a positive term, so shifting to the right the point where
equality is achieved in (14); then, owing to the mutual
position of the two functions in (14) one immediately sees
the correctness of the claim.
The inequality condition (15) can be studied in full analogy
to (14) with the only advisory that the role of interval
(0, 1) is played by (1,−∞) when considering the second
inequality (15).

Preliminary calculations

To study (14) and (15), we shall use a re-writing of

the left-hand sides of these inequalities as given in the
following.
Let

ϕH,k(v) =

H−1∑
i=k

(
i

k

)
(1− v)i−k.

Notice first that, for k = 0, we have ϕH,0(v) =
∑H−1
i=0 (1−

v)i = 1−(1−v)H
v . Next, for k ≤ H − 1, a direct verification

proves the validity of the following updating rule

ϕH,k(v) = −1

k

d

dv
ϕH,k−1(v). (16)

A repeated use (a cumbersome but straightforward exercise)
of (16) now gives

ϕH,k(v) =
1−

∑k
i=0

(
H
i

)
vi(1− v)H−i

vk+1
(17)

=

∑H
i=k+1

(
H
i

)
vi(1− v)H−i

vk+1
. (18)

Upper bounding ε(k)

Substituting (17) in (14), (14) becomes

β

2

(
1−

k∑
i=0

(
N

i

)
vi(1− v)N−i

)
≥ N

(
N

k

)
vk+1(1−v)N−k.

(19)
If we further decrease the left-hand side (and increase the
right-hand side) we obtain an inequality the solutions of
which are still upper-bounds to ε(k). Starting with the left-
hand side, we apply an argument first used in [2] and, for
any a > 1, write:

k∑
i=0

(
N

i

)
vi(1− v)N−i

≤ ak
k∑
i=0

(
N

i

)(v
a

)i
(1− v)N−i

≤ ak
N∑
i=0

(
N

i

)(v
a

)i
(1− v)N−i

= ak
(

1− v +
v

a

)N
= (1− (1− a))k

(
1− a− 1

a
v

)N
≤ e−(1−a)ke−

a−1
a vN , (20)

where the last inequality follows from relation 1− z ≤ e−z .
Similarly,

N

(
N

k

)
vk+1(1− v)N−k

≤ (k + 1)

(
N + 1

k + 1

)
vk+1(1− v)N+1−(k+1)

≤ (k + 1)

k+1∑
i=0

(
N + 1

i

)
vi(1− v)N+1−i

≤ (k + 1)e−(1−a)(k+1)e−
a−1
a v(N+1)

≤ (k + 1)e−(1−a)e−(1−a)ke−
a−1
a vN . (21)

Fig. 7. Graph of functions in (13), (14), and (15).

Suppose now k > 0 (the case k = 0 will be considered
separately) and take a = 1 + 1/

√
k. Using (20) and (21) in

(19) yields that any v coming from the inequality

β

2

(
1− e

√
ke
− vN√

k+1

)
≥ (k + 1)e

1√
k e
√
ke
− vN√

k+1

is an upper bound to ε(k). This inequality is equivalent to

β

2(k + 1)
≥ e
√
ke
− vN√

k+1

[
β

2(k + 1)
+ e

1√
k

]
and, solving for v, we obtain

v ≥ k

N
+

√
k + 1

N

(
λ+ ln

2

β
+ ln(k + 1)

)
,

where λ = ln
[

β
2(k+1) + e

1√
k

]
+

√
k√
k+1

. This shows that

ε(k) ≤ k

N
+

√
k + 1

N

(
λ+ ln

2

β
+ ln(k + 1)

)
and the validity of (5) (for k 6= 0, N – recall that we started
from equation (2) that holds for k < N and further left
behind the case k=0) follows by noticing that λ ≤ 2.
Turn now to the case k = 0, N .
Case k = N is trivial because ε(N) = 1, which is clearly in
agreement with (5).
As for k = 0, go back to (19) and use in it (20) and (21) with
a = 1 + 1/

√
k + 1, which, after substituting k = 0, gives

a = 2 (adding 1 to k serves the purpose of avoiding division
by zero). Operating the same manipulations as before we
now obtain

v ≥ 2

N

(
ln

[
β

2
+ e

]
+ ln

2

β

)
,

which has the form of the upper bound for ε(k) given in
Theorem 2.

Lower bounding ε(k)

First, we want to claim that for any k large enough
there is a positive v satisfying equation (15). In fact, for
v = 0 equation (15) reduces to β

6N

∑4N
i=N+1

(
i
k

)
≥
(
N
k

)
and,

using the hockey-stick identity (i.e.,
∑n
i=r

(
i
r

)
=
(
n+1
r+1

)
),

we have

β

6N

∑4N
i=N+1

(
i
k

)(
N
k

)
=

β

6N

(
4N+1
k+1

)
−
(
N+1
k+1

)(
N
k

)
=

β

6N

(4N + 1) · · · (4N − k + 1)− (N + 1) · · · (N − k + 1)

(N) · · · (N − k + 1) · (k + 1)

≥ β

6

2k+1(N + 1) · · · (N − k + 1)− (N + 1) · · · (N − k + 1)

(N + 1) · · · (N − k + 1) · (k + 1)

=
β

6

2k+1 − 1

k + 1
,

which is greater than 1 for any

k ≥ c1 + c2 ln(1/β), (22)

where c1 and c2 are suitable constants. In what follows, we
assume that this latter condition is satisfied and hence seek
a positive solution of equation (15).
Using (18) to rewrite the left-hand side of equation (15) as∑4N
i=N+1

(
i
k

)
(1−v)i−k = ϕ4N+1,k(v)−ϕN+1,k(v), equation

(15) becomes

β

6

(
4N+1∑
i=k+1

(
4N + 1

i

)
vi(1− v)4N+1−i

−
N+1∑
i=k+1

(
N + 1

i

)
vi(1− v)N+1−i

)

≥ N
(
N

k

)
vk+1(1− v)N−k, (23)

where moving term vk+1 to the right-hand side does not
change the inequality sign because v is positive. Similarly to
what we did to find an upper bound for ε(k), here we can
decrease the left-hand side and increase the right-hand side
of (23) to find a valid lower bound for ε(k).
Notice first that

∑4N+1
i=k+1

(
4N+1
i

)
vi(1 − v)4N+1−i ≥ 1

2 for
v ≥ k+1

4N+2 .4 Thus, using also the fact N
(
N
k

)
≤ (k+1)

(
N+1
k+1

)
,

we can take

β

6

(
1

2
−

N+1∑
i=k+1

(
N + 1

i

)
vi(1− v)N+1−i

)

≥ (k + 1)

(
N + 1

k + 1

)
vk+1(1− v)N+1−(k+1) (24)

in place of (23) to obtain a lower bound to ε(k) as long as
we impose the additional condition that

v ≥ k + 1

4N + 2
. (25)

For any a > 1, we now have(
N + 1

k + 1

)
vk+1(1− v)N+1−(k+1)

≤
N+1∑
i=k+1

(
N + 1

i

)
vi(1− v)N+1−i

≤ 1

ak

N+1∑
i=k+1

(
N + 1

i

)
(av)i(1− v)N+1−i

≤ 1

ak

N+1∑
i=0

(
N + 1

i

)
(av)i(1− v)N+1−i

=
1

ak
(1 + (a− 1)v)

N+1

≤ e(a−1)v(N+1)

ak
,

where the last inequality follows from relation 1 + z ≤ ez .
Assume k > 0 and take a = 1+1/

√
k. Using the above chain

of inequalities twice in (24) (for the term in the left-hand
side of (24) we use the inequality obtained by comparing
the second with the last term in the chain), we obtain the
following condition that is more restrictive than (24)

β

6

(
1

2
− e

v(N+1)√
k

(1 + 1√
k

)k

)
≥ (k + 1)

e
v(N+1)√

k

(1 + 1√
k

)k
.

4This follows from the fact that
∑4N+1
i=k+1

(4N+1
i

)
vi(1− v)4N+1−i is

the cumulative distribution function of a Beta distribution and k+1
4N+2

is its
mean, which is greater than the median, [28].

This inequality is equivalent to

β

12(β6 + k + 1)
≥ e

v(N+1)√
k

(1 + 1√
k

)k
,

which, solved for v, gives

v ≤ k

N + 1
ln

[(
1 +

1√
k

)√k]

−
√
k

N + 1

(
ln

12

β
+ ln(

β

6
+ k + 1)

)
.

Noticing now that ln(1 + x) ≥ x − x2/2 for all x ≥ 0, we
can finally replace the latter inequality with

v ≤ k

N + 1

(
1− 1

2
√
k

)
−
√
k

N + 1

(
ln

12

β
+ ln(

β

6
+ k + 1)

)
, (26)

which, for a more handy use, we also rewrite as

v ≤ k

N
− g(k,N, β),

where function g(k,N, β) is just the difference between k/N
and the right-hand side of (26). Notice also that this equation
is valid also for k = N since (3) also leads to (15), which
has been our starting point in the derivation.

To conclude the proof, we have to put together all inequal-
ities that limit the choice of v, namely:
(i) k ≥ c1 + c2 ln(1/β) (equation (22));

(ii) v ≥ k+1
4N+2 (equation (25));

(iii) v ≤ k
N − g(k,N, β).

Recall that (iii) makes sense only for k 6= 0 (the case
k = 0 takes care of itself because Theorem 2 claims that
ε(0) ≥ 0 which is in agreement with the value of ε(0) given
in Theorem 1). For the time being, leave (i) behind. Now,
one can take the value of v that achieves equality in (iii),
i.e., v = k

N − g(k,N, β), provided that this is compatible
with (ii), that is, k

N − g(k,N, β) ≥ k+1
4N+2 . This can be

re-written as g(k,N, β) ≤ k
N −

k+1
4N+2 . Instead, for those

values of k,N, β for which this latter inequality does not
hold, we have g(k,N, β) > k

N −
k+1
4N+2 , from which an easy

calculation shows that 2g(k,N, β) ≥ k
N , or, equivalently,

k
N − 2g(k,N, β) ≤ 0. Since ε(k) ≥ 0, we conclude that
in any case ε(k) ≥ k

N − 2g(k,N, β). Noticing now that

g(k,N, β) can be upper bounded by C ′
√
k ln 1

β+
√
k ln k+1

N for
a suitable value of the constant C ′, we conclude that

ε(k) ≥ k

N
− C

√
k ln 1

β +
√
k ln k + 1

N
, (27)

with C = 2C ′. Turn now back to consider (i). Condition (i)
is not satisfied when k

N < (c1 + c2 ln(1/β))/N . However,
this latter condition implies that the right-hand side of (27)
is negative (possibly after enlarging the constant C in (27)
to a value that, with a little abuse of notation, we still call
C), so that (27) is always a valid lower bound because ε(k)
is always non-negative. This concludes the proof.

B. Proof of Theorem 5

For analysis purposes, introduce the augmented probability
space (U × R) × [0, 1] endowed with the probability Q =
P × U, where U is the uniform probability on [0, 1] that
describes the “heating variable” z. Next, fix a real parameter
value α chosen from the countable set {1/j}, where j is any
positive integer, and consider an independent heated data set
{ui, yi(1−αzi)}Ni=1 generated from ((U×R)×[0, 1])N . Note
that this situation traces back to the actual data generation
mechanism when α→ 0 because variable z loses its heating
role and augmenting (U × R) with [0, 1] has no effect.

Suppose we run program (11) with the heated data set,
that is, we run

min
w∈U,b∈R

ξi≥0,i=1,...,N

‖w‖2 + ρ

N∑
i=1

ξi (28)

subject to: (1− αzi)− yi(〈w, ui〉 − b) ≤ ξi,
i = 1, . . . , N,

endowed with the same rule adopted in (11) to break the
tie in case of non-unique solution. Then, existence and
uniqueness are preserved and it is further claimed that the
non-accumulation Assumption 3 also holds. Indeed, with
heated values y , the non-accumulation condition writes
Q{(1− αz)− y(〈w,u〉 − b) = 0} = 0, ∀(w, b) ∈ U × R, a
condition that is proven by the following calculation:

Q{(1− αz)− y(〈w,u〉 − b) = 0} (29)

= Q
{
z =

1− y(〈w,u〉 − b)
α

}
= Q

{
Q
{
z =

1− y(〈w,u〉 − b)
α

∣∣∣ u, y

}}
= 0.

Hence, the result in Theorem 1 can be applied to the heated
situation yielding:

QN{ε(s∗α) ≤ Vα(w∗α, b
∗
α) ≤ ε(s∗α)} ≥ 1− β, (30)

where subscript α indicates that the solution has been
obtained from the heated program (28), Vα(w, b) =
Q{(u, y, z) : (1 − αz) − y(〈w,u〉 − b) > 0} and s∗α is the
number of (ui, yi, zi)’s for which (1−αzi)− yi(〈w∗α,ui〉−
b∗α) ≥ 0.

To re-approach the result (30) that holds for the heated
situation with the initial non-heated problem, let us start
by introducing the notation V0(w, b) := Q{(u, y, z) : 1 −
y(〈w,u〉 − b) > 0} and note that V (w, b) := P{(u, y) :
1−y(〈w,u〉− b) > 0} = V0(w, b). For a given α > 0, write

V0(w∗, b∗) = (V0(w∗, b∗)− Vα(w∗, b∗))

+ (Vα(w∗, b∗)− Vα(w∗α, b
∗
α))

+Vα(w∗α, b
∗
α). (31)

It is claimed that the first two terms in the right-hand side
exhibit the following behaviour:
(i) for all realizations of {(ui, yi, zi)}Ni=1, it holds that

limα→0(V0(w∗, b∗)− Vα(w∗, b∗)) = 0;

(ii) for all realizations of {(ui, yi, zi)}Ni=1 such that w∗ 6= 0,
it holds that limα→0(Vα(w∗, b∗)− Vα(w∗α, b

∗
α)) = 0.

Proof of (i): Note that w∗ and b∗ only depend on the
heated training sequence and are treated as deterministic
in the calculations that follow to compute risks. Let
Bα := {(u, y, z) : (1 − αz) − y(〈w∗,u〉 − b∗) > 0} and
B0 := {(u, y, z) : 1 − y(〈w∗,u〉 − b∗) > 0}. By a direct
inspection one can show that Bα1

⊆ Bα2
for α2 ≤ α1 and

that B0 = ∪αBα. Hence, by σ-additivity, V0(w∗, b∗) =
Q{B0} = limα→0 Q{Bα} = limα→0 Vα(w∗, b∗), and claim
(i) remains proven.

Proof of (ii): Note that w∗α → w∗ and that b∗α → b∗ as α→ 0.
Moreover, by assumption w∗ 6= 0. Let Bαα := {(u, y, z) :
(1 − αz) − y(〈w∗α,u〉 − b∗α) > 0}. Over the complement
of set A := {(u, y, z) : 1 − y(〈w∗,u〉 − b∗) = 0}, for any
given (u, y, z), the two left-hand sides in the inequalities
that define Bα and Bαα agree in sign in the limit when
α → 0, so that, in the limit, Bα4Bαα ⊆ A (4 denotes
symmetric difference). More formally, this means that for
all (u, y, z) ∈ Ac, the complement of A, there exists an ᾱ
such that (u, y, z) /∈ Bα4Bαα for all α ≤ ᾱ. This property
in turn implies that lim supα→0 Q{Bα4Bαα} ≤ Q{A} and
therefore we have:

lim sup
α→0

|Vα(w∗, b∗)− Vα(w∗α, b
∗
α)|

= lim sup
α→0

|Q{Bα} −Q{Bαα}|

≤ lim sup
α→0

Q{Bα4Bαα}

≤ Q{A}
= [recall that w∗ 6= 0 and use Assumption 6]

= 0.

This completes the proof of (ii).5

Using (i) and (ii) in (31), we obtain:

for all realizations of {(ui, yi, zi)}Ni=1 such that
w∗ 6= 0, it holds that

limα→0 Vα(w∗α, b
∗
α) = V0(w∗, b∗).

(32)

Turn now to consider s∗ and s∗α. We show that:

with the exception of a zero-probability set,
for all realizations of {(ui, yi, zi)}Ni=1 such that
w∗ 6= 0 it holds that

limα→0 s
∗
α = s∗.

(33)

To see this, note that, when w∗ 6= 0 and with exception
of a zero-probability set, Assumption 6 implies that the

5Note that Assumption 6 cannot be dispensed for as shown by the
following counterexample. Suppose that u ∈ R has mass concentrated over
±1 with equal probability 0.5 and y = u. Clearly, Assumption 6 is not
satisfied in this case. When w∗ 6= 0, i.e. when ui are not picked all equal,
we necessarily have w∗ = 1 and b∗ = 0, and Vα(w∗, b∗) = 0. However,
with the exception of a zero-probability set, we have w∗α · 1− b∗α < 1 and
w∗α · (−1)− b∗α > −1, so that Vα(w∗α, b

∗
α) 6= 0 with a value that depends

on the realization of {(ui, yi, zi)}Ni=1, but that is constant with α. Hence,
limα→0(Vα(w∗, b∗)− Vα(w∗α, b∗α)) 6= 0.

(ui, yi, zi) such that 1 − yi(〈w∗,ui〉 − b∗) ≥ 0 correspond
to the active constraints for (11), and all of these active
constraints are strictly needed to determine the solution
w∗, b∗, ξ∗i . A small enough heating keeps these and only
these constraints active for (28) too, which implies that
s∗α = s∗ for all α small enough.

Using (30), (32), and (33), we are now ready to establish
results that quantify the violation when w∗ 6= 0.

Let I(k) = [ε(k), ε(k)] and define the following events in
((U × R)× [0, 1])N :

E =
{
{(ui, yi, zi)}Ni=1 : w∗ 6= 0 ∧

V (w∗, b∗) /∈ I(s∗)
}

Eα =
{
{(ui, yi, zi)}Ni=1 : w∗ 6= 0 ∧

Vα(w∗α, b
∗
α) /∈ I(s∗α)

}
E+
α = ∩α′≤αEα′ .

Using (32) and (33), one can easily show that

E ⊆
⋃
α

E+
α ,

from which we obtain

PN{w∗ 6= 0 ∧ V (w∗, b∗) /∈ I(s∗)}
= QN (E)

≤ QN (∪αE+
α)

= [since E+
α is increasing as α decreases]

= lim
α→0

QN (E+
α)

≤ [since E+
α ⊆ Eα]

≤ lim sup
α→0

QN (Eα)

≤ lim sup
α→0

QN (Vα(w∗α, b
∗
α) /∈ I(s∗α)).

Applying (30) to the last term finally gives

PN{w∗ 6= 0 ∧ V (w∗, b∗) /∈ I(s∗)} ≤ β. (34)

To conclude the proof, we have now to account for the
realizations of {(ui, yi, zi)}Ni=1 for which w∗ = 0 and show
that

PN{w∗ = 0 ∧ V (w∗, b∗) /∈ I(s∗)} ≤ 2β. (35)

In fact, (34) and (35) together give

PN{V (w∗, b∗) /∈ I(s∗)}
= PN{w∗ 6= 0 ∧ V (w∗, b∗) /∈ I(s∗)}

+ PN{w∗ = 0 ∧ V (w∗, b∗) /∈ I(s∗)}
≤ 3β,

which is equivalent to the statement of Theorem 5.
To prove (35), first notice that substituting w∗ = 0 in

program (11) gives

min
b∈R

ξi≥0,i=1,...,N

ρ

N∑
i=1

ξi

subject to: 1 + yib ≤ ξi, i = 1, . . . , N,

and a simple direct inspection reveals that at optimum either
b∗ = −1 (when no. of yi = 1 ≥ no. of yi = −1; notice that
when these two numbers are equal, b∗ = −1 is enforced by
the adopted tie-break rule) or b∗ = 1 (when no. of yi = 1
< no. of yi = −1). The analysis is thus split into two sub-
cases, namely, (w∗ = 0, b∗ = −1) and (w∗ = 0, b∗ = 1),
and (35) is obtained by showing that

PN{w∗ = 0 ∧ b∗ = � ∧ V (w∗, b∗) /∈ I(s∗)} ≤ β

where � is either −1 or 1.
The proof for one case is identical to that for the other.

Choose thus one, say (w∗ = 0, b∗ = −1), and consider a
version of the heated program (28) where w and b are always
(i.e. for all realizations of {(ui, yi, zi)}Ni=1) constrained to
take the values 0 and −1, respectively:

min
w=0,b=−1

ξi≥0,i=1,...,N

‖w‖2 + ρ

N∑
i=1

ξi (36)

subject to: (1− αzi)− yi(〈w, ui〉 − b) ≤ ξi,
i = 1, . . . , N,

which is equivalent to

min
ξi≥0,i=1,...,N

ρ

N∑
i=1

ξi

subject to: (1− αzi)− yi ≤ ξi, i = 1, . . . , N.

Program (36) is quite a peculiar instance of (1), since x =
(w, b) belongs to a vector space with null dimensionality.
Still, the theory of Section II retains its validity. As a matter
of fact, (36) has clearly a unique solution, which is

w̃∗α = 0, b̃∗α = −1, ξ̃∗i,α = (1− αzi)− yi,

and it satisfies the non-accumulation Assumption 3 (as shown
by (29) with w = 0 and b = −1). Theorem 1 can therefore
be applied to (36) yielding

QN{Vα(w̃∗α, b̃
∗
α) /∈ I(s̃∗α)} ≤ β, (37)

for all α, where Vα(w̃∗α, b̃
∗
α) = Q{(u, y, z) : (1 − αz) −

y(〈w̃∗α,u〉 − b̃∗α) > 0} = Q{(u, y, z) : y < (1 − αz)}
and s̃∗α is the number of (ui, yi, zi) for which (1 − αzi) −
yi(〈w̃∗α,ui〉 − b̃∗α) ≥ 0, i.e. for which yi ≤ (1− αzi).

Recalling that α = 1/j, with j any positive integer, that
y can be either 1 or −1, and that z ∈ [0, 1], one sees that
for all the realizations of {(ui, yi, zi)}Ni=1 such that w∗ = 0
and b∗ = −1 and for all α, it holds that

V (w∗, b∗) = V (0,−1)

= P{(u, y) : y < 1}
= Q{(u, y, z) : y < 1}
= Q{(u, y, z) : y < (1− αz)}
= Vα(w̃∗α, b̃

∗
α).

and, with exception of when zi = 0 for some i, which has
zero-probability, that

s∗ = [recall how s∗ is defined when w∗ = 0]

= no. of yi = −1

= no. of yi ≤ (1− αzi)
= s̃∗α.

Hence, we have

PN{w∗ = 0 ∧ b∗ = −1 ∧ V (w∗, b∗) /∈ I(s∗)}
= QN{w∗ = 0 ∧ b∗ = −1 ∧ V (w∗, b∗) /∈ I(s∗)}
= QN{w∗ = 0 ∧ b∗ = −1 ∧ Vα(w̃∗α, b̃

∗
α) /∈ I(s̃∗α)}

≤ QN{Vα(w̃∗α, b̃
∗
α) /∈ I(s̃∗α)}

≤ β,

which is the sought relation. The same argument applies
mutatis mutandis for the case (w∗ = 0, b∗ = 1).

This concludes the proof. ?

	I Introduction
	II Risk assessment in scenario optimization with constraints relaxation
	II-A Asymptotic results

	III Application to Support Vector Methods
	III-A Support Vector Regression - SVR
	III-B Support Vector Data Description - SVDD
	III-C Support Vector Machines - SVM

	IV Numerical example
	References
	Appendix
	A Proof of Theorem 2
	B Proof of Theorem 5

